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e over recent years, modeling and theoretical
efforts on novae have been dominated by
spectacular advances in the

Y-rays
radio

e a situation similar to when the IUE satellite
opened the window on the ultraviolet in the
1980/1990ies
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V407 Nova Lup 2016 (XMM Newton RGS + Chandra LETG)
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V2491 Cyg

(Suzaku XSI spectrum)
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pre-Fermi common view about y-rays from novae (MeV)

electron-positron annihilation, with positrons coming from the B* decays
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Observed Flux + offset (107> cm=2 s~ Ang™?!)
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Fermi satellite and GeV y-rays

V407 Cyg (giant+WD) 2010

Galactic latitude {deg)

90 B85 80
Galactic longitude (deg)

V959 Mon (dwarf+WD) 2012

Galactic latitude (deg)

210 205 200

Galactic longitude (deg)

Galactic latitude {deg)

Galactic latitude (deg)

-15

Ly—rays = 100 LSUI‘]

V1324 Sco (giant+WD) 2012

v a *’rr"‘l S

4] -5 -10
Galactic longitude (deg)

V339 Del (dwarf+WD) 2013

Ackermann et al. 2014

65 60 55
Galactic longitude (deg)

Nova V407 Cyg 2010
Duration (days) 22
L (10% ergs™) 3.2

Total energy (10* erg) 6.1

V1324 Sco 2012

V959 Mon 2012 V339 Del 2013

17 22 27
8.6 3.7 2.6
13 7.1 6.0




= X : I...,._.
> . 4 F\ r

2 locations, 100 telescopes each

|

"30 partner Countries

6‘-025 T IIHIH‘ T T T TTTTT T TTTTTTTT T T T TTTIT e T T T T T 1171 T T T T T 11T T T T T T 11T T T T T T 11T T
c [ | A i
s [ CTA South 1 % - =
= L | O
o | ] o111 |
@ 0.27 i @110 = E
ra 12 F .
&8 - 15 = .
£015- e % B 1.
- L HAWC 8 (ﬁ 2
K S 12 3107 =L
. \VERITAS 18 = a8
0.1— \\ —2 x - I
- CTmemos - i 5 o - - o
| Fermi LAT Pass 8 DN -2 w | _ g‘
0.05/ B} 8
- E 107" = _:‘g
0— Lo Lo Lol L T u Differential sensitivity (5 bins per decade in energy) _
C 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1 IIIIII| 1 1
102 107" 1 10 10? - » 2
Energy E, (TeV) 10 10 1 10 10

Energy ER (TeV)



CTA Precursors

Astri Miniarray —
(Italy, Brazil, South Africa)

2014 Etha Volcano



and what about the optical/NIR ?

It seems to me there is tendency for studies of novae based only on optical/NIR data:
e to deal with novae only on an object-by-object base

e to work individually or in small groups

¢ lacking investment in theory explaining optical properties

to rub salt into the wound, traditional relations/measurements provided by optical
observations are vulnerable to critics:

e existence of MMRD relations (i.e. My=alogt, + B) questioned
by Gaia DR2 (Schaefer arXiv 1809.00180)

e definition and measurements of rate of decline (t,,t3)
and expansion velocity questioned by Ozdonmez et al. (2018)



as a consequence.

e optical/NIR seems to contribute less and less
to the “big picture” on novae

e it is (very) rare for optical data to take the lead in any paper
where also radio, X-rays or y-rays data are presented

e several of the adopted calibrations/classifications/classes/etc.
are 30 or even 60 yrs old

yet:

e energy distribution of novae during the optically-thick
phase peaks in the optical

e and meter-class optical/NIR telescopes are still the easiest
to access daily for long time intervals

It is worth noticing that:

e communities at other wavelengths coordinate their efforts and
collaborate much more than in the optical

e the inspiring example of [Swift-nova-cv]



and so ?

e optical/NIR standard observations of novae are no doubt
worth and should be continued no matter what

however

e to impact on the “big picture”, optical/NIR people should
- group into larger and coordinated entities

work on statistically large sets of novae

going “robotic” with their telescopes

invest on young/energetic PhD/post-docs

invest on theoretical modeling of unexplained

phenomena exclusive of the optical/NIR range

e achieving a “critical mass” is vital in placing succesfull
proposals (expecially ToO) to large international facilities
(e.g. VLT+UVES) or applying for E.U. grants to support
young reserachers



¢ in optical observations, expecially long times series combining
high resolution spectroscopy and very accurate UBVRI photometry,
there is a lot more information that the little usually extracted

Nova Oph 2015
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e a mix of medium+narrow bands allows to separate the photometric
information stored in the continuum from that in the emission lines,
irremediably mixed together by conventional broad-band data
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e there are many uncharted areas where optical/NIR data
still enjoy a low level of competition from observations
at other wavelengths ranges

e this may not last for long tough, so let’s group together
and face them full spead ahead

e as said earlier, no chance to solve them by looking
isolately one nova at a time, apart from all others

e need investing in ad hoc theoretical efforts

e a few example — among many more - for a rejuvenated
optical/NIR all-out effort on novae: >



magnetic field signatures, I.P. novae

N Cyg 2008 N.2 (V2491) Swift X ray lightcurve P=38 min
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irradiated
secondaries and
amount of mass
transfer in
quiescence

Frigo and Munari 2018
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normalized continuum

origin, location and physics of [ pre-max

absorption systems in Fell novae . g{;{‘ucsigaénhanced
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location of dust forming regions from changes in
the integrated emission line profiles
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ARBITRARY UNITS

location/shape of dust forming regions from

deformation of emission line profiles
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photo-ionization analysis + high resolution profiles
— chemistry and 3D spatio-kinematics structure of ejecta
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relative flux

ejecta 3D structure from kinematical disentangling
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