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Instrumentation




Optimized CCDs

» Improved QE (back illuminated)
* Near-IR sensitivity (deep depleted)

» Multi-stage Peltier cooling (easier to
handle than N,)

. Incoming photons
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Optimized CCDs

* Improved QE (back illuminated)
* Near-IR sensitivity (deep depleted)

« Multi-stage Peltier cooling (easier to
handle than N,)

. Incoming photons
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Imaging CCDs at small telescopes

» Technically straight forward
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Imaging CCDs at small telescopes

« Technically straight forward

« Easy to automatize, no (little) human interventions necessary
— roboic/remote operations

« Standard or custom filters

» Large field-of-view easily attainable

- good for relative photometry of bright stars, or clusters

5 -
. . i
. i . -
. - s e *
“ e
. > . | : .
- Tk g t2
.. " . 4 . .
..'. . -4 % !“c .‘- B -..
. *‘ - L . Be
b . "“- g e » c
@i e i e o
b ’; 5, ! n
. v
. 1 » 1 . :
s .,. i e ‘ ’ S
o : —
.-.-., " \, e i ' .
‘e ® . ‘. *
B B 2 :
‘- K
* : .
. e f E &

o e ‘, & 4 L : . .‘ | [/ . e . H
15.7-x15.% arcmin- ', P vl 600 1000
il e . 2 . . .

Wavelength [nm]



Data analysis
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Aperture photometry

| - Fast and easy
Ob]ect Apertu re

- Works well for bright, well-resolved
Inner Annulus —§ .

objects
Outer Annulus

Image: Astrobites / Gudmundur Stefansson



Aperture photometry

21 pixels

: — Fast and easy

Object Aperture o _
— Works well for bright, well-resolved
objects

Inner Annulus—¥ |

\

21 pixels

. Outer Annulug"

Image: Astrobites / Gudmundur Stefansson

Pitfalls:

— Blending - or stars in sky aperture
— Centering must be precise

— Optimization of aperture size and sky
annulus can be non-trivial




PSF photometry

— Construct a model PSF for each image

— Iterative process based on selecting
iIsolated field stars

— Account for variation across detector
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— Can handle crowded fields



PSF photometry

— Construct a model PSF for each image

— Iterative process based on selecting
iIsolated field stars

— Account for variation across detector

Advantages:

— \Works well for faint sources

— Can handle crowded fields

Disadvantages:

- More complex, no added benefit for bright isolated stars



Noise in time-series photometry

Well-understood noise sources:

- photon & readout
- scintillation
- background (sky)
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HJD-56000
brown: photon, red: scintillation, blue: sky, green: readout




Noise in time-series photometry

Well-understood noise sources:

- photon & readout
- scintillation
- background (sky)
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HJD-56000
brown: photon, red: scintillation, blue: sky, green: readout

Pesky noise sources:

— flat field

- PSF variations (time/detector)
- Cosmics, bad / hot pixels

- detector non-linearity




Noise in time-series photometry

Well-understood noise sources:

- photon & readout
- scintillation
- background (sky)
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2083.55 2083.60 2083.65 2083.70 2083.75
HJD-56000
brown: photon, red: scintillation, blue: sky, green: readout

Pesky noise sources:

— flat field

- PSF variations (time/detector)
- Cosmics, bad / hot pixels

- detector non-linearity

Noise that isn't noise

— various forms of stellar variability

Relative flux

(the one's you are not interested in)

anomaly st Sa nChiS'Ojeda+
P (2016)

Time from midtransit [hours]




Noise in time-series photometry
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Noise in time-series photometry
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Noise in time-series photometry

This is an ideal case

non-Gaussian random noise «
noisy correlations «
Variable noise properties «

Different ways of treating
correlated noise in time-
series photometry
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Step 0: Minimize it!

High PSF sampling

— pixel-to-pixel differences smoothed
out

— optimize detector resolution
— defocus if target well-resolved

Southworth+ (2009)
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Step 0: Minimize it!

High PSF sampling

— pixel-to-pixel differences smoothed
out

— optimize detector resolution
— defocus if target well-resolved

Optimize tracking Southworth+ (2009)

- pixel-to-pixel effects as constant as possible

Optimize exposure times

— avoid tiny expusure times to reduce shutter
effects

Know your detector linearity range
- it may be smaller than you think!




Option 1: parametric models

Model your noise as a function of external parameters

— Model = astrophysics * baseline

- works well if the relationship is cleanly described by the function
you are using, e.g. a polynomial



Option 1: parametric models

Model your noise as a function of external parameters
— Model = astrophysics * baseline

- works well if the relationship is cleanly described by the function
you are using, e.g. a polynomial

5 min RMS to fit 0.000757 5 min RMS to fit 0.000861

1.015 1.020
— MCMC best fit
{ { data

1015 ¢ ¢ binned data

—  MCMC best fit
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Transit LCs with nonlinearity problem: baseline = A, + A *FWHM + A *FWHM"2



Option 1: parametric models

5 min RMS to fit 0.000757 s 5 min RMS to fit 0.000861

—  MCMC best fit —  MCMC best fit

t t data f { data
LO10H S § binned data ¢ ¢ binned data
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Option 1: parametric models

5 min RMS to fit 0.000757 o 5 min RMS to fit 0.000861

—  MCMC best fit —  MCMC best fit
f § data i { { data
1010 g & binned data : ¢ & binned data
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Danger: of over-fitting, incorrect error propagition



Option 2: Gaussianh processes

- Treat the time series as a stochastic process defined by its
covariance function

— The covariance function is assumed to have an analytic form,
e.g. exponential decay or periodic function

— The coefficients are fit with the data



Option 2: Gaussianh processes

- Treat the time series as a stochastic process defined by its
covariance function

— The covariance function is assumed to have an analytic form,
e.g. exponential decay or periodic function

— The coefficients are fit with the data

fit with GP noise model

- Gibson+ 2013,
Foreman-Mackey 2015




Option 2: Gaussianh processes

— GPs are good at modeling the data, based on the data
— Kernel parameters can be ill-constrained but fit looks good
— Size of errors are key (but you can fit for white noise)

fit with GP noise model




In a nutshell

— Decrease noise sources by optimizing observation strategy
(defocus, optimize exposure times, guiding)

— Model red noise together with your favourite astrophysics
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WASP-146 with
EulerCam
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HJD 2456000 RMS/5min = 245ppm




Applications

Binary stars
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Exoplanets

star + planet dayside

rd
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star + planet nightside

transit

star — planet shadow

Winn (2010)



Exoplanets

« Jupiter - Sun transit: 1%
star + planet nightside

« Earth - Sun transit: 80 ppm

transit

e« Earth - late M star transit: 1% star — planet shadow
Winn (2010)

» 2000K hot Jupiter occultation
(z): ~500 ppm



Exoplanets
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« Jupiter - Sun transit: 1%

« Earth - Sun transit: 80 ppm

Relative flux

 Earth - late M star transit: 1%

» 2000K hot Jupiter occultation
(z): ~500 ppm

0.00 0.05
HJD -2457000 [d]

WASP-121, EulerCam, January 2018



Sizing planets

Measure precise transit shapes to
better determine

- planetary radius
— orbital parameters a__, incl.

- stellar mean density (Seager &
Mallen-Ornelas 2003)
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WASP-18, Southworth+ 2009

14 transits of WASP-19, Lendl+ 2012



Transit Timing Variations

Measure precise mid-transit times over a long
time baseline searching for period variations

— additional bodies

— orbital decay

— orbital precession

Transit number
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5500 6000 6500 7000 7500

4500 5000

29+ transits of WASP-12, Maciejewski+ 2016



Transit Timing Variations

Measure precise mid-transit times over a long
time baseline searching for period variations

— additional bodies
— orbital decay

— orbital precession

Transit number

1000 2000 3000 TTVs, KOI-0410.01
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Time [days; BJD - 2454833]

29+ transits of WASP-12, Maciejewski+ 2016 KOI-04191.01, von Essen+ 2018
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Transmission spectra

Absorption

400 600 800 1000 1200 1400 1600
Wavelength [nm]




Transmission spectra

Wavelength-dependent variations
in transit depth

— absorption features in planetary
atmosphere

- Na, K, H,0O, TiO, VO, Aerosols

1.5

Wavelength (um)

wavelength (nm)

GJ1132, Southworth+ 2017 WASP-36, Mancini+ 2016



Transmission spectra

Wavelength-dependent variations
in transit depth

— absorption features in planetary
atmosphere

- Na, K, H,0O, TiO, VO, Aerosols

1.5

Wavelength (um)

wavelength (nm)

GJ1132, Southworth+ 2017 WASP-36, Mancini+ 2016



Emission spectra

Cco
B co2 H20 i

Emission

H20
H20

[ Tio H20 y

700 1000 2000 3000 4000 5000
Wavelength [nm]



Emission spectra

Occultations reveal planetary emission
- planetary temperatures
- planetary composition/thermal profile

— feasible with small facilities in z' band
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WASP-19, 10 occultations combined,
WASP-103, 16 occultations combined, Lendl+ 2013
Delrez+ 2018



Surveys

Point-and-stare surveys

- high risk - high gain
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Surveys

Point-and-stare surveys

- high risk - high gain
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Relative brightness

Surveys

Point-and-stare surveys

- high risk - high gain
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Binary Stars

High number of eclipsing binaries
found in transit surveys

Brown dwarf or

B low-mass star

' Star

Blended stellar : Grazing stellar
binaries | 2 . T binaries

- Tightly constrain stellar mass/radius
— Constrain stellar evolutionary models
- Many low-mass systems



Binary Stars

High number of eclipsing binaries Eulerz-band
found in transit surveys

TRAPPIST z'-band
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Brown dwarf or

R low-mass star
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- Tightly constrain stellar mass/radius
— Constrain stellar evolutionary models

80 100
MASS [11,,,]

- Many low-mass systems
EBLM0555-57, von Boetticher+ 2017



Stellar activity and
rotation

Light curve shape anormalities,
long-term monitoring

— |rrecularities on stellar surface:
spots (or faculae)

— Rotational modulation

WASP-19, Tregloan-Reed+ 2013



Stellar activity and
rotation

Light curve shape anormalities,
long-term monitoring

— |rrecularities on stellar surface:
spots (or faculae)

— Rotational modulation

ol o1 i
56000 56500 57000 57500
Date (BJD - 2400000)

GJ1214, Mallonn+ 2018 WASP-19, Tregloan-Reed+ 2013



Asteroseismology

— Stellar oscillations directly probe stellar structure
- Similar strategy but duration and cadence of observations is critical

— Coordinated observations between facilities
(e.g. “Whole Earth Telescope”)

- Long-term monitoring of specific fields

http://mww.public.iastate.edu/~sdk/AstrolowaSt/wet.html
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A new class of variables in NGC 3766 from 7
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Gravitational lenses
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- Obtain light curves for different
elements of a lensed object

- Time delays between the components

— Constrain H,

| RX J1131-1231
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Euler C2 : 265 epochs

SMARTS 1.3-m : 288 epochs
Mercator : 78 eppchs
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Quasar RX J1131
Tewes+ 2013



... and a lot more!

STELLA
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