
Contrib. Astron. Obs. Skalnaté Pleso 56/1, 186 – 193, (2026)
https://doi.org/10.31577/caosp.2026.56.1.186

Alertissimo - a tool for orchestration of LSST
broker streams

V. Vujčić1 , V.A. Srećković2 and S. Babarogić3

1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia (E-mail:
veljko@aob.rs)

2 University of Belgrade, Institute of Physics Belgrade, PO Box 57, 11001
Belgrade, Serbia

3 University of Belgrade, Faculty of Organizational Sciences, Jove Ilića, 11000
Belgrade, Serbia

Received: September 25, 2025; Accepted: November 19, 2025

Abstract. The Vera C. Rubin Observatory, through its Legacy Survey of Space
and Time, will soon start producing 10 million alerts on transient astronomical
objects per night. Due to logistics and bandwidth, alerts will not be dispatched
directly to the public but to ’brokers’ i.e. tools selected by LSST to handle alert
streams. Brokers offer both common, specific and micro-specific functionalities
related to alert handling, analysis, representation and dissemination. In this
ecosystem, potentially augmented by data streams from other astronomical
sources, there is a - need demonstrated by the community - for use cases which
combine features of individual brokers. In this paper we present initial efforts
and a prototype of such a tool, along with a language that would allow users
to define use cases / workflows in a manner tailored for the domain.

Key words: astronomical transients – large astronomical surveys – Vera C.
Rubin Observatory – real time event processing – domain-specific languages –
natural language processing

1. Introduction

As a new era of astronomical data science is about to kick off with Vera C.
Rubin Observatory’s Legacy Survey of Space and Time (Rubin/LSST) Ivezić
et al. (2019) production phase, the ecosystem of tools and infrastructure deal-
ing with transient astronomical events looks fit and (almost) ready for the data
burst. It is commonly known that the LSST Alert Production pipeline (Bosch
et al., 2018) will capture and process images, perform difference-image analysis
and distribute alerts of every astronomical source with a signal-to-noise ratio
(SNR) ratio > 5 in positive or negative flux (Graham et al., 2019a). Due to band-
width and other considerations, alerts will not be directly available to the public
but through ’brokers’ - tools developed by different scientific teams worldwide,
specifically made for and approved by LSST. At least six brokers (AleRCE, AM-
PEL, ANTARES, Fink, Lasair, Pitt-Google) will be able to ingest LSST alert

https://orcid.org/0000-0002-0525-1197
https://orcid.org/0000-0001-7938-5748
https://orcid.org/0000-0003-3635-4671


Alertissimo - a tool for orchestration of LSST broker streams 187

stream in near-real time, analyze, classify, offer UI tools, programming APIs
and more. Some of the main features of brokers overlap but they differ signifi-
cantly in how they expose these features, with even greater divergence in their
underlying implementations and backend technologies. (Vujčić et al., 2025).

2. Alertissimo

We introduce Alertissimo (2025) - a tool for orchestration of broker streams
and potentially for a wider scope of astro-science use cases. It can be seen
as a novel topic but also an extension of the work done and analyzed by the
Serbian group related to astronomical stream processing and virtual observatory
(Vujčić & Jevremović, 2020; Jevremović et al., 2020). This tool is conceived on
two premises:
a) that there is a need for building workflows out of multiple LSST broker data
streams (and potentially external sources as well);
b) that there is a need for a tool that would allow expressing such workflows in
a powerful yet approachable manner.
We can roughly name these two premises as ’Broker Orchestration’ and ’DSL
for Transients’. We also present Alertissimo’s overall architecture.

2.1. Broker orchestration

As stated above, at least 6 LSST brokers are in a mature development phase,
and some of them - like Lasair, ALeRCE, ANTARES and Fink - have worked
in production with Zwicky Transient Facility (ZTF) data (Graham et al. 2019b,
data volume order of magnitude lower than LSST). Apart from technological
choices, implementation differences and performance, brokers also vary in fea-
tures (and microfeatures), and in the ways they are exposed through their UIs
and APIs. There are ongoing discussions in the Transients and Variable Stars
scientific collaboration (LSST-TVS) on use cases that combine features of var-
ious brokers (see the Appendix A for a use case featuring supermassive binary
black hole (SMBBH) detection). There may also be availability and responsive-
ness considerations, in a technical sense.

Brokers offer external access to their features through APIs, most through
REST1 and Python, some through a Python interface only. Here we have a
similar but non-standardized set of their exposed methods, not only related to
major feature differences but also to naming conventions and microfeatures (e.g
- how do they retrieve single vs multiple objects? can they handle SQL? how
does output look like and can you control granulation? etc). API access control
is implemented differently across brokers, typically requiring users to supply

1Representational State Transfer, an architectural style for web services which defines GET
and POST methods for data retrieval



188 V. Vujčić, V.A. Srećković, S. Babarogić

credentials - such as tokens or username/password combinations - with varying
permission models and granularity.

It is a relatively easy task to write a program or a script that would pick
specific methods from various brokers and perform a single use case. Alertissimo
should act here as a generator of scientific scenarios - take any number of fea-
tures from any broker (or other available source) and orchestrate them with one
another. The primary function of Alertissimo here is one of a science-enabler,
where all decisions are in control of the user2.

Alertissimo is designed with an input-agnostic core, where user-specified
workflows are first translated into intermediate representations (IR) with a well-
defined structure built using Pydantic3 models. These IR models are the product
of a conceptual analysis of broker features; their design is generalized, while their
implementation is specialized through a polymorphic class structure.

2.2. DSL for transients

The challenge of translating high-level user specifications into executable work-
flows is often addressed through Domain-Specific Languages (DSLs) and work-
flow systems (Gil et al., 2010). There are three main directions for Alertissimo
UI development, one of them being the backbone of the others - the DSL for
Transients. The two others, Natural Language Processing (NLP) Chowdhary
(2020) and visual workflow builder are planned to be built once a mature
DSL foundation is established. DSLs (Mernik et al., 2005) are programming
languages designed for a very specific purpose and are usually of declarative
nature4. Alertissimo’s DSL for Transients acts as the semantic and syntac-
tic backbone linking user intent with system capabilities. It exposes a struc-
tured, declarative representation of broker operations, allowing every workflow
to be expressed in a consistent formalism. This provides that all interactions,
no matter how informal their starting point was, ultimately resolve into a
precise and testable specification. The demo version of Alertissimo featuring
DSL for Transients is currently available through a github branch (https:
//github.com/sambolino/alertissimo/tree/feature/dsl). Example of
DSL for Transients is found in the Appendix A.

The natural language interface in Alertissimo will enable users to describe
their scientific intentions in plain terms, while maintaining expressive power.

2However, the idea persists that Alertissimo could also act in a ’light’ AI-based counseling
manner too, based on the knowledge of previous user experiences/success rates. This kind of
development could take place in later phases.
3Pydantic is a Python library designed for data validation, parsing, and serialization which
provides a structured way to define data schemas and ensures that incoming data conform to
the specified types and constraints.
4Declarative programming languages are stating ’what’ should be done in contrast with im-
perative languages which are describing ’how’ it should be done. All general programming
languages are imperative while more narrowly specified languages, such as SQL, rule-based
languages, HTML etc are declarative.

https://github.com/sambolino/alertissimo/tree/feature/dsl
https://github.com/sambolino/alertissimo/tree/feature/dsl


Alertissimo - a tool for orchestration of LSST broker streams 189

Figure 1. End to end flow diagram of Alertissimo modules illustrating the pipeline

from DSL input through orchestration to broker execution. For detailed description

see Subsection 2.3



190 V. Vujčić, V.A. Srećković, S. Babarogić

The aim is to test both a pure NLP prompt, where users would describe use-
cases in written English, and a chat-bot style AI dialogue which could act as an
assistant providing refinement and disambiguation, even for users initially unfa-
miliar with broker architectures. Both the natural language and visual interfaces
of Alertissimo will be developed on top of a formally defined DSL grammar. As
DSL defines the valid constructs, relationships, and parameter types for work-
flows involving broker orchestration, it also ensures that any interface - textual,
conversational, or visual - ultimately produces valid, executable specifications.
This formal grammar serves as the common translation layer: natural language
inputs are parsed and normalized into DSL expressions, and also the visual in-
terface directly maps user manipulations of blocks and links into equivalent DSL
statements.

From a broader perspective, this layered UI approach reflects a contin-
uum between accessibility and expressiveness. At one end, the conversational
interface empowers domain scientists to describe ideas without syntactic con-
straints; at the other, the DSL offers power users fine-grained control and ver-
sionable scripts suitable for integration into research pipelines. The visual in-
terface bridges these modes, exposing the structure of the DSL while remaining
approachable.

2.3. Architecture overview

The overall architecture of Alertissimo is depicted in Figure 1, with data flow
and key components as follows:

1. Input Layer: Users can define their use-cases via multiple interfaces (DSL,
NLP/chatbot (planned), Visual blocks - Yahoo Pipes (Pruett, 2007) style
(planned)), with the DSL being the currently implemented method.

2. Parsing and Validation: User input is reduced to DSL formalism to the ap-
propriate parser (DSL Parser, etc.). Validation is performed both in terms
of grammar and broker capabilities.

3. Capabilities: Broker capabilities are defined within yaml5 files

4. IR Generation: Valid DSL is being translated into IR models, still being
execution-agnostic.

5. Orchestration and Execution: The validated IR is processed by the Orches-
trator. This component manages the workflow by making polymorphic calls
to the Execution Layer, which consists of an Abstract Broker interface. This
design allows the system to specialize the implementation for different targets

5YAML is a human-readable data serialization language primarily used for configuration files
and data storage



Alertissimo - a tool for orchestration of LSST broker streams 191

while maintaining a generic core. For the sake of performance/execution con-
trol, The orchestrator can also trigger a workflow coordination framework,
such as an Airflow DAG (planned).

6. Response Handling and Output: Responses from brokers are collected and
processed by and the system executes one or more output actions, such as
to Notify a user, Store the data, Display it, Trigger a downstream process,
or Publish the results.

3. Conclusion

Alertissimo is a new tool for building scientific workflows out of streams of alerts
generated by Rubin/LSST. The alerts are not disseminated directly to the pub-
lic, but through tools called ’brokers’ - projects developed for ingestion and
analysis of LSST transient alerts. Alertissimo covers all of the brokers’ concepts
and features and offers an integrated interface for orchestrating multiple brokers
within a single workflow. On top of Alertissimo lies a domain-specific language
devised to easily yet expressively represent scientific use cases. NLP/LLM/chat-
bot and visual workflows are planned as extensions that dependably translate
and validate to the canonical DSL.

Together, these interaction paradigms establish a scalable human–machine
interface strategy, ensuring that Alertissimo remains adaptable as new brokers,
data modalities, and analysis paradigms emerge in astronomy and astrophysics.
Our prototype demonstrates how broker interoperability and workflow defini-
tion can empower the astronomy and astrophysics community in the era of
Rubin/LSST.

Acknowledgements. This research was supported by the Ministry of Science, Tech-
nological Development and Innovation of the Republic of Serbia (MSTDIRS) through
contract no. 451-03-66/2024-03/200002 made with Astronomical Observatory (Bel-
grade), 451-03-47/2023-01/200024 made with Institute of physics Belgrade. The au-
thors acknowledge the networking opportunities from the COST Action CA22133 -
The birth of solar systems (PLANETS) supported by COST (European Cooperation
in Science and Technology).

References

Alertissimo. 2025, Alertissimo, https://github.com/sambolino/alertissimo, ac-
cessed: 2025-10-29

Bosch, J., AlSayyad, Y., Armstrong, R., et al., An overview of the LSST image pro-
cessing pipelines. 2018, arXiv preprint arXiv:1812.03248

Chowdhary, K., Natural language processing. 2020, Fundamentals of artificial intelli-
gence, 603

https://github.com/sambolino/alertissimo


192 V. Vujčić, V.A. Srećković, S. Babarogić

Gil, Y., Ratnakar, V., Kim, J., et al., Wings: Intelligent workflow-based design of
computational experiments. 2010, IEEE Intelligent Systems, 26, 62

Graham, M., Bellm, E., Guy, L., Slater, C., & Dubois-Felsmann, G. 2019a, LSST
Alerts: Key Numbers (DMTN-102, URL https://dmtn-102. lsst. io, LSST Data Man-
agement Technical Note)

Graham, M., Kulkarni, S., Bellm, E., et al., The Zwicky Transient Facility: Science
Objectives. 2019b, Publications of the Astronomical Society of the Pacific, 131,
078001, DOI:10.1088/1538-3873/ab006c

Ivezić, Ž., Kahn, S. M., Tyson, J. A., et al., LSST: From Science Drivers to Reference
Design and Anticipated Data Products. 2019, Astrophysical Journal, 873, 111, DOI:
10.3847/1538-4357/ab042c

Jevremović, D., Srećković, V., Marinković, B., & Vujčić, V., Databases for collisional
and radiative processes in small molecules needed for spectroscopy use in astro-
physics. 2020, Contributions of the Astronomical Observatory Skalnate Pleso, 50,
44

Komossa, S., Grupe, D., Marziani, P., et al., The extremes of AGN variability:
outbursts, deep fades, changing looks, exceptional spectral states, and semi-
periodicities. 2026, Advances in Space Research, 77, 4041

Kovačević, A. B., Popović, L. Č., & Ilić, D., Two-dimensional correlation analysis of
periodicity in active galactic nuclei time series. 2020, Open astronomy, 29, 51

Mernik, M., Heering, J., & Sloane, A. M., When and how to develop domain-specific
languages. 2005, ACM computing surveys (CSUR), 37, 316

Pruett, M. 2007, Yahoo! pipes (O’Reilly)

Vujčić, V. & Jevremović, D., Real-time stream processing in astronomy. 2020, in
Knowledge Discovery in Big Data from Astronomy and Earth Observation (Else-
vier), 173–182

Vujčić, V., Srećković, V., Babarogić, S., & Aleksić, J., An overview of astronomical
transient brokers in Rubin era. 2025, Contrib. Astron. Obs. Skalnaté Pleso, 55, 95

https://doi.org/10.1088/1538-3873/ab006c
https://doi.org/10.3847/1538-4357/ab042c
https://doi.org/10.3847/1538-4357/ab042c


Alertissimo - a tool for orchestration of LSST broker streams 193

A. DSL for Transients - example code

Here is a sample code of DSL for Transients for supermassive binary black hole
(SMBBH) detection, based on the use case presented on the online meeting of the
LSST-TVS collaboration. The use case was proposed by prof dr Andjelka Kovačević
based on longstanding research of AGN and SMBBH variability (Kovačević et al.
(2020), Komossa et al. (2026)). The meeting took place on the Feb 21st 2025. Com-
ments include original definition of the use case from the discussion.

1 # Fink+ALeRCE+Lasair+ANTARES agree on alert

2 # (’required ’ argument is added for showcase)

3 confirm object_id="ZTF25aazqavg" brokers =[fink , alerce , lasair ,

antares] required =3

4 # ALeRCE retrieves ZTF curves of alerted object

5 lightcurve broker=alerce survey="ztf"

6 # Lasair retrieves historical light curves from Pan -STARR of

7 # alerted objects , and crossmatches with IR, R, X catalogues.

8 # Helps identify multi -wavelength periodicity.

9 crossmatch broker=lasair catalog="panstarrs" filters =["ir", "radio"

, "xray"]

10 # ANTARES crossmatches alerted object with eROSITA etc for

11 # further confirmation of multiwavelength of periodicity origin.

12 crossmatch broker=antares catalog="erosita"

13 # Lasair provides a Kafka -based alert stream that updates in

14 # real -time whenever a new observation is made for a

15 # monitored object.

16 monitor broker=lasair stream="kafka"

17 classify method="periodicity_detection"

18 notify team

19 store db


	Introduction
	Alertissimo
	Broker orchestration
	DSL for transients
	Architecture overview

	Conclusion
	DSL for Transients - example code

