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Analytical images of Kepler’s equation solutions
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Abstract. Approximate, but highly accurate analytical solutions of Kepler’s
equation were found by reducing it to an algebraic equation. With the help of
this approach and usage of the iterative algorithm there were obtained solutions
of a similar equation for the hyperbolic motion near the orbit pericenter.
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1. Introduction

Kepler’s equation is one of the main relations in celestial mechanics, as Barker’s
equation and a similar equation for the case of hyperbolic motion. It is well
known from celestial mechanics that the relative motion of two point-like grav-
itating bodies with masses m1 and m2 occurs on Keplerian orbits (Barger &
Olsson, 1995; Vallado & McClain, 2001)

r = p{1 + e · cos v}−1, (1)

where r and v are polar coordinates, the focal parameter p and eccentricity
e are determined by the masses of bodies and integrals of motion – angular
momentum l and energy E

p = l2µ−2K−1, e =
{

1 + 2El2µ−3K−2
}1/2

. (2)

Here K = G(m1+m2) is the so-called gravitational parameter, G is the gravita-
tional constant and µ = m1m2(m1+m2)−1. Using an expression for the angular
momentum

l = µr2
dv

dt
(3)

and relation (2), we obtain a well known equation for the time dependence of
true anomaly v(t) in the form

p3/2K−1/2
v(t)∫
0

[1 + e · cos v]−2dv = t. (4)
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Here, taking into account that v(0) = 0, equation (4) determines the time of
motion from the orbit pericenter to the point with a fixed value of v(t). The
integral in equation (4) is expressed by elementary functions, but it has different
images depending on the eccentricity value. The trivial case e = 0 corresponds
to the uniform motion on a circular orbit of radius p with the angular velocity

ωp =
K1/2

p3/2
, (5)

and v(t) = ωpt. At non-zero eccentricities, the integral in equation (4) is calcu-
lated with the help of a universal substitution x = tan(v/2). In the case e = 1
and E = 0 the motion occurs on a parabolic orbit, and equation (4) takes the
form (Barger & Olsson, 1995)

tan
v

2
+

1

3
tan3 v

2
=

2K1/2

p3/2
t ≡ 2ωpt. (6)

This equation is known as Barker’s equation. When the time varies in the region
−∞ < t <∞, the true anomaly changes in the interval −π < v < π.

For 0 < e < 1, equation (4) takes the form(
1− e
1 + e

)1/2

tan
v

2
=
t∗
2

+
e

2
(1− e2)1/2

sin v

1 + e · cos v
, (7)

where t∗ = 2πt/T = tK1/2/p3/2(1−e2)3/2 (T is the orbital period of an elliptical
motion). For e > 1, equation (4) has the following form in elementary functions

ln
[
√
e+ 1−

√
e− 1 tan(v/2)]

[
√
e− 1 +

√
e+ 1 tan(v/2)]

= tH − e(e2 − 1)1/2
sin v

1 + e · cos v
, (8)

where

tH = t
K1/2(e2 − 1)3/2

p
3/2
H

≡ ωHt. (9)

Solving equation (6) relative to tan(v/2) by Cardano’s formulae (Abramowitz
& Stegun, 1972), we find an exact solution for the true anomaly,

v(t) = 2 arctan
{[

(1 + s2(t))1/2 + s(t)
]1/3
−
[
(1 + s2(t))1/2 − s(t)

]1/3}
, (10)

where

s(t) =
3K1/2

p3/2
t = 3ωpt, (11)

and v(−t) = −v(t). Function (10) has the asymptotics

v(t)→

{
4ωpt at |ωpt| � π/2,

2 arctan(6ωp t) at |ωp t| � π/2.
(12)
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For the point which follows a parabolic path, the function v(t) is proportional
to the time if the point is near the pericenter; if it is far away – then v(t)→ ±π.
This behavior is illustrated in Fig. 1, which depicts v(t) as a function of the
dimensionless variable ωpt.
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Figure 1. Dependence of the true anomaly v(t) on the dimensionless variable ωpt.

2. Equation of elliptical motion

Using the substitution (
1− e
1 + e

)1/2

tan
v

2
= tan

E

2
(13)

equation (7) is reduced to Kepler’s equation (Vallado & McClain, 2001)

E − e · sinE = t∗, (14)

and the additional function E is called an eccentric anomaly. As it is shown
from equation (14), E(−t∗) = −E(t∗). Many works are devoted to finding an
approximate solutions of this equation. The most famous iterative Lagrange
method (Alexandrov, 2003), in which for a zero approximation there is chosen
the function E(0)(t∗) = t∗ that corresponds to an uniform motion on a circular
orbit, and the term e · sinE is considered as a perturbation. In this way, the
solution is represented as an infinite series by powers of eccentricity

E(t∗) = t∗ +

∞∑
k=1

ek

k!
· d

k−1

dtk−1∗

{
sink t∗

}
. (15)
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As it was first shown by Laplace, this series coincides absolutely only in the
region 0 < e ≤ ē = 0.66274 . . . (Alexandrov, 2003).

Usage of the Fourier series leads to the solution in the form (Alexandrov,
2003)

E(t∗) = t∗ +

∞∑
k=1

2

k
Ik(ke) sin(kt∗), (16)

where

Ik(ke) =
1

π

π∫
0

cos
[
k(z − e · sin z)

]
dz (17)

are Bessel functions of the first kind with an integer index value (Abramowitz
& Stegun, 1972). For the eccentricity values that are close to unity and small
values of t∗, series (16) has a weak convergence and requires taking into account
dozens of terms, which makes this method cumbersome and irrational.

Usage of the theory of a complex variable allowed the second authors to
obtain solutions of Kepler’s equation in a finite analytical form (Siewert & Bur-
niston, 1972; Philcox et al., 2021). However, the obtained solutions are too com-
plicated for usage and require the additional calculations. Because of that, they
can only be considered as proving the solution existence.

From equation (14) it follows that the function E(t∗) is a periodic function
with period 2π. Therefore, variables E and t∗ change in the range (0÷ 2π) and
E = 0 at t∗ = 0, E = π at t∗ = π and E = 2π at t∗ = 2π. It also follows from
equation (14) that in the interval π ≤ t∗ ≤ 2π

E(t∗) = 2π − E(2π − t∗), (18)

therefore, it is sufficient to find solutions in the region 0 ≤ t∗ ≤ π.
There can be distinguished two regions of variables for a sufficiently great

value of eccentricity, in which the curve behavior E(t∗) has a different character.
Namely, in the plane (E, t∗)

0 ≤ E ≤ π, 0 ≤ t∗ ≤ π

it can be selected the region of a rapid change of E(t∗)

I. 0 ≤ E(t∗) ≤
π

2
; 0 ≤ t∗ ≤ t̄∗(e) (19)

and the region of a slow change of E(t∗)

II.
π

2
≤ E(t∗) ≤ π; t̄∗(e) ≤ t∗ ≤ π. (20)

As it follows from equation (14), for E = π/2,

t̄∗(e) =
π

2
− e. (21)
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A different behavior of the function E(t) is caused by the different motion
velocity of the material point along the orbit – rapid motion in the pericenter
region and slow in the apocenter region.

To find analytical solutions of equation (14), we rewrite it in an equivalent
form. Using the substitution

E =
π

2
− F1, (22)

we obtain an equation in the region I

F1 + e · cosF1 =
π

2
− t∗. (23)

The substitution
E =

π

2
+ F2 (24)

allows us to rewrite equation (14) in the region II in the form

F2 − e · cosF2 = t∗ −
π

2
. (25)

To obtain approximate analytical solutions of equations (23) and (25), we use
the approximation cosF in the interval (0 ÷ π/2) in the form of a polynomial
of the fourth order

f(F ) = 1 + a2F
2 + a3F

3 + a4F
4 (26)

with coefficients

a2 = −0.503491, a3 = 0.0111681, a4 = 0.0327516. (27)

We will consider equation (25) in detail and represent it in the form

F2(t∗)− ef(F2(t∗)) = t∗ −
π

2
+ e

{
cosF2(t∗)− f(F2(t∗))

}
. (28)

Function (26) is sufficiently accurately approximated by cosF in the interval
(0 ÷ π/2), and deviation does not exceed 3 · 10−4 even in the vicinity of F2 =
π/2. Because of that, for equation (28) is applied the method of successive
approximations, and the zero approximation is determined by the solution of
an algebraic equation

F
(0)
2 (t∗)− ef(F

(0)
2 (t∗)) = t∗ −

π

2
. (29)

The first iteration yields a specified solution

F
(1)
2 (t∗) = F

(0)
2 (t

(1)
∗ ), (30)
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where
t
(1)
∗ ≡ t∗ + e

{
cosF

(0)
2 (t∗)− f(F

(0)
2 (t∗))

}
(31)

and etc.
The solution of the equation of zero approximation is found by Cardano’s

formulae (Abramowitz & Stegun, 1972). The solution that corresponds to the

condition 0 ≤ F (0)
2 (t∗) ≤ π/2 is determined by the expression

F
(0)
2 (t∗) = c−

{
c2 − 1

2
u+

[
u2

4
− α0

]1/2}1/2

. (32)

Here, we used the following notations

c = −1

2

{
1

2
α3 −

(
1

4
α2
3 + u2 − α2

)1/2
}

;

u = {r + (r2 + q3)1/2}1/3 + {r − (r2 + q3)1/2}1/3 − 1

3
b2;

q =
1

3
b1 −

1

9
b22; r =

1

6
{b1b2 − 3b0} −

1

27
b32;

b0 = 4α0α2 − α2
1 − α0α

2
3; b1 = α1α3 − 4α0; b2 = −α2;

α0 =
1

a4

{
1 +

1

e

(
t∗ −

π

2

)}
; α1 = − 1

ea4
;

α2 =
a2
a4
, α3 =

a3
a4
.

(33)

In the region I the solution of the equation of zero approximation is

F
(0)
1 (t∗) = −c+

{
c2 − 1

2
u+

[
u2

4
− α0

]1/2}1/2

, (34)

if in notations (33) we replace α1 → −α1 and α3 → −α3. In the first iteration,
we obtain the expression

F
(1)
1 (t∗) = F

(0)
1 (t

(1)
∗ ), (35)

where
t
(1)
∗ ≡ t∗ + e

[
cosF

(0)
1 (t∗)− f

(
F

(0)
1 (t∗)

)]
. (36)

The time dependence of functions F
(0)
1 (t∗) and F

(0)
2 (t∗) is shown in Fig. 2

in the case e = 0.6 and eccentric anomaly in the same approximation E(0)(t∗).
The maximal deviation E(0)(t∗) from the solution of equation (14) found by the
numerical method does not exceed 5 · 10−4, and iterative corrections E(1)(t∗)−
E(0)(t∗) are negligible.
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Figure 2. The time dependence of functions F
(0)
1 (t∗), F

(0)
2 (t∗) and the eccentric

anomaly E(0)(t∗) for e = 0.6.

3. Equation of hyperbolic motion

Using the substitution

tan
v

2
=

(
e+ 1

e− 1

)1/2

tanh
H

2
(37)

equation (8) is reduced to the form

e · sinhH −H = tH, (38)

which is an analogue of Kepler’s equation. Herewith −∞ < tH <∞, and −∞ <
H < ∞. Since the function H(−tH) = −H(tH), then it is sufficient to find the
solution of equation (38) in the region 0 ≤ tH <∞.

Unfortunately, the function sinhH cannot be approximated by a polynomial
of the fourth order in a sufficiently wide region of change H. Thereby, we will
consider the calculation of the eccentric anomaly asymptotics near the pericen-
ter, which is precisely of practical interest. We rewrite equation (38) in the form

ef3(H)−H − tH = e{f3(H)− sinhH}, (39)

choosing the approximation function in the form

f3(H) = H + aH3 (40)
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for a = 0.188479. The solution of equation (39) is found by the iterations
method, using in the role of zero approximation the root of the equation

ef3(H(0))−H(0) − tH = 0, (41)

namely

H(0)(tH) = {[r2 + q3]1/2 + r}1/3 − {[r2 + q3]1/2 − r}1/3,

r =
tH

2ea
, q =

e− 1

3ea
.

(42)

Specified of this solution we perform by the iterating of equation (39): in the
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Figure 3. The solution of Kepler’s equation in the case of hyperbolic motion for

e = 1.4 in different approximations. Curve 1 corresponds to approximation (42), curve

2 – a numerical solution of equation (38).

first iteration

H(1)(tH) = H(0)(t
(1)
H ),

t
(1)
H = tH + e{f3(H(0)(tH))− sinhH(0)(tH)};

(43)

in the second iteration, we have

H(2)(tH) = H(0)(t
(2)
H ),

t
(2)
H = tH + e{f3(H(0)(t

(1)
H ))− sinhH(0)(t

(1)
H )}, and etc.

(44)
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Fig. 3 illustrates the functionH(0)(tH) (curve 1), as well as the numerically found
solution of equation (38) (curve 2) for e = 1.4. In the vicinity of tH = 2.0 the
relative deviation of these curves equals 0.59%. The deviation of the function
H(1)(tH) from the numerical solution does not exceed 0.06% for tH = 2.0, which
indicates a rapid convergence of the iterative process.

4. Conclusions

Kepler’s equation is one of the main relations of celestial mechanics, which de-
termines the relevance of the problem solving. The classical Lagrange method
is the conventional perturbation theory, where the zero approximation is the
solution of a linear equation and corresponds to the motion on a circular orbit.
The iterative algorithm proposed by us can be called as the renormalized per-
turbation theory, the zero approximation of which is the solution of an algebraic
equation of the fourth order. Such an approximation differs from the solution
found by a numerical method no more than 5 · 10−4. This is already sufficient
for practical using, and iterative corrections are negligible.

In the case of hyperbolic motion, the proposed technique is only applicable
in the region of the pericenter orbit, because the function sinhH cannot be
approximated by a polynomial of the fourth order in a wide region of change
of H with the sufficient accuracy. Thereby, the role of iterations is increasing,
but the iterative process is rapidly converging, therefore, it is enough one or two
iterations, which have also an analytical representation according to formulae
(43), (44).
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