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How far can we trust published TESS periods?
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Abstract. Possible inaccuracies in the determination of periods from short-
term time series caused by disregarding light curve instrumental effects are
documented. As an example, we present a Lomb-Scargle period analysis of a
simulated TESS -like light curve.

Key words: stars: variable – period analysis – TESS data

1. Introduction

TESS data are now one of the most popular sources of information about vari-
able stars, including their periods. However, TESS data suffer from two short-
comings that significantly corrupt the results of period analyses with standard
tools. The data are usually strongly affected by instrumental trends of various
kinds, and secondly, they are obtained in non-standard short time intervals (for
example 27 days for TESS ) that are often comparable to the periods them-
selves. The majority of such days-long periods and their uncertainties are mere
artifacts of the method used to determine them. At best, they are just estimates.

The most commonly used method is the so-called Lomb-Scargle method
(Press & Rybicki, 1989) or its sophisticated versions, enabling to take into ac-
count the weights of individual measurements and to estimate the amplitudes
of the found frequency peaks (Mikulášek et al., 2015). All of these methods give
identical results because they are based on fitting the observation series with a
first-order harmonic polynomial model using the least squares method.

The following demonstration based on a simulated periodic light curve re-
sembling that of a rotating chemically peculiar stars with a period of 2.7 days
(see Fig. 1) shows possible pitfalls of standard processing of these types of data.
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Simulated TESS light curve with scatter  = 0.7 mmag, P = 2.7 d

Figure 1. Simulated light curve without trends represented by 17 925 points.

2. Simulation of “TESS -like” data of a hypothetical CP
star

Chemically peculiar (CP) stars are rotating stars with extensive photometric
spots on their surface. The observed light changes of such objects are strictly
periodic and can be described by a low-degree harmonic polynomial. For our
example, we chose a two-wave curve represented by a third-degree harmonic
polynomial, described by five parameters (Fig. 2) of the phase function, ϑ (for
details see Mikulášek et al., 2008), F (ϑ,a), P = 2.7 d, with a maximum at phase
ϕ = 0. We have

ϑ =
t−M0

P
= E + ϕ, M0 = 1450 + P∆ϕ, E = IP(ϑ), ϕ = FP(ϑ), (1)

with

F (ϑ,a) = a1 cos(2πϑ) + a2 cos(4πϑ) + a3 cos(6πϑ) +

+a4 [2 sin(2πϑ) − sin(4πϑ)] + a5 [3 sin(2πϑ) + 6 sin(4πϑ) − 5 sin(6πϑ)], (2)

where t is the TESS BJD time of the observation (t = BJD − 2 457 000), M0 is
the TESS BJD time of the initial light curve maximum, ∆ϕ is an optional initial
phase parameter allowing for a horizontal shift of the simulated light curve, E is
the integer epoch and ϕ the phase. IP and FP indicate the integer and fractional
part of a variable. We also have a1 = −5, a2 = −4.5, a3 = −0.5, a4 = −0.67,
and a5 = −0.17 mmag. The simulated TESS light curve is represented by 17 925
points obtained at a cadence of 2 minutes (see Fig. 1). Upon demand the curve
can include trends and Gaussian scatter.

3. The role of the initial phase ∆ϕ

The amplitude frequency spectrum of the simulated light curve shows, as ex-
pected, three dominant, equidistant peaks with central frequencies f1, f2, and
f3 (Fig. 2), each carrying the period information: 1/f1 = 2/f2 = 3/f3 = P .
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Figure 2. The amplitude periodogram of the simulated light curve without scatter

and trends for ∆ϕ = 0.

However, this is fulfilled only approximately. If we limit ourselves to two peaks,
then for ∆ϕ = 0 we get P1 = 1/f1 = 2.7070(10) d, and P2 = 2/f2 = 2.6977(8)
d. The deviation from the baseline period P = 2.7 d thus is evident and far
exceeds the limits given by the uncertainty of the positioning of the frequency
peaks. Why such difference? Other simple period finders give the same results.

The discrepancy would only disappear if the light curves were purely sinu-
soidal without higher harmonics. If the light curves deviate from this ideal, the
so-called ‘periods’ determined are not real periods, but only parameters found
by regression with an inadequate model that differs (sometimes flagrantly) from
the real frequency pattern. Fig. 3 shows that the values of those ‘periods’ found
in the periodograms are a complex periodic function of the initial phase ∆ϕ,
whose amplitude is unacceptable in comparison with the formal determination
of the uncertainty.

4. Influence of light curve trends

Both TESS and Kepler observations are strongly affected by aperiodic instru-
mental trends (Hümmerich et al., 2018; Mikulášek et al., 2019). Neglecting these
has a devastating effect on period analysis (Fig. 4). Appropriate detrending of
the observed light curves is highly desirable if we want to fully realize the ben-
efits of the unprecedented accuracy of satellite photometry.

5. Modelling of light curves with trends

When applying the Lomb-Scargle method, we have to subtract from each data
point the mean value of the data set. Subsequently, the data are fitted by the
simplest possible model for a periodic light curve, i.e. a linear combination of a
pair of harmonic functions F = a1 cos(2πf) + a2 sin(2πf), where the amplitude
A =

√
a2

1 + a2
2 is a function of the frequency, f , and plotted on the A(f)-f
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Figure 3. ∆P1 = P1−P (blue diamonds) and ∆P2 = P2−P (red triangles) differences

as a function of the light curve shift ∆ϕ.
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Figure 4. The comparison of ∆P1 (blue diamonds) and ∆P2 (red triangles) differences

and true model ones (pink squares) for a non-detrended light curve as a function of

the LC shift ∆ϕ.

periodogram. The extrema of the plotted function are then searched for and
interpreted. Uncertainties of the frequencies determined by least-squares tools
are generally defective (most often they are underestimated) simply because the
conditions for applying the least squares method are not fulfilled.1

It is apparent from the foregoing examples that the use of conventional low-
parametric models is not sufficient for the description of high-precision real light

1Residuals do not have a normal distribution, consecutive residuals are not independent, etc.
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curves provided by modern instruments, in particular satellites. It is, therefore,
essential to use more advanced models to simultaneously fit a phase curve with a
harmonic polynomial of at least third degree, while modeling trends by dividing
the light curve into segments and describing each with a polynomial of the ap-
propriate degree (Mikulášek et al., 2019; Hümmerich et al., 2018). Phase curves
and trend models should be tailored to the actually observed light curves. The
models should be functions of the parameters of the ephemeris of stellar period-
icity, especially the reference time of the basic extremum, the mean period (or
periods) and their time derivatives (Mikulášek, 2015, 2016).

Modern tools such as a chi-square approach, robust regression, bootstrap-
ping, etc., can be used to find parameters (including period/periods) and their
uncertainties. In Fig. 4 results of such a rigorous procedure are compared with
the results obtained by standard trivial period analysis procedures. The com-
parison speaks for itself and no further comments are needed.

6. Conclusions

– Short-term observational series corrupted by instrumental trends are not the
easiest observational material for accurate determination of periods.

– Lomb-Scargle and its derivatives are sources of serious errors both in the
determination of periods and their uncertainties.

– In the period analysis of TESS data, the differences between the obtained
and the real periods can be so huge that we are not able to predict the
correct phase at a particular moment in time that differs more than a few
months from the actual time of observation.

A rigorous solution to the problem is to move to realistic models of light curves,
including a true description of phase curve/curves as well as instrumental trends.
Only then will we fully use the information potential of short-term sets of ob-
servational data.
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