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Abstract. Spectroscopy remains a cornerstone of modern physics and chem-
istry, providing critical insights into molecular structures and interstellar phe-
nomena. Accurate interpretation of interstellar line spectra through radiative
transfer modeling relies heavily on two essential types of molecular input data:
spectroscopic information (including energy levels, transition probabilities, and
statistical weights) and collisional data. However, the completeness and pre-
cision of these datasets are often limited, constraining the reliability of astro-
physical models. This work explores the application of machine learning (ML)
and artificial neural networks (ANNs) for predicting and reconstructing missing
spectroscopic/collisional data. We analyze their potential to enhance spectral
databases, thereby improving stellar spectral analyses and the determination
of fundamental stellar parameters. The study also addresses key challenges,
methodological limitations, and validation issues inherent to data-driven ap-
proaches. Finally, we discuss current progress, share practical experiences, and
outline future prospects and research needs in the rapidly evolving field of
computational spectroscopy.
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1. Introduction

Spectroscopy has played a fundamental role in advancing our understanding of
both physical and chemical processes (Mihajlov et al., 2011a; Mihajlov et al.,
2011b; Srec¢kovié et al., 2018; Dimitrijevi¢ et al., 2018). The analysis of inter-
stellar spectral lines through radiative transfer modeling typically depends on
two key types of molecular data: spectroscopic information (including energy
levels, transition probabilities, and statistical weights) and collisional data (see
e.g. Pop et al., 2021; Mihajlov et al., 2015, 2016; Srec¢kovi¢ et al., 2017; Tacob,
2014; Tacob et al., 2022). It is both highly relevant and tempting to examine the
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application of machine learning (ML) and artificial neural networks (ANNs),
particularly in their role of predicting or reconstructing missing spectroscopic
and collisional data, while also identifying the existing limitations and challenges
associated with these methods (Fig.1).

Spectral libraries constitute the foundation of stellar astrophysics and galac-
tic research. They serve as templates for stellar population synthesis, automated
parameterization processes for extensive surveys such as SDSS Ahumada et al.
(2020), GAIA, and LAMOST, as well as for the investigation of stellar evolution.
These libraries may be empirical (derived from observed spectra) or theoretical
(generated from model atmospheres and radiative transfer codes). Theoretical
libraries need to solve computationally demanding radiative transfer equations
for millions of spectral lines, whereas empirical libraries might be observation-
ally costly and contain gaps in parameter space. Both types of libraries confront
substantial obstacles. In order to get beyond these restrictions, machine learn-
ing provides a strong set of techniques that can generate accurate and efficient
spectral data by learning the intricate mapping between stellar properties and
the resulting spectra.

Deep generative models are at the forefront of creating entirely novel, yet
physically plausible, stellar spectra. A primary application is using Generative
Adversarial Networks (GANs) Goodfellow et al. (2014) and Variational Autoen-
coders (VAEs) Kingma & Welling (2013). These models are trained on existing
spectral libraries (e.g., PHOENIX Husser et al. (2013), Kurucz Kurucz (1993)).
Once trained, they can generate a spectrum for any arbitrary combination of
fundamental parameters (Tog, log g, [Fe/H], [a/Fe]) within the trained param-
eter range, effectively filling in the gaps of sparse empirical grids or creating a
smooth, continuous library from a discrete theoretical one (Sharma et al., 2020).

In high-dimensional spectral space, standard interpolation methods like lin-
ear and cubic spline don’t work good enough because the relationships between
parameters and flux values are not linear. Deep neural networks and other ma-
chine learning models are usually very good at this. You can teach them how
to use a set of parameters to make a full-spectrum, accurate prediction. You
can also make models that do spectral super-resolution, this is very helpful for
comparing data from different surveys (Bai et al., 2018).

It can take anywhere from a few minutes to a few hours to figure out one syn-
thetic spectrum using codes like SYNTHE or SME. A well-trained ML model can
make a spectrum of the same quality in just a few milliseconds. This approach,
that involves creating a large but manageable training dataset from standard
synthesis code, and using it in training a neural network in order to produce
the results with smallest possible error. This creates a ”surrogate model” that
is very similar to the real code and speeds up the process by a lot (Tsalmantza
& Hogg, 2012).

This paper focuses on the use of ML and ANNs for predicting or recon-
structing missing spectroscopic and collisional datasets, as well as discussing
the inherent challenges and limitations of such approaches. Furthermore, we
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share our insights, experiences, and encountered difficulties, and provide an
outlook on the future directions, needs, and developments in this emerging field
of computational spectroscopy.

2. Neural network approaches to spectroscopic and colli-
sional modeling

2.1. Data augmentation and domain adaptation

Tasks such as forecasting stellar properties using data-driven models requires
an extensive dataset that could vary a parameters and complete the genera-
tion of the spectra as soon as possible. Machine learning-generated spectra can
augment empirical datasets by providing supplementary examples of rare star
types or by producing a more equitable training set. Moreover, generative mod-
els can facilitate domain adaptation by translating spectra from one survey’s
instrumental system (e.g., resolution, wavelength coverage) to another’s, hence
enhancing the consistency of cross-survey studies Li et al. (2024).

Notwithstanding its potential, the application of machine learning for spec-
trum creation presents some challenges:

Physical Plausibility: Machine learning models may occasionally generate
"hallucinated” features that appear plausible yet lack any physical foundation.
It is essential to regularize and validate the model in accordance with physical
principles. When using a ML models for generating a stellar spectrum it is essen-
tial to bare in mind that a created spectrum must exhibit physical consistency,
so it must be compared to existing measured or generated spectra whenever
possible.

Training Data Limitations: The machine learning algorithm will absorb
and mimic the biases and flaws present in the original dataset, so the generated
data is inherently limited by the quality and comprehensiveness of the training
data.

Interpretability: Deep learning models are most closely described as ”black
boxes”. This complicates the understanding of the principles behind the gener-
ation of specific spectral features. Thus, a challenge for adequate astrophysical
interpretation and validation of the generated spectra is present.

Extrapolation: Machine learning models typically exhibit inadequate per-
formance when extending beyond the parameter space included by their training
data. Having this in mind it could be concluded that application of ML is most
reliable for interpolation, but always should be careful when new features are
included.

2.2. Problem statement

In order to interpolate and augentate the molecular cross-section data (0,,()))
for various molecular ions the appropriate artificial neural network (ANN) is
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needed. It needs to input the wavelength () [nm], the vibrational quantum
number (v), the rotational quantum number (J), and the Molecule type. The
output is a cross-section, known in theory Sreckovié et al. (2020) and given as
follows:
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Although the problem seems to be well defined, a complication in applying
a simple neural network emerged.

2.3. Neural network design

The input s implemented in ANN are wavelength (\) [nm] as a primary input,
vibrational quantum number (v) as a one-hot categorical/discrete input, rota-
tional quantum number (J) also as a categorical /discrete, one-hot, and molecule
type one-hot encoded for the 7 molecular ions that have been analyzed.

The output is a simple cross-section value (o) [cm?].

The data preprocessing was applied, the scale wavelength to range [0,1] is
used, the range is divide by max wavelength, the one-hot encode molecule type
(7 categories), that selects the ANN for the particular molecular type. Quantum
numbers were used as-is (one-hot), the log-transform of cross-section values is
applied in order to cover wider range of data more precisely.

2.4. Training considerations
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Figure 2. Deep neural network architecture for molecular cross-section interpolation.
N. = Normalization, E. = Embedding, O-H = One-Hot, Mol. = Molecule.

The metrics introduced for the determining a quality of the fit was a mean
squared logarithmic error (MSLE). Since the goal was a interpolation and au-
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genation of the existing data the entire data set was used. Each of seven mole-
cules had a separate ANN. In order to realize a genetic algorithm the 0.2 dropout
rate is introduced and dropout layers were defined.

Also a physics-informed (PINNs) enhancements for perceptron where used
and the resulting ANN was trained separately as well as using a genetic algo-
rithm. The physically involved layer did not give any significant improvement.
It included s 1/\ as additional input, features like ﬁ and %, custom loss
to penalize deviations from expected functional form.

The best performing deep ANN network, not the PINN, where more thor-
ough research should be carried out, is given in Fig 2.

2.5. Final remarks and future work

This paper focuses on the use of ML (see e.g. Sakan et al., 2022; Lemishko
et al., 2024, and references therein) and ANNs for predicting or reconstructing
missing spectroscopic and collisional datasets, as well as discussing the inher-
ent challenges and limitations of such approaches. Furthermore, we share our
insights, experiences, and encountered difficulties, and provide an outlook on
the future directions, needs, and developments in this emerging field of compu-
tational spectroscopy. The findings and their analysis demonstrate the applica-
tions’ interdisciplinary nature.

3. Conclusion

Machine learning is revolutionizing the way we generate and work with stel-
lar spectral data. By acting as a powerful interpolator and ultra-fast emula-
tor of physical models, ML is enabling the creation of vast, high-fidelity, and
continuous spectral libraries that were previously computationally prohibitive.
This eases and enhances the ability to analyze the data from current and next-
generation astronomical surveys. It should be noted that challenges remain re-
garding physical consistency and interoperability. Since the application of simple
perceptron neural networks as well as physically informed perceptron networks,
and after applying a genetic algorithm to have the best fitted solution, we did
not produce a trained ANN good enough for applicable solution. The work is still
in progress, and the focus should be onto GANs and VAEs. From all mentioned
above, it is obvious that the synergy between machine learning and traditional
astrophysical modeling is creating a new paradigm for data-driven discovery in
astronomy and this approach could only gain momentum by the growth of the
available computational power.
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