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Hot subdwarf-B stars

Luminosity (compared to the sun)
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Look like B-type stars with
high surface gravity

Evolved low mass stars, 1 -
3 Msol

Located at extreme blue end
of the horizontal branch

Core He burning

Lost the majority of their H
envelope on the RGB



Hot subdwarf formation

stable-RLOF CE-ejection WD merger

« long periods (> 2 year) « short periods (< 30 d)  single sdBs
« sdB + MS « sdB + MS
- sdB + WD/BD

Benefits for theory: double lined, only formed in binaries



Hot subdwarf formation

stable-RLOF M = 0.43 -0.08 +0.12 Msol
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Benefits for theory: single population



Luminosity

Binary interaction

~ Interaction percentages for low mass (< 2.5 M) binaries

A
AGB: ~ 14 %
RGB: ~ 15%
MS: ~ 2%
<€

Effective temperature

Roughly 1/3 of low mass binaries will at
some point interact:

Supernova la, blue stragglers, sdBs,
algols, CVs, ...

Issues:

o Postulated increase in mass-
loss before contact

Precise description of common
envelope

Accretion efficiency onto the
companion

Mass-loss fractions during
RLOF

Formation/existence of
circumbinary disk

Interaction between disk and
binary



sdB observing campain

HERMES CHIRON FEROS
1.2m Mercator 1.5m SMARTS 2.2m MPG
La Palma Chile Chile

36 Targets ¢ 8 years of observations ¢ 24 solved systems
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Period - Eccentricity

Eccentricity
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e Could be 2 distinct groups
« Main group with orbital periods around 2 — 4 years
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Number

Period distribution
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 Adjustments to angular momentum loss
e Inclusion of atmospheric RLOF

Vos et al. 2018 MNRAS in press.



Period - Eccentricity

Eccentricity
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« Theory predicts circular systems _ _
« Almost all systems have significantly eccentric orbits
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Period - eccentricity comparison
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M(—:SA : Eccentricity pumping

RLOF mass-loss fractions

sdB a
progenitor .

MS

Interaction

No Interaction
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Phase dependent mass
loss

Soker (2000)
Bonacic et al. (2008)

6-a R, = 250AU
Distance

Circumbinary disk
interaction

Artymowics & Lubow (1994)
Dermine et al. (2013)




Period - Eccentricity: Models
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Period - Accreted mass
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Accreted Mass: 0.001 - 0.05 M e ~1 M, lost from the system



Period - Mass ratio

0.81 Low mass MsdB — 0.44 £ 0.08 M@
Companions
mid-K + !

0.7 _ #
E 0.6 + : X
= : {
= 05 * t
= High mass
; 4 X Companions
& -+ mid-F
= 04 + —#‘

-+- —1 'y
(0.3

T

GO0 800 1000 1200 1400
Orbital period (d)



Mass loss stability criterion

sdB mass

l<— Mass ratio

Companion mass

<«+— |nitial sdB mass (1.00 — 1.60 Msol)

\/

Initial mass ratio

}7 Current sdB mass == core mass of RG donor star

(init VS Mcore




Mass loss stability criterion
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Summary

sdB+MS binaries are ideal systems to study stable RLOF on
the RGB

24 binaries have now been analyzed
Orbital periods range from 1 - 4 years

Orbital periods match theoretical predictions is atmospheric
RLOF is included

Almost all systems are eccentric, which can be explained by
phase depended mass loss in combination with the formation
of a circumbinary disk during the RLOF phase

The main sequence companions accrete very little mass
Strong correlation between mass-ratio and orbital period.
The P-q correlation is used to derive a stability criterion for

RLOF on the RGB defining the critical mass ratio in function
of the core mass of the donor star.
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