Substellar and stellar companions in eclipsing binaries

K. Zervas, E.-P. Christopoulou and A. Papageorgiou
Department of Physics, University of Patras, 26500 Patras, Greece
(E-mail: konst.zervas@upatras.gr)

Received: September 4, 2020; Accepted: September 29, 2020

Abstract

We present an extensive analysis of O-C diagrams constructed by previously published times of minima and updated by photometric observations carried out at Mythodea Observatory (Astrophysics Laboratory, Department of Physics, University of Patras). A two-companion model is attributed to the over-contact (W UMa type) binary system TZ Boo according to a LightTime Effect (LITE), while in the case of the post-common envelope binary NSVS 14256825 a Jovian type circumbinary companion is the most plausible explanation of the apparent period variation.

Key words: binaries: eclipsing - binaries (including multiple): close - planetary systems

1. Introduction

The apparent cyclical period variation of an eclipsing binary can provide an indirect evidence of a circumbinary companion as a result of gravitational attraction (Light-Time Effect, LITE; Irwin, 1952) or might instead be due to stellar magnetic activity (Applegate, 1992).

2. O-C diagram analysis

We implement a series of optimization techniques which consist of a first solution determination using Nelder-Mead Downhill Simplex and Levenberg-Marquardt algorithms, while the globality of solution (lowest χ^{2}) is sought by a Heuristic Scanning scheme which implements the two aforementioned methods with a parameter kicking or by a Genetic Algorithm (PIKAIA; Charbonneau, 1995).

As a last step of scanning the topology of χ^{2} parameter space and in order to acquire more realistic parameter value errors we implement a MetropolisHastings MCMC algorithm.

Table 1. Orbital parameters of tertiary companions for TZ Boo and NSVS 14256825 according to M-H MCMC.

Parameter	TZ Boo	NSVS 14256825
e_{3}	0.81 ± 0.02	0.03 ± 0.02
A (days)	0.025 ± 0.001	0.0005 ± 0.0010
ω_{3} (rad)	5.92 ± 0.01	2.92 ± 0.01
$q m t=d P / 2 d E$ (days cycle ${ }^{-1}$)	$-0.12 \pm 0.01 \times 10^{-10}$	\cdots
P_{3} (years)	35.81 ± 0.11	10.38 ± 0.12
T_{3} (HJD)	2448510.51 ± 0.01	2456358.95 ± 0.01
$P_{\text {bin }}$ (days)	$0.29715974 \pm 2.6 \times 10^{-8}$	$0.11037416 \pm 2.1 \times 10^{-8}$
T_{0} (HJD)	2452500.16 ± 0.01	245274.21 ± 0.01
M_{3} (coplanar)	$0.84 M_{\odot}$	$16 M_{\text {Jup }}$

Figure 1. O-C diagrams with best fitting curve for tertiary components of TZ Boo and NSVS 14256825.

In case of TZ Boo the O-C residuals reveal a secondary companion, however, magnetic activity cannot be ruled out as a possible contribution since the energy threshold of Applegate mechanism is relatively small $\Delta E / E_{\text {sec }}=0.12$ (Applegate, 1992) and $\Delta E / E_{\text {sec }}=0.1$ (Tian et al., 2009).

References

Applegate, J. H., A Mechanism for Orbital Period Modulation in Close Binaries. 1992, Astrophysical Journal, 385, 621, DOI: 10.1086/170967
Charbonneau, P., Genetic Algorithms in Astronomy and Astrophysics. 1995, Astrophysical Journal Supplement, 101, 309, DOI: 10.1086/192242
Irwin, J. B., The Determination of a Light-Time Orbit. 1952, Astrophysical Journal, 116, 211, DOI: 10.1086/145604

Tian, Y. P., Xiang, F. Y., \& Tao, X., Period investigation of two RS CVntype binary stars: RU Cancri and AW Herculis. 2009, Astrophysics and Space Science, 319, 119, DOI: 10.1007/s10509-008-9975-4

