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Abstract. In the approximation of Laplace’s sphere influence method, there
were established the optimal conditions of the spacecraft acceleration in the
gravitational field of the planet, which are determined by the value of the
spacecraft velocity on the Earth orbit, as well as by the character of Keplerian
trajectory in the sphere of the Sun’s influence and the impact parameter rela-
tive to the planet. As an example, there was calculated the acceleration of the
spacecraft in the Jupiter’s field for initial velocities from the Earth’s orbit in
the range (40÷ 50) km s−1.
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The mechanism of the spacecrafts acceleration in the gravitational fields of
planets has already been used for a long time in the studies of Solar System
periphery (Barger & Olsson, 1995; Bartlett & Hord, 1985; Diehl, 1996; Media
Relations Office, 1999). The explanation of this effect is based on the usage of the
laws of conservation of energy and angular momentum of the body, which moves
in the centrosymmetric gravitational field of the Sun and the planet (Barger &
Olsson, 1995; Thornton & Marion, 2004). In the strict sense, this is a three-body
problem – the spacecraft, the Sun and a planet. To simplify the problem, it is
assumed that the motion of the planet and the spacecraft occurs in the same
plane, as it is shown in Fig. 1, and orbits of the Earth and the planet are cir-
cular. The spacecraft starts from the Earth’s orbit (p. A0), having the velocity
v0, which is orthogonal to the radius vector of the spacecraft in the heliocentric
reference frame. Under these conditions, all elements of the trajectory of the
spacecraft in the sphere of the Sun’s influence are determined by the magnitude
of velocity v0. Having reached the sphere of the planet’s influence (point A1),
the spacecraft has the radius vector r1 and the velocity vi, which are the initial
conditions to describe the motion of the spacecraft in the gravitational field of
the planet. The radius vector r1 is determined by the shape of the heliocen-
tric trajectory of the spacecraft, and its velocity vi is found from the law of
conservation of energy,
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Figure 1. The schematic representation of the spacecraft motion trajectory in the

field of the Sun and the planet.

where aE = 1 astronomical unit is the radius of the Earth’s orbit.

For definiteness, we will consider that the acceleration occurs in the gravita-
tional field of Jupiter. In order to explore all features of the acceleration effect, we
will consider the motion of the spacecraft with the initial velocity in the interval
of 40 km s−1 ≤ v0 ≤ 50 km s−1. This allows us to describe all three types of Ke-
plerian trajectories – elliptical (v0 < vp), parabolic v0 = vp = (2GM�/aE)1/2 '
42.19 km s−1) and hyperbolic (v0 > vp). Elements of the heliocentric trajectories
of the spacecraft for a given velocity v0 are shown in Tab. 1: the focal parame-
ter p in the astronomical units, eccentricity e, and the module of velocity in the
sphere of the planet’s influence vi. Cosine of the angle α between the velocity
vector of the planet VJ and the velocity vector of the spacecraft vi is found
from the law of conservation of angular momentum,

aEv0 ≈ r1vi cosα. (2)

Fig. 1 schematically illustrates the situation for the elliptical trajectory of
the spacecraft, α ≈ π/2− γ, where γ is the angle between the radius vector r1

and the velocity vector vi.
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From the point A1 to the point A2 the spacecraft moves along the transi-
tional hyperbolic planetocentric trajectory in the sphere of the planet’s influ-
ence. In the point A2 it reaches the velocity vf and leaves the sphere of the
planet’s influence. Herewith, the angle between the vectors vf and VJ equals

α
′
. The further motion of the spacecraft occurs along the hyperbolic heliocentric

trajectory whose focus is the point S.

1. Kinematic analysis of the problem

Vectors VJ , vi and vf denote velocities of planets and the spacecraft in the
heliocentric reference frame. It is more convenient to describe the motion of
the spacecraft inside the sphere of the planet’s influence in the system of mass
center, in which the planet is fixed and vectors

ρ = r−RJ , u = v −VJ (3)

describe the position and velocity of the spacecraft relative to the mass center
of the planet. In particular, vectors

ui = vi −VJ , uf = vf −VJ (4)

determine the relative velocity of the spacecraft at the entrance to the sphere
of the planet’s influence and at the exit from it. The vector

c = vf − vi = uf − ui (5)

determines the velocity momentum, which is acquired by the spacecraft in the
gravitational field of the planet. The difference

∆E =
m

2

(
v2
f − v2

i

)
= m(c,VJ) = m(uf − ui −VJ) (6)

is the acquired or lost energy of the spacecraft after it passed through the sphere
of the planet’s influence, depending on the sign of the product (c,VJ). Since
the energy of motion of the spacecraft in the system of mass center is a constant
value, then

|uf | = |ui| = u. (7)

Of course, during the motion of the spacecraft along the transition trajectory,
the direction of the vector u also changes, as well as its value. According to
formulae (5) and (7)

|c| = 21/2u(1− cosβ)1/2, (8)

where β is the angle between vectors ui and uf . According to formula (4)

u =
[
v2
i + V2

J − 2(vi,VJ)
]1/2

=
(
v2
i + V 2

J − 2viVJ cosα
)1/2

. (9)
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Fig. 1 corresponds to the situation when the spacecraft is “catching up” the
planet (the trajectory I in Fig. 2). There is possible another situation when the
spacecraft is “overtaking” the planet (the trajectory II in Fig. 2). In the case
I, during the passage of the spacecraft in the sphere of the planet’s influence
there prevails the condition (a1,VJ) > 0, where a1 is the acceleration vector of
the spacecraft, which is caused by the gravitational influence from the side of
the planet. As the result, the spacecraft accelerates. In the case II the condition
(a2,VJ) < 0 prevails, which corresponds to the braking. In this work we do not
consider the trajectories of type II, which can be used for the correction of the
spacecraft trajectory, but not for its acceleration.

II I

VJ
J

a2

a1

v2

v1

Rc

Figure 2. The schematic representation of two types of the spacecraft motion trajec-

tory in the field of the planet.

Bartlett & Hord (1985) used a simplified description of the gravitational
planet’s influence on the spacecraft, which is timed as the elastic collision of two
point masses, and the radius of the sphere of the planet’s influence is zero. Such
a model approach allows us not only to prove the existence of the acceleration
effect, but also to estimate its magnitude. However, it is not enough to choose
the optimal acceleration conditions, which requires a more detailed description
of its motion in the gravitational field of the planet.

Following the method of Barger & Olsson (1995) and Johnson (2003), we
consider the vector diagram of velocity shown in Fig. 3. According to formulae
(4), (5) and (8), we obtain the relation

2(1− cosβ)
(
v2
i + V 2

J − 2viVJ cosα
)

= v2
f + v2

i − 2vivf cos(α− α′
), (10)
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Figure 3. The vector diagram of the spacecraft velocity in two reference frames.

which allows us to determine the value of final velocity vf . However, in Fig. 3

we see that variables α, α
′

and β are not independent. To establish the relation
between them, we calculate the projections of vectors vf and vi on the axis of
the Cartesian coordinate system according to Fig. 3. As it is shown in the figure

β + δ + γ = π, ϕ = γ − π

2
. (11)

Therefore

vf cosα
′

= VJ − u cos(β + γ),

vf sinα
′

= u sin(β + γ),
(12)

as well as

vi cosα = VJ − u cos γ,

vi sinα = u sin γ.
(13)

Determining sin γ and cos γ from relations (13) and substituting them in for-
mulae (12), we find that

vf cosα
′

= VJ(1− cosβ) + vi cos(α− β),

vf sinα
′

= sinβ(VJ − vi cosα) + vi cosβ sinα,
(14)
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which allows us to exclude the angle α′ from relation (10). Substituting the
obtained value in equation (10), we reduce it to the expression

v2
f = v2

i + 2V 2
J (1− cosβ) + 2viVJ

[
cos(α− β)− cosα

]
. (15)

Such equation for finding the value of the final velocity was obtained in the
work of Johnson (2003). In equation (15) the values vi and α are considered as
known. From the condition of the extremum of expression (15) relative to the
angle β, we obtain the relation (Johnson, 2003)

sinβ
(
VJ − vi cosα

)
+ vi sinα cosβ = 0, (16)

from where we find the extreme value of the angle β

tanβext =
ki sinα

ki cosα− 1
. (17)

For convenience, we introduced here the dimensionless velocities ki = vi/VJ ,
kf = vf/VJ . It follows from equation (17) that

cosβext =
ki/kα − 1

(1 + k2
i − 2ki/kα)1/2

,

sinβext =
(1− k−2

α )1/2

(1 + k2
i − 2ki/kα)1/2

,

(18)

where kα = (cosα)−1. It is easy to see that

∂2v2
f

∂β2

∣∣∣∣∣
βext

= −2V 2
J

(
1 + k2

i − 2ki/kα
)1/2

, (19)

from where it follows that vf has the maximum at β = βext.

As it was shown from formulae (14) and (16), at βext the angle α
′

= 0 and
vf takes the extreme value, according to which

(kf )max = 1 +
(
1 + k2

i − 2ki/kα
)1/2

= 1 +
u

VJ
, (20)

or
|vf |max = VJ + u. (21)

Note that instead of the extremum condition (17) we can choose α
′

= 0 in
equations (14). From relations (17) and (20) it follows that at α = 0

βext = 0, (kf )max = ki (22)

and there is no acceleration of the spacecraft. At α = π/2

tanβext = −ki, (kf )max = 1 + (1 + k2
i )1/2 (23)
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Figure 4. The module of the spacecraft velocity at the exit from the sphere of the

planet’s influence (in units |VJ |) as a function of angles α and β (in radians).
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Figure 5. The same as in Fig. 4. Curve 1 corresponds to α = 0◦, curve 2 – α = 15◦,
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and acceleration is maximal.
A general character of the dependence of kf on the angles α and β according

to relations (15) is illustrated in Fig. 4. Herewith α changes in the region
(0 ÷ π/2), β – in the region (0 ÷ 3/4 π), and ki =

√
2. As it is shown in the

Figure, for α = 0 there is no extremum, and for α 6= 0 it always exists, moreover
the extremal value kf is bigger, the bigger the angle α is. This is also clearly
shown in Fig. 5 with a given value of kf as a function of the angle β at a fixed
value of the angle α. In the Figure it is shown that the extremal value of the
angle β corresponds to that given by formulae (18), and the value kf agrees
with relation (20).

However, it follows from Fig. 1 and relation (3) that the value of the angle
α is close to π/2, which cannot occur in the case of elliptical motion of the
spacecraft in the sphere of the Sun’s influence. It is also impossible to implement
it with other types of trajectories, because it contradicts the law of conservation
of angular momentum (2). To estimate the real value of velocity increase of the
spacecraft in the gravitational field of the planet, there should be considered
more detailed the initial conditions of the problem in the sphere of the Sun’s
influence.

2. The motion of the spacecraft in the sphere of the Sun’s
influence

The radius of the sphere of the Jupiter’s influence relative to the Sun we evaluate
from the expression (Thornton & Marion, 2004)

Rc = aJ

(
MJ

M�

)2/5

≈ 0.33 a. u., (24)

where aJ is the orbital radius of the planet. Due to the fact that the impact
parameter of the spacecraft relative to Jupiter is much smaller than Rc (as we
will see below), let us adopt r1 ≈ aJ−Rc for the calculation of vi by formula (1).
Therefore, in the case of the initial velocity v0 = 41 km s−1, which corresponds
to an elliptical trajectory with a semi-major axis a ≈ 9.2 a. u., we find that

vi = 16.325 km s−1. (25)

At the orbital velocity of Jupiter VJ = 13.3 km s−1, we obtain ki = vi/VJ ≈
1.2274. If it were possible to get α ≈ π/2, then according to formula (20) we
would obtain

(kf )max = 2.58, vf ≈ 34.31km s−1. (26)

But with the approximations described above, from equation (2) we find that

cosα ≈ 0.5157 . . . , α ≈ 60◦. (27)
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Therefore, according to formula (20) we obtain

(kf )max ≈ 2.1138 . . . , vf ≈ 28.1142 km s−1. (28)

Such a value α corresponds to βext ≈ 109◦.238.

In the case of the parabolic trajectory of the spacecraft (with initial velocity
v0 = 42.19 km s−1), we find that

vi ≈ 19.118 km s−1, ki ≈ 1.437. (29)

According to relation (2)

cosα ≈ 0.459 . . . , (kf )max ≈ 2.328 . . . , vf = 30.962 km s−1. (30)

The elements of the planetocentric trajectories at different values of the
initial velocity v0 are shown in Tab. 2. As it is shown in the Table, with the in-
creasing initial velocity the angle α increases, and the angle βext monotonously
decreases, approaching π/2. With the increasing v0 the ratio vf/v0 increases: it
is close to 0.7 for elliptical and parabolic trajectories, but for v0 = 50 km s−1 the
ratio is close to 0.9. As it can also be seen in Tab. 2, with increasing v0 the mod-
ule of the vector ui increases: for the parabolic trajectory it equals 17.662 km s−1

and for the hyperbolic one at v0 = 50 km s−1 it is already 31.463 km s−1.

To provide the spacecraft with rotation of the vector of relative velocity in
the sphere of the Jupiter’s influence by the angle βext, it is necessary to choose
appropriately its position of the heliocentric trajectory relative to the planet.
In order for the spacecraft not to be captured by the planet’s field, it should
move on a parabolic or a hyperbolic trajectory inside the sphere of the Jupiter’s
influence. In the case of a hyperbolic trajectory,

ρ =
pH

1 + eH cosϕ
, (31)

which is schematically shown in Fig. 6, the focal parameter and the eccentricity
are determined by the value of the impact parameter b and the module of the
relative velocity ui:

pH =
u2b2

GMJ
, eH =

[
1 +

u4b2

(GMJ)2

]1/2

. (32)

Since the impact parameter is much smaller than the radius of the influence
sphere Rc, the angle βext = π − 2ω ≈ π − 2(π − ϕ(Rc)), where ϕ(Rc) is found
from relation (31),

ϕ(Rc) = arccos

[(
pH

Rc
− 1

)
1

eH

]
. (33)
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Figure 6. The transitional hyperbolic spacecraft trajectory in the sphere of the

Jupiter’s influence.

From this it follows the condition for determining the impact parameter

2 arccos

[(
pH

Rc
− 1

)
1

eH

]
= π + βext. (34)

Putting b = n ·RJ , where RJ = 71492 km is the average radius of Jupiter, from
equation (34) we find the value of the coefficient n for different initial values v0.
In Tab. 2 there is also shown the distance from the center of the planet to the

Table 1. The elements of the heliocentric trajectories.

v0 p, a. u. e vi cosα vf
1 40 1.7978 0.7978 13.620 0.6031 25.2965
2 41 1.8888 0.8888 16.325 0.5157 28.1142
3 42.19 2.0 1.0 19.118 0.4531 30.9621
4 45 2.2753 1.2753 24.708 0.3740 36.5724
5 50 2.8090 1.8090 32.947 0.3116 44.7533

pericenter of the transition trajectory,

ρmin = pH(1 + eH)−1, (35)
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and the module of the relative velocity in the vicinity of pericenter,

u(ρmin) =
(
u2 + u2

p(ρmin)
)1/2

, (36)

where up(ρmin) = (2GMJ/ρmin)1/2 is the parabolic velocity at the distance ρmin

from the center of the planet. All velocities in the Tables are shown in the units
km s−1.

Table 2. The elements of the planetocentric trajectories.

u βext n = b/RJ eH pH, 105 km ρmin, 105 km u(ρmin)
1 11.9965 115.087◦ 8.203 1.1851 37.2970 17.0691 17.3032
2 14.8140 109.238◦ 6.007 1.2265 30.4986 13.6980 20.3275
3 17.6621 105.220◦ 4.5477 1.2586 24.8478 11.0013 23.5201
4 23.2724 100.046◦ 2.8734 1.3050 17.2224 7.4719 29.9467
5 31.4531 95.53◦ 1.7033 1.3506 11.0542 4.7027 39.4164

3. Conclusions

1. The module of the velocity vector of the spacecraft at the entrance in the
sphere of the planet’s influence vi and its orientation relative to the vector of
the planet velocity (the angle α = (vi,VJ)) are the initial conditions for the
description of motion of the spacecraft in the sphere of the planet’s influence.
These two values are determined by the values of the initial velocity v0.

2. It follows from the analysis of the velocities diagram that the module of the
final velocity of the spacecraft (at the exit from the sphere of the planet’s

influence) vf is the function of vi and angles α, α′ = (vf ,̂ VJ), β = (ui ,̂uf ).
The maximal value of vf can be determined in two ways, which lead to the
identical results. In the first case we can choose α′ = 0, which determines
some value of the angle βext, that is a function of variables vi and αi and
yields the maximal value of vf . Another way is to take into account the
relation between angles α, α′ and β and express α′ by α and β. This gives
relation (15) with variables vi, α and β. As it is shown in Figs. 4 and 5,
expression (15) has the extremum relative to the variable β for all α 6= 0.
The extreme value βext determines the maximal value of the final velocity
as a function of variables vi and α.

3. The velocities diagram determines the possibility of such a value of βext

that provides the maximal value of the final velocity. For realization of this
opportunity the spacecraft in the sphere of the planet’s influence must move
along the appropriate trajectory (31), which is determined by the impact
parameter b relative to the center of the planet. This requirement leads to
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equation (34), whose root determines the impact parameter and the elements
of the hyperbolic trajectory inside the sphere of the planet’s influence.

4. As it is shown in Tab. 1, the angle α increases with the increasing initial
velocity and goes to π/2. But the limit α = π/2 is unattainable, because
this would violate the law of conservation of angular momentum. The angle
βext is greater than π/2 and continuously approaches to the value π/2 with
increasing v0.

5. The impact parameter b = nRJ has the order (105 ÷ 106) km and decreases
with increasing v0.

6. The ratio vf/v0, which has the meaning of the energy conservation efficiency,
monotonously increases with increasing initial velocity: for v0 = 40 km s−1

it equals 0.632, and for v0 = 50 km s−1 it is already 0.894.

7. We have analyzed the case when the spacecraft moves along by the Keplerian
trajectory by inertia, in the absence of jet thrust. As it is shown in Fig. 5,
there is an obvious possibility of achieving an even bigger final velocity of
the spacecraft, if the correction of the trajectory is made before entering in
the sphere of the planet’s influence in order to increase the angle α. This
allows us to decrease the value of the initial velocity.
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