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TRAPPIST 60cm

STELLA, Tenerife 2x1.2cm

Euler 1.2m, La Silla

LCOGT 3x1m Cerro Tololo

Graz, Lustbuehel 50cm

Skalnaté Pleso 1.2m, high Tatra



  

Instrumentation 



  

Optimized CCDs

● Improved QE (back illuminated)

● Near-IR sensitivity (deep depleted)

● Multi-stage Peltier cooling (easier to
   handle than N2)



  

Optimized CCDs

● Improved QE (back illuminated)

● Near-IR sensitivity (deep depleted)

● Multi-stage Peltier cooling (easier to
   handle than N2)

Front-illuminated 

Back-illuminated 

Back-illuminated & deep depletion
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Imaging CCDs at small telescopes

● Technically straight forward

● Easy to automatize, no (little) human interventions necessary 

→ roboic/remote operations

● Standard or custom filters 

● Large field-of-view easily attainable 

→ good for relative photometry of bright stars, or clusters

15.7 x 15.7 arcmin



  

Data analysis 



  

Aperture photometry

Image: Astrobites / Gudmundur Stefansson 

→ Fast and easy

→ Works well for bright, well-resolved 
objects



  

Aperture photometry

Image: Astrobites / Gudmundur Stefansson 

Pitfalls:

→ Blending – or stars in sky aperture

→ Centering must be precise 

→ Optimization of aperture size and sky 
annulus can be non-trivial

→ Fast and easy

→ Works well for bright, well-resolved 
objects



  

PSF photometry

→ Construct a model PSF for each image

→ Iterative process based on selecting 
isolated field stars

→ Account for variation across detector
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PSF photometry

→ Construct a model PSF for each image

→ Iterative process based on selecting 
isolated field stars

→ Account for variation across detector

Advantages:

→ Works well for faint sources

→ Can handle crowded fields

Disadvantages:

→ More complex, no added benefit for bright isolated stars



  

Noise in time-series photometry

White noise

Transit

Correlated noise (and “noise”)

Full noise 

Data (& model)

Well-understood noise sources:

→ photon & readout

→ scintillation 

→ background (sky)
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Noise in time-series photometry

White noise

Transit

Correlated noise (and “noise”)

Full noise 

Data (& model)

Well-understood noise sources:

→ photon & readout

→ scintillation 

→ background (sky)

Pesky noise sources:

→ flat field 

→ PSF variations (time/detector) 

→ Cosmics, bad / hot pixels

→ detector non-linearity 

Noise that isn't noise

→ various forms of stellar variability

(the one's you are not interested in) 

Sanchis-Ojeda+ 
(2016)
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Full noise 

Data (& model)
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Transit

Correlated noise (and “noise”)

Full noise 

Data (& model)

This is an ideal case

non-Gaussian random noise ← 

noisy correlations ← 

Variable noise properties ← 

Noise in time-series photometry



  

White noise

Transit

Correlated noise (and “noise”)

Full noise 

Data (& model)

This is an ideal case

non-Gaussian random noise ← 

noisy correlations ← 

Variable noise properties ← 

Noise in time-series photometry

Different ways of treating 
correlated noise in time-

series photometry



  

Step 0: Minimize it!

Southworth+ (2009)

High PSF sampling

→ pixel-to-pixel differences smoothed 
out

→ optimize detector resolution

→ defocus if target well-resolved
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Step 0: Minimize it!

Southworth+ (2009)

High PSF sampling

→ pixel-to-pixel differences smoothed 
out

→ optimize detector resolution

→ defocus if target well-resolved

Optimize tracking

→ pixel-to-pixel effects as constant as possible

Optimize exposure times

→ avoid tiny expusure times to reduce shutter 
    effects

Know your detector linearity range

→ it may be smaller than you think!



  

Option 1: parametric models

Model your noise as a function of external parameters

→ Model = astrophysics * baseline

→ works well if the relationship is cleanly described by the function 
you are using, e.g. a polynomial



  

Option 1: parametric models

Model your noise as a function of external parameters

→ Model = astrophysics * baseline

→ works well if the relationship is cleanly described by the function 
you are using, e.g. a polynomial

Transit LCs with nonlinearity problem: baseline = A0 + A1*FWHM + A2*FWHM^2



  

Option 1: parametric models



  

Option 1: parametric models

Danger: of over-fitting, incorrect error propagition



  

Option 2: Gaussian processes

→ Treat the time series as a stochastic process defined by its 
covariance function

→ The covariance function is assumed to have an analytic form, 
e.g. exponential decay or periodic function

→ The coefficients are fit with the data



  

Option 2: Gaussian processes

→ Treat the time series as a stochastic process defined by its 
covariance function

→ The covariance function is assumed to have an analytic form, 
e.g. exponential decay or periodic function

→ The coefficients are fit with the data

→ Gibson+ 2013,
    Foreman-Mackey 2015



  

Option 2: Gaussian processes

With great power comes great responsibility

→ GPs are good at modeling the data, based on the data

→ Kernel parameters can be ill-constrained but fit looks good

→ Size of errors are key (but you can fit for white noise)



  

In a nutshell

→ Decrease noise sources by optimizing observation strategy 
(defocus, optimize exposure times, guiding)

→ Model red noise together with your favourite astrophysics 

 

WASP-146 with 
EulerCam

RMS/5min = 245ppm



  

Applications

Exoplanets

Cosmology

Stellar activity

Binary stars

Asteroseismology
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Exoplanets

● Jupiter – Sun transit: 1%

● Earth – Sun transit: 80 ppm

● Earth – late M star transit: 1% 

● 2000K hot Jupiter occultation 
(z): ~500 ppm



  

Exoplanets

HD 209458 Charbonneau+ 2000

WASP-121, EulerCam, January 2018

● Jupiter – Sun transit: 1%

● Earth – Sun transit: 80 ppm

● Earth – late M star transit: 1% 

● 2000K hot Jupiter occultation 
(z): ~500 ppm



  

Sizing planets

14 transits of WASP-19, Lendl+ 2012

Measure precise transit shapes to 
better determine 

→ planetary radius
→ orbital parameters asm, incl.

→ stellar mean density (Seager & 

Mallen-Ornelas 2003) 

WASP-18, Southworth+ 2009



  

Measure precise mid-transit times over a long 
time baseline searching for period variations

→ additional bodies

→ orbital decay

→ orbital precession

29+ transits of WASP-12, Maciejewski+ 2016

Transit Timing Variations



  

Measure precise mid-transit times over a long 
time baseline searching for period variations

→ additional bodies

→ orbital decay

→ orbital precession

29+ transits of WASP-12, Maciejewski+ 2016 KOI-04191.01, von Essen+ 2018

Transit Timing Variations



  

Transmission spectra



  

Wavelength-dependent variations 
in transit depth

→ absorption features in planetary 
atmosphere

→ Na, K, H2O, TiO, VO, Aerosols

WASP-36, Mancini+ 2016GJ1132, Southworth+ 2017

HAT-P-32, Mallonn+ 2016

Transmission spectra
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Emission spectra



  

Occultations reveal planetary emission

→ planetary temperatures 

→ planetary composition/thermal profile

→ feasible with small facilities in z' band 

WASP-103, 16 occultations combined, 
Delrez+ 2018

WASP-19, 10 occultations combined, 
Lendl+ 2013

Emission spectra



  

Point-and-stare surveys

→ high risk – high gain

Surveys
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Binary Stars

High number of eclipsing binaries 
found in transit surveys

→ Tightly constrain stellar mass/radius

→ Constrain stellar evolutionary models

→ Many low-mass systems



  

Binary Stars

EBLM0555-57, von Boetticher+ 2017

High number of eclipsing binaries 
found in transit surveys

→ Tightly constrain stellar mass/radius

→ Constrain stellar evolutionary models

→ Many low-mass systems



  

Light curve shape anormalities, 
long-term monitoring

→ Irrecularities on stellar surface: 
spots (or faculae)

→ Rotational modulation

WASP-19, Tregloan-Reed+ 2013

Stellar activity and 
rotation



  

Light curve shape anormalities, 
long-term monitoring

→ Irrecularities on stellar surface: 
spots (or faculae)

→ Rotational modulation

WASP-19, Tregloan-Reed+ 2013GJ1214, Mallonn+ 2018

Stellar activity and 
rotation



  

Asteroseismology

→ Stellar oscillations directly probe stellar structure 

→ Similar strategy but duration and cadence of observations is critical

→ Coordinated observations between facilities 
    (e.g. “Whole Earth Telescope”)

→ Long-term monitoring of specific fields

http://www.public.iastate.edu/~sdk/AstroIowaSt/wet.html

Mowlawi+ 2013

A new class of variables in NGC 3766 from 7 
years of monitoring



  

Gravitational lenses

Quasar RX J1131

Tewes+ 2013

→ Obtain light curves for different 
elements of a lensed object

→ Time delays between the components

→ Constrain H0



  

… and a lot more!

OGLE

STELLA                             
Skalnaté Pleso

TRAPPIST 
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