

Ankara University Kreiken Observatory

Surface Inhomogeneities of the Eclipsing Binary System ER Vulpeculae

Observing Techniques, Instrumentation and Science For Metre-Class Telescopes II

Tatranská Lomnica, Slovakia September 24 - 28, 2018

İ. Özavcı¹, E. Bahar¹ and H.V. Şenavcı¹
¹Ankara University, Department of Astronomy and Space Sciences

Telescope and Instruments

Kreiken Telescope (Meade LX200 16")

Technical Specifications

Diameter: 406 mm **Focal Ratio:** f/10

Focal length: 4064 mm Image scale: 51 arcsec/mm

Manufacturer: Meade Instruments Corp.,

California

Focal Plane Instruments

• eShel Spectrograph (Shelyak Instruments), R~14000, Wavelength Range: 4340-7400 Å, Brightness Limit V < 8.0 mag

- Fiber Injection and Guiding Unit (f/6)
- Halogen, LED and Thorium-Argon lamp calibration unit
- QSI 660ws CCD camera
- 2758 x 2208 pixel 4.54 micron Sony ICX694 chip
- Autoguider system
- Various eye-pieces

First Light β Leo m_v= 2.1 - 90 Sec (06.04.2016)

Some of Our Studies From This Setup

THE ASTROPHYSICAL JOURNAL, 852:116 (5pp), 2018 January 10 © 2018. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/1538-4357/aa9f14

Behavior of Abundances in Chemically Peculiar Dwarf and Subgiant A-Type Stars: HD 23193 and HD 170920*

Tolgahan Kılıçoğlu, Şeyma Çalışkan¹, and Kübraözge Ünal
Ankara University, Science Faculty, Department of Astronomy and Space Sciences, 06100, Ankara, Turkey; seyma.caliskan@science.ankara.edu.tr
Received 2017 October 9; revised 2017 November 30; accepted 2017 November 30; published 2018 January 12

HD 23193 and HD170920 H_{β} profiles and theoretical model

Doppler Imaging and Chemical Abundance Analysis of EK Dra:

Capabilities of Small Telescopes

Kılıçoğlu, T.1, Şenavcı, H.V.1, Bahar, E.1, Işık, E.2, Montes, D.3, and Hussain, G.A.J.4

*Ankara University, Feculty of Science, Department of Administry and Space Sciences, 05300, Ankara, Surbay *Nex-Placek-Institut für Sciencesystembrechung, Justics-von-Liebig-Weg 3, 2007, Coltingen, Germany *Spice, Administer, Fecultie de Co.: Riesee, Universided Computations de MacNot, Spian *European Science Colorection (Sciencescolistics 2), 857-84 (Secting bei Microben, Glemany *European Science Colorection (Sciencescolistics 2), 857-84 (Secting bei Microben, Glemany

EK Dra: A Young Solar Analogue

- invition of al. (2008) found that the spots on EK Dia are grouped into two longitudes separated roughly 1800 and photometric data and the light-curve investor method, they date delected periodic visitation of the of spot with a period larger and signed and and with method additional period of 100 years.
- (δ niget al. (2006) detived the mass of E.9 M, for the primary component of the system and found 2.767 \pm 0.005 days periodic variation in the radial Fundamental Par.
- vsini 16.4 km s

Observations

EX Drawes observed using the Shelydkie Shel spectrograph mounted at 40 cm telescope.

Arkono University Kelken Observatory in 2017, 13 spectra were obtained with about 0.1.

Methods

M - 0.95 M_®

1 - 60° Tof - 5750 K Logg - 4.40

Rg. 1 Surface Map of EX Drawith latitudinal and longitudinal (, distributions

Imaging of Stellar Surfaces, March 5-9, 2018, ESO Garching, Munich, GERMANY

05 - 09 March 2018 ESO Garching Germany "Imaging of Stellar Surfaces" poster

(DOI: 10.5281/zenodo.1220763).

ORIGINAL ARTICLE

A simultaneous spectroscopic and photometric study of two eclipsing binaries: V566 Oph and V972 Her

S.O. Selam^{1,2} · E.M. Esmer^{1,2} · H.V. Şenavcı^{1,2} · E. Bahar^{1,2} · O. Yörükoğlu^{1,2} · M. Yılmaz^{1,2} · Ö. Baştürk^{1,2}

Radial velocity curve and theoretical model of V972 Her

Phase = 0.752

V972 Her'in Broadening Function (phase= 0.752)

Radial velocity curve and theoretical model of V566 Oph

Why ER Vul?

Credit: Martin Tsarev (http://www.sv-cam.smolyan.info/rscvn.html)

- Convenient for our setup (brightness) and is known to be magnetically active.
- Sun-like stars, G0V primary and G5V secondary
- Short-period (~0.7^d) RS CVn-type binary system.
- Primary star nearly fills its Roche lobe, but the binary system is still detached (Duemmler et al. 2003).
- ER Vul is identified as a pre-contact binary system (Dryomova, Perevozkina & Svechnikov 2005)

Some Light Curves of ER Vul

- Hall (1976) \rightarrow RS CVn type
- Olah et al. (1994), Ekmekçi, et al. (2002) and Wilson & Raichur (2011) → Light curve
- Çakırlı et al. (2003)→ the secondary star is more active than the primary one.

Ekmekçi et al. 2002

Piskunov → 1996, 2001 and 2008 and performed Doppler imaging

Xiang 2015 → the most recent Doppler imaging

Observations

Table 1. Log of spectroscopic observations.

Date	HJD-2400000	Phase	SNR Input	SNR LSD
	Mid Time			
01/07/18	58301.3235	0.0140	77.78	1588
01/07/18	58301.3653	0.0738	71.22	1641
01/07/18	58301.4071	0.1337	58.76	1532
01/07/18	58301.4582	0.2069	94.86	1922
04/07/18	58304.3618	0.3662	84.55	1857
04/07/18	58304.4083	0.4328	80.16	1766
04/07/18	58304.4501	0.4927	75.07	1603
04/07/18	58304.4922	0.5530	67.67	1610
06/07/18	58306.3727	0.2468	77.72	1756
06/07/18	58306.4147	0.3070	99.14	1781
06/07/18	58306.4672	0.3822	77.06	1806
06/07/18	58306.5134	0.4483	62.39	1686
17/07/18	58317.3260	0.9371	85.31	1732
17/07/18	58317.3678	0.9970	65.51	1549
17/07/18	58317.4096	0.0568	58.35	1508
19/07/18	58319.3342	0.8138	86.46	1834
19/07/18	58319.3760	0.8737	81.13	1771

Because the two-temperature model is used in our image reconstruction, we also observed several inactive slowly rotating template stars by using the same instrument setup.

- Primary photosphere temp (6000 K) ==> HD 143761
- Secondary photosphere temp (5750 K) ==> HD 139777
- Spot temp (5000 K) ==> HD 32147

- In order to increase the S/N of the observed spectra, we used the Least Squares Deconvolution technique (LSD; Donati et al. 1997)
- This technique to combine all available photospheric lines in each spectrum.
- The line list for ER Vul and standard stars were obtained from Vienna Atomic Line Database (VALD; Kupka et al. 1999).

Table 2. Some parameters of ER Vul.

Parameter	Value	Reference ¹
$q = M_2/M_1$	0.949 ±0.056	This Study
$K_1(km/s)$	138.67 ± 6.18	This Study
$K_2(km/s)$	146.13 ± 8.70	This Study
<i>i</i> [°]	66.63	a
$V_{\gamma} \; [\mathrm{km/s}]$	-26.26 ± 3.72	This Study
$T_0(HJD)$	2445220.40964	This Study
P(d)	0.698095	This Study
$T_{\mathrm{eff},1}(K)$	6000	a
$T_{\rm eff,2}(K)$	5750	a

Reference: a. Harmanec et al. (2004).

Doppler Imaging

Berdyugina 2005

Phase 0.014

Comparison with latest surface maps from literature

Xiang et al. 2015

This Study

Xiang et al. (2015)

Thank you very much for your patience...

 The authors acknowledges the support by The Scientific And Technological Research Council Of Turkey (TUBITAK) through the project 1001- 115F033