

Stellar occultation by asteroids and Trans-Neptunian bodies: A powerful technique

R. Duffard, J.L. Ortiz, P. Santos-Sanz, N. Morales

Instituto de Astrofísica de Andalucia – CSIC. Granada, Spain

Stellar Occultations

- Excellent technique for studying TNOs
- Accurate TNO position relative to the star
- Radius and/or apparent elliptical figure
- Atmospheres (T, P, composition)

NSTITUTO de ASTROFIC

I.A.A

- Albedos using the optical constraint.
- Difficult to predict (small angular diameters, uncertainties in TNO orbits, less uncertainties in stellar position after GAIA)
- Event lasting few second, fast CCD cameras needed

Stellar Occultations

Successful occultation by TNOs

TNO	Date	Location
2002TX300	9 Oct, 2009	Hawaii, multi
Varuna	19 Feb, 2010	Brazil, single
Eris	6 Nov, 2010	Chile, multi
2003AZ84	8 Jan, 2011	Chile, single
Quaoar	11 Feb, 2011	USA, single
Makemake	23 Apr, 2011	Chile, Brazil
Quaoar	4 May, 2011	Chile, Brazil
2003AZ84	3 Feb, 2012	Israel, India
Quaoar	17 Feb, 2012	France, Switzerland
2002KX14	26 Apr, 2012	Spain, single
Quaoar	15 Oct, 2012	Chile, single
Varuna	8 Jan, 2013	Japan, multi
Sedna	13 Jan, 2013	Australia, single
Quaoar	8 Jul, 2013	Venezuela, single
2003VS2	12 Dec, 2013	Reunion Island, single
Varuna	11 Feb, 2014	Chile, multi
2003VS2	4 Mar, 2014	Israel, single
Orcus' satellite	1 Mar, 2014	Japan, single
Ixion	24 Jun, 2014	Australia, single
2003VS2	7 Nov, 2014	Argentina, Uruguay
2007UK126	15 Nov, 2014	USA, multi
2003AZ84	15 Nov, 2014	Japan, China, Thailand

INSTITUTO de ASTROFISICA ANDALUCI CSIC I.A.A

The three teams (Granada, Paris, Rio) arranged observations with many different telescopes around the globe

Latitude (deg.)

26 telescopes were involved !!! Only 3 were successful, relatively faint star: 17.2 mag in V

Occultation by Makemake: Observing sites

INSTITUTO DE LA PRODUCTION DE LA PRODUCTICA PRODUCTION DE LA PRODUCTICA PRODUCTICA

Occultation by Makemake: Data

Ortiz, Sicardy, Braga-Ribas, Duffard, Santos-Sanz, et al. (2012) Nature, 491,566

16 telescopes involved, 7 were successful from 5 sites

Occultation by Quaoar May 4th, 2011:

Braga-Ribas, Sicardy, Ortiz, Sicady et al. (2013). Astrophysical Journal

Occultation by Quaoar May 4th, 2011

Braga-Ribas, Sicardy, Ortiz, Duffard, Santos-Sanz, et al. (2013). Astrophysical Journal 773, 26

HAUMEA AND RINGS

Fast CCD

400

Ortiz et al, Nature 2017

Occultation vs. Herschel Space Telescope (TNO's are Coll! Key project)

Successful occultations

INSTITUTO de ASTROFISICA

I•A•A

CSIC

ANDALUCA

-2003AZ84- dots each 1000km or 40.29s <<>> offsets (mas) 232.0 6

2003 AZ84: Star OPD 22set11, postOcc-JPL#11

d m year h:m:s UT ro__dec__J2000_condidate C/A P/A vel Data R+ K+ I 03 02 2012 19 45 38.0 07 45 54.7713 +11 12 43.040 0.046 12.34 -24.82 44.26 15.3 14.4 Credits: R10 Fear & B. Si

d m year	h:m:s UT	radecJ2000_candidate	C/A	P/A vel	d m year	h:m:s UT	radecJ2000_candidate	C/A	P/A ve	l Delta R*	K*	long
03 02 2012	19 48 10.	07 45 54.7648 11 12 43.150	0.041	192.44 -24.83	03 02 2012	19 46 56.	07 45 54.7673 11 12 43.064	0.007	12.44 -24	.83 44.26 15.	3 14.4	46.

2003AZ84: Star mean/obsJan, PicColas—Jan/ JPL#11 Offset (mas): 296.0 58.0

d m year h:m:s UT ra_dec_J2000_candidate C/A P/A vel Delta R* K* long 03 02 2012 19 47 31. 07 45 54.7696 11 12 43.093 0.064 12.44 -24.83 44.26 15.3 14.4 46.

Using observations from the Sierra Nevada Observatory 1.5m telescope on January 19th, 2018, just a week before the occultation. ANALYZED WITH GAIA DR1

In Right Ascension the final prediction was off by only around 15 mas with respect to the last minute update, but in declination the offset was around 35 mas.

Time (seconds after 6 November 2010, 00:00:00.0 utc)

Some lessons learnt on strategies

Binary TNOs, difficulty in getting the astrometry: photocenter is not in the center of the body.

Binary stars: we do not know most of the time whether the star to be occulted is binary so the photocenter does not fall in te center of the star.

Proper motions of the stars: important for the initial predictions, but the problem is solved with astrometric updates.

In the last 3 years we have been successful in 18 TNOs occultations, 12 within our international collaboration. We can now predict and observe occultations of very faint stars.

Currently, a key issue is the high accuracy updates to refine predictions. We have developed the tools and the methods. But this requires a lot of observing time.

Sizes, shapes, diameters, albedos and densities have been determined for 10 TNOs and very accurate values were derived for 7 of them.

Future

-We expect to be able to observe around 3-5 new occultations per year, for the 10 to 15 largest TNOs using our current techniques.

-We expect to be able to extend the success to the 100 largest TNOs.

- Moving to smaller TNOs is difficult (orbits, access to telescopes to make prediction, etc), but we can do it.

-To observe future occultations, amateur and small observatories will play an important role.

- Small telescopes
- Normal CCD or EMCCD (better)
- No filter
- Time stamp
- FOV of several arcmin
- Good S/N in the occulted star flux

Pole solution: $\lambda = 138^{\circ} \beta = 28^{\circ}$

4 more occultations by Chariklo during 2014. Few more ring occultations

Saturn with a small telescope

Don't you think it is a powerful technique??

occultations

Contact: duffard@iaa.es