Stellar occultation by asteroids and Trans-Neptunian bodies: A powerful technique

R. Duffard, J.L. Ortiz , P. Santos-Sanz , N. Morales

Stellar Occultations

- Excellent technique for studying TNOs
- Accurate TNO position relative to the star
- Radius and/or apparent elliptical figure
- Atmospheres (T, P, composition)
- Albedos using the optical constraint.
- Difficult to predict (small angular diameters, uncertainties in TNO orbits, less uncertainties in stellar position after GAIA)
- Event lasting few second, fast CCD cameras needed

Stellar Occultations

Successful occultation by TNOs

TNO	Date	Location
2002TX300	9 Oct, 2009	Hawaii, multi
Varuna	19 Feb, 2010	Brazil, single
Eris	6 Nov, 2010	Chile, multi
2003AZ84	8 Jan, 2011	Chile, single
Quaoar	$11 \mathrm{Feb}, 2011$	USA, single
Makemake	23 Apr, 2011	Chile, Brazil
Quaoar	4 May, 2011	Chile, Brazil
2003AZ84	3 Feb, 2012	Israel, India
Quaoar	$17 \mathrm{Feb}, 2012$	France, Switzerland
2002KX14	26 Apr, 2012	Spain, single
Quaoar	15 Oct, 2012	Chile, single
Varuna	8 Jan, 2013	Japan, multi
Sedna	13 Jan, 2013	Australia, single
Quaoar	8 Jul, 2013	Venezuela,single
2003VS2	$12 \mathrm{Dec}, 2013$	Reunion Island, single
Varuna	11 Feb, 2014	Chile, multi
2003VS2	4 Mar, 2014	Israel, single
Orcus' satellite	1 Mar, 2014	Japan, single
Ixion	24 Jun, 2014	Australia, single
2003VS2	7 Nov, 2014	Argentina, Uruguay
2007UK126	15 Nov, 2014	USA, multi
2003AZ84	15 Nov, 2014	Japan, China, Thailand

Some examples

- Eris
- Makemake
- Quaoar
- Haumea
- Chariklo

The three teams (Granada, Paris, Rio) arranged observations with many different telescopes around the globe

26 telescopes were involved !!!
Only 3 were successful, relatively faint star: 17.2 mag in V

> "Our own" telescope in Chile

Sicardy, Ortiz et al. (2011). Nature 478, 493

The star was relatively faint: 17.2 mag in V band

Occultation by Makemake: Observing sites

Occultation by Makemake: Data

Ortiz, Sicardy, Braga-Ribas, Duffard, Santos-Sanz, et al. (2012)

Nature, 491,566

16 telescopes involved,
 7 were successful from 5 sites

Occultation by Quaoar May 4th, 2011:

Braga-Ribas, Sicardy, Ortiz, Sicady et al. (2013). Astrophysical Journal

Occultation by Quaoar May 4th, 2011

Braga-Ribas, Sicardy, Ortiz, Duffard, Santos-Sanz, et al. (2013). Astrophysical Journal 773, 26

HAUMEA AND RINGS

Ortiz et al, Nature 2017

Occultation vs.
 Herschel Space Telescope (TNO's are Coll! Key project)

Observations: looking for collaborations

Predictions	Good luck in the observations

2003AZ84: Star mean/obsJan, PicColas-Jan/ JPL\#11 Offset (mas): $296.0 \quad 58.0$

Improvements with GAIA

Last minute prediction of the occultation

```
2 2002TC302JPL18 occults UCAC5manual on 2018 Jan 28 from 21h 34m to 22h 21m UT
Maren
```


January 2018

Using observations from the Sierra Nevada Observatory 1.5m telescope on January 19th, 2018, just a week before the occultation. ANALYZED WITH GAIA DR1

The reality.The final observed path

```
2 2002TC302JPL18 occults UCAC5manual on }2018\mathrm{ Jan }28\mathrm{ from 21h 30m to 22h 16m UT
```


In Right Ascension the final prediction was off by only around 15 mas with respect to the last minute update, but in declination the offset was around 35 mas.

Time

Integration time
Dead time

CCD shutter delay (0.2-0.3 seg)
-Each CCD has its own dead time -EMCCD = zero deadtime
-Integration times depends on the relation StarMagnitude/Telescope/instrument

Some lessons learnt on strategies

Binary TNOs, difficulty in getting the astrometry: photocenter is not in the center of the body.

Binary stars: we do not know most of the time whether the star to be occulted is binary so the photocenter does not fall in te center of the star.

Proper motions of the stars: important for the initial predictions, but the problem is solved with astrometric updates.

Summary

In the last 3 years we have been successful in 18 TNOs occultations, 12 within our international collaboration. We can now predict and observe occultations of very faint stars.

Currently, a key issue is the high accuracy updates to refine predictions. We have developed the tools and the methods. But this requires a lot of observing time.

Sizes, shapes, diameters, albedos and densities have been determined for 10 TNOs and very accurate values were derived for 7 of them.

Future

$1 \cdot A \cdot A$
-We expect to be able to observe around 3-5 new occultations per year, for the 10 to 15 largest TNOs using our current techniques.
-We expect to be able to extend the success to the 100 largest TNOs.

- Moving to smaller TNOs is difficult (orbits, access to telescopes to make prediction, etc), but we can do it.
-To observe future occultations, amateur and small observatories will play an important role.

WE WANT ,WE NEED............ YOUR COLLABORATION

- Small telescopes
- Normal CCD or EMCCD (better)
- No filter
- Time stamp
- FOV of several arcmin
- Good S / N in the occulted star flux

June 2013 / stellar occultation

Time (seconds after 3 June 2013, 00:00:00.0 UTC)

Nothing !!??

Pole solution: $\lambda=138^{\circ} \beta=28^{\circ}$

4 more occultations by Chariklo during 2014. Few more ring occultations

Saturn with a small telescope

Don't you think it is a powerful technique??

occultations

Contact: duffard@iaa.es

