KOREL DISENTANGLING OF THE LMC ECLPISING ALGOL OGLE-LMC-DPV-065

Cabezas M., Hadrava P., Mennickent R. E.

Observing techniques, instrumentation and science for metre-class telescopes II

TATRANSKÁ LOMNICA, SLOVAKIA

September 24-28, 2018

OUTLINE

INTRODUCTION

- What are the DPV stars?
- DPV065
- DISENTANGLING METHOD
- KOREL
- 2 KOREL
 - PREKOR.
 - FILES

Results

- Spectroscopic data
- Decomposed spectra
- Orbital solutions
- ANOTHER KOREL EXAMPLE

WHAT ARE THE DPV STARS?

INTRODUCTION - DPV's

Light vurve of LMC-DPV-074, (Poleski

were discovered by Mennickent et al. (2003) in the LMC (most of them) and SMC.

•
$$M_{prim} \gtrsim 7 M_{\odot}$$

- secondary \rightarrow filling its Roche lobe
- both period are related by $P_I \sim \alpha P_o$, ۲ where $24 \leq \alpha \leq 39$

CABEZAS M.

KOREL DISENTANGLING OF THE DPV-065

KOREL RESULTS CONCLUSIONS AND FUTURE WORK References WHAT ARE THE DPV STARS DPV065 DISENTANGLING METHOD KOREL

INTRODUCTION - LMC-DPV-065

Long cycle variability of the eclipsing Algol LMC-SC6-57364, in prep. *R. E. Mannickent, M. Cabezas, G.*

R. E. Mannickent, M. Cabezas, G. Djurasevic, T. Rivinius, P. Hadrava, R. Poleski, I. Soszynski, L. Celedón, N. Astudillo-Defru, Raj, J. Fernandez-Trincado, I. Porritt

- one of the brightest DPV in LMC
- V = 14.74 mag, B -V = -0.07 mag
- $P_o = 10^d.031645 \pm 0.000033$ (Poleski et al., 2010).

KOREL RESULTS CONCLUSIONS AND FUTURE WORK References What are the DPV stars DPV065 DISENTANGLING METHOD KOREL

INTRODUCTION - DISENTANGLING

- Whats mean "disentangling"? enable method used to determine efficiently the orbital parameters and simultaneously decompose the spectra
- decomposition of spectra methods:
 - Wavelenght domain (Simon & Sturm, 1994)
 - Radial velocities (González & Levato, 2006)
 - Fourier transform (Hadrava, 1995)
- when is usefu/possible to use the method?
 - for blended spectra
 - $\circ~{\rm good}~{\rm distribution}~{\rm in}~\phi_{\rm o}$
 - for normalized spectra

Figure 1: Schema of comparison between the disentangling method with classical methods (Hadrava, 2009)

KOREL RESULTS CONCLUSIONS AND FUTURE WORK References WHAT ARE THE DPV STARS DPV065 DISENTANGLING METHOD KOREL

DISENTANGLING METHOD - KOREL

- KORelation ELements
- Fortran code for disentangling of spectroscopically variable stellar system using Fourier Transformation(FT).
- KOREL was developed by P. Hadrava (1995) on the basis of experience with his code FOTEL (FOTometric Elements, 1994) and inspiration by the Cross-correlation method.
- precise normalization of the input spectra is needed
- KOREL determines the contributon of components to the composite spectra, the orbital parameters and radial velocities.
- More details in Hadrava (2004b)

Figure 2: The structure of the stellar system (Hadrava, 2004a, figure 5)

1 Orbital cicilient	i	orbital	element
---------------------	---	---------	---------

1	P	period [in days]
2	t_0	time of periastron passage [in days]
3	e	eccentricity
4	ω	periastron longitude [in degrees]
5	K	semiamplitude of radial velocity of the component with the lower index [in km/s]
6	q	the mass ratio of the component with the higher to that with the lower index
7	$\dot{\omega}$	the rate of periastron advance [in degrees/day]
8	P	the time derivative of the period
9	ė	the time derivative of the eccentricity [in day ⁻¹]
10	Ŕ	the time derivative of K-velocity [in km/s/day]
11	ġ	the time derivative of mass ratio [in day ⁻¹]

PREKOR FILES

PREKOR

Package Task	= svg = prekor	Inage Reduc	I R A F tion and Analysis Facil	
input u0 (nbin (nang (time (mode	-	spec.dat 4865 4096) 50) no) q)	List of input spectra Central wavelength Bins number of spectra Number of angstrom reg To view time in orbita	

- **1** select spectral region \rightarrow *specXX.asc*
- ③ PREKOR.LST→PREKOR
 - under DOS
 - rebin the spectra in ln(λ)
 - prepare the input data, korel.dat in ASCII
 - gives the "orbital parameters" for telluric lines

Figure 3: Example of PREKOR

PREKOR FILES

KOREL FILES

Korel input

korel.dat

- Time series of composite spectra(from PREKOR)

korel.par

- Definition of a hierarchical system
- initial values of parameters
- converge parameters
- korel.temp
 - telluric lines

a KOREL output

- korel.res
 - orbital parameter values
 - decomposed spectra
 - sum of residal square
 - radial velocities
- phg.ps
 - plot of decomposed spectra

56983.7	3270 6520	9.0244	1.106	.346 - 4	4096 -	_			
1.02964	1.02102	1.01478	1.00835	1.00078	.99371	.98572	.97478	.96773	.97676
1.00211	1.04545	1.08462	1.07493	1.03605	1.01213	1.00949	1.01302	1.02077	1.03398
1.03304	1.01372	.99180	.98141	.98728	1.00783	1.03208	1.05263	1.06212	1.05110
1.02939	1.01646	1.01671	1.02231	1.02523	1.02218	1.01709	1.01502	1.01667	1.02318
1.03525	1.04432	1.03288	1.00270	.98147	.97826	.97717	.95925	.92829	.91728
.94523	.98359	1.00719	1.02003	1.01696	1.00705	1.00618	1.01506	1.01825	1.01358
1.02364	1.03986	1.03199	.99536	.96441	.96739	.99116	1.00535	.99649	.97891
.97764	1.00165	1.02978	1.03107	1.00148	.97592	.98642	1.00153	1.00728	1.01499
1.02227	1.01582	.99895	.98520	.97197	.95394	.94040	.93119	.93009	.94528

Figure 4: korel.dat

1	1	0 (ā 1	. 1	. 6	2 12	key	(5), 1	k=	Nr.	of's	spe	ct	ra, T	filte	er, i	lot	, print	
0	θ	1	θ	1	1	10.	0318	\$5500		θ.	000	÷.	PE	RIÓD(0)				
0	θ	2	θ	1	1	53392	2180	00000		θ.	001	=	PE	RIAST	RÓN	EP00	H		
0	ē	3	Ā	ĩ	ĩ	θ	0000	00000		θ.	002	=	FC	CENTE	TCT	TY .			
0	0	4	Ð	ī	1	90	0000	00000		θ.	000	=	PE	RTAST	RON	LON	i		
0	Ā	- 5	Ā	ĩ	ĩ	43	2972	64666		θ.	157	=	k1						
0	Ă	6	Ă	î.	î	A	2024	78528		ě.	661	=	<u> </u>	= M2/	м1.	K2	=	213 84477	5799
ŏ	Ă	ž	Ă	î.	î	Ă	0000	00000		Ă.	000	_	2	omena	/dt			210101111	
ŏ	Ă	8	Ă	î	î	Ă	0000	00000		Ă.	100	-	ă i	P/dt	.,				
	Ă	ă	Ă	î.	î	Ă	0000	000000		Ă.	100	_	ă i	e/dt					
	Ă	16	Ă	î.	î	e e	00000	00000		Ă.	100	Ξ.	ă i	K1/d+					
~	Ă	iĭ	Ă	î.	î	Ä	00000	88888			100	-	a i	a/dt					
0	ž	-1	Ă	î.	î	365	2563	68888		Å.	100	Ξ.	DFI		31				
~	ž	5	Ă	î.	÷	51547	5286	00000		10	000	Ξ.	DE	DTACT	DON	EDO	н		
	5	5	8	÷	÷	51547	0167	10220		10.	000	Ξ.	20	CENT	TCT	EFU:			
0	5	2		÷	÷	43	7560	57915		10	001	Ξ.	DE	DTACT	DON	101			
	5	- 2	8	÷	÷		0010	00000		10.	000	Ξ.	21	THO	NUN	LUN			
	3	2	0	÷	÷		00010	64714			000	-	N1	- MD		12		2 10019	45.40
0	3	- 2	0	÷	÷		0004	04/14			000	-	9	= mz/	11.	N2	=	2.19910	+542
0	2			÷	÷		0000	99111			000	-	<u>a</u>	omega	i/at				
0	2	ø	9	÷	÷	9	0000	99999		θ.	100	=	a i	P/dt					
O	2	-9	đ	1	÷	θ.	0000	00000		θ.	100	=	a	e/dt					
0	3	10	9	1	1	θ.	.0000	00000		θ.	100	=	a	K1/dt					
0		11	H	1	1	8	ннаа	нннаа		8	THA	=	n	n/dt					

Figure 5: korel.par

SPECTROSCOPIC DATA DECOMPOSED SPECTRA ORBITAL SOLUTIONS ANOTHER KOREL EXAMPI

Spectroscopic data

i) UVES	date-ut	HJD	Φ_o
$ m egin{array}{llllllllllllllllllllllllllllllllllll$	2013-10-02	56567.7689	0.547
 October 2, 2013 - February 1, 2015 echelle spectrograph, UVES . 3760-4980 Å. airmas 1.4 exp. time 3000s S/N 65 (4800Å) 	2013-10-04 2013-10-06 2013-10-07 2013-10-19 2013-10-22 2013-12-22 2013-12-24 2013-12-31 2014-01-04 2014-01-18	56569.8218 56572.8075 56584.7162 56587.8479 56648.5833 56650.7561 56661.6647 56675.6735 56676.6249 56699.5976	0.751 0.049 0.236 0.548 0.603 0.819 0.907 0.303 0.398 0.688
	2014-01-19 2014-02-11 2014-02-15	56703.5569 56704.5526 56901.8820	0.083
and a second and a second and a second and a second a s	2014-02-16 2014-09-01	56964.8370 56981.7855	0.128
	2014-11-03 2014-11-20	56986.7551 56987.7523	0.313
	2014-11-22 2014-11-25	57000.7640	0.59:
energiesen her	2014-11-26 2014-11-27 2014_12_08	57000.7687 57005.6626	0.710
Management of the state state state state	2014-12-08 2014-12-09 2014-12-14	57042.5660 57042.5709	0.87
Wavelength (angstroms)	2015-01-20	57054.5867	0.07

CABEZAS M.

KOREL DISENTANGLING OF THE DPV-065

2015-02-01

57054.5922

0.075

SPECTROSCOPIC DATA DECOMPOSED SPECTRA ORBITAL SOLUTIONS ANOTHER KOREL EXAMPL

RUN KOREL

Table 1: Summary of resolution for each spectral region.

Spectral range	RV/bin
Å	${\rm km}~{\rm s}^{-1}$
4126-4170	0.773
4225-4263	0.653
4410-4460	0.821
4530-4582	0.831
4583-4615	0.508
4615-4662	0.723
4700-4750	0.772
average	0.726

CABEZAS M.

KOREL DISENTANGLING OF THE DPV-065

Spectroscopic data Decomposed spectra Orbital solutions Another KOREL exampli

Solutions I and II

Spectral range	au	K_1	K_2	q	$\frac{\Sigma(o-c)^2}{N}$
Å	-2453300.0	${ m km}~{ m s}^{-1}$	${ m km}~{ m s}^{-1}$		
4126-4170	92.311010	42.585424	206.375845	0.206348	0.006253
4225-4263	92.263258	42.552037	218.883717	0.194404	0.006033
4410-4460	92.325566	42.566616	217.980012	0.195277	0.006236
4530-4582	92.296613	42.702544	214.191599	0.199366	0.006227
4583-4615	92.309639	42.553583	207.360914	0.205215	0.006401
4615-4662	92.292585	42.597010	215.240906	0.197903	0.006488
4700-4750	92.324279	42.585746	202.413316	0.210390	0.006671
Solution I	92.303279	42.591852	211.778044	0.201272	-
stdev	0.021596	0.05171173	6.366115	0.006090	-
Solution II	92.317179	42.074334	204.368038	0.205875	0.00631857

SPECTROSCOPIC DATA DECOMPOSED SPECTRA ORBITAL SOLUTIONS ANOTHER KOREL EXAMPL

FINAL SOLUTION

Parameter	I	Ш	111	IV	V	VI
VII	VIII					
Period P (d)	10.0318555	10.0318555	10.0318555	10.0318555	10.0318555	10.0318555
τ^*	92.303 ± 0.022	92.317	92.316 ± 0.010	92.280	92.225 ± 0.003	92.218 ± 0.003
$K_1({ m km}~{ m s}^{-1})$	42.592 ± 0.052	42.074	41.796 ± 1.925	42.228	43.566 ± 0.084	43.566 ± 0.080
$K_2(\text{km s}^{-1})$	211.778 ± 6.366	204.368	211.717 ± 7.960	208.289	210.837 ± 0.765	213.906 ± 0.780
q	0.201 ± 0.006	0.206	0.198 ± 0.009	0.203	0.206 ± 0.001	0.203 ± 0.001
$\omega(deg)$	90	90	90.017 ± 0.434	90.465	90	90
е	0	0	0.005 ± 0.006	0.010	0	0

* $T_0 - 2400000.0$

- Solution I : Average all regions, e = 0, $\omega = 90 \deg$
- Solution II : multiregion mode, e = 0, $\omega = 90 \text{ deg}$
- Solution III: Average all regions, $e \neq 0$
- Solution IV : multiregion mode, $e \neq 0$
- Solution V : KOREL solutions, e = 0 + FOTEL unweighted solutions
- Solution VI : KOREL solutions, e = 0 + FOTEL weighted solutions

Spectroscopic data Decomposed spectra Orbital solutions Another KOREL exampli

RADIAL VELOCITY CURVE

Spectroscopic data Decomposed spectra Orbital solutions Another KOREL example

V356 Sgr

Cabezas M.

KOREL DISENTANGLING OF THE DPV-065

INTRODUCTION KOREL Results Conclusions and Future work References

Spectroscopic data - Metre class telescopes

i) CHIRON¹ (Schwab et al., 2012), 1.5 m Cerro Tololo Inter-American Observatory (CTIO)

- 125 spectra with $R\sim 80000$
- echelle spectrograph .
- 4589-8760 Å.
- disp $_{H_{lpha}}
 ightarrow$ 0.01648 Å/px or RV= 0.751 km s^{-1} per pixel
- CNTAC proposal CN2013A-91 and CN-2014A-26

ii) CORALIE² (Queloz et al., 2001), 1.2m Euler telescope (La Silla ESO Observatory)

- \circ 36 spectra with $R\sim$ 40000 .
- 3865-6900 Å.
- \circ disp $_{H_{lpha}}
 ightarrow$ 0.005 Å/px or RV= 0.228 km s^{-1} per pixel

¹http://www.ctio.noao.edu/

²https://www.eso.org/public/teles-instr/lasilla/

CONCLUSIONS AND FUTURE WORK

- (1) We applied the KOREL code to extract the spectral components of DPV065.
- ② The method of disentangling of spectra is precise and at the same time less laborious (after to learn how works) than the classical methods of measurement of radial velocities and subsequent solution of radial-velocity curves.
- With the disentangling method, it is possible to study each component independently in order to understand in a better way the phenomenon and fundamental parameters of DPV stars.
- ④ Using the disentangling of spectra we found for first time an evidence of acretion disc the DPV 065.
- To study the physical parameters of the system by comparison with synthetic spectra
- To include into the FOTEL and KOREL codes new options and to test them on this and other multiple stars.
- improve the code to make it more user-friendly.
- write an updated user guide
- upload VO-version (include PREKOR)
- include errors of solutions

Thank you for your atention! - mauricio.cabezas@asu.cas.cz

References

- González J. F., Levato H., 2006, A&A, 448, 283
- Hadrava P., 1995, A&AS, 114, 393
- Hadrava P., 2004a, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences, 92, 1
- Hadrava P., 2004b, Publications of the Astronomical Institute of the Czechoslovak Academy of Sciences, 92, 15
- Hadrava P., 2009, preprint, (arXiv:0909.0172)
- Mennickent R. E., Rosales J., 2014, Information Bulletin on Variable Stars, 6116
- Mennickent R. E., Pietrzyński G., Diaz M., Gieren W., 2003, , 399, L47
- Poleski R., Soszynski I., Udalski A., Szymanski M. K., Kubiak M., Pietrzynski G., Wyrzykowski L., Ulaczyk K., 2010, VizieR Online Data Catalog, 1206
- Popper D. M., 1955, ApJ, 121, 56
- Queloz D., et al., 2001, The Messenger, 105, 1
- Schwab C., Spronck J. F. P., Tokovinin A., Szymkowiak A., Giguere M., Fischer D. A., 2012, in Ground-based and Airborne Instrumentation for Astronomy IV. p. 84460B
 Simon K. P., Sturm E., 1994, A&A, 281, 286