$\overline{E\,P8}$ Modelling of several long-periodic magnetic CP-stars: HD2453, HD12288, HD200311

Yu.V. Glagolevskij¹ and E. Gerth²

¹ Special Astrophysical Observatory, Nizhnij Arkhyz, Karachaevo-Cherkesia, 369167 Russia

² D-14471 Potsdam, Gontardstr. 130, Germany

Making use of observational data published as phase curves of the effective magnetic field strength $B_e(P)$ and the surface field $B_s(P)$, the magnetic models of three stars with long rotational periods are calculated by the method of the *Magnetic Charge Distribution*. The structure of the magnetic field of these stars can be described well by the model of a central dipole, whereby a decentered dipole needs not be accounted for. The stars with periods P, obliqueness β of the magnetic dipole to the rotation axis, inclination angle i, and absolute field strengths B_p and B_s at the magnetic poles are:

Star	P[d]	β	i	$B_p[G]$	$B_s[G]$
HD 2453	521	80°	14°	6560	3750
HD 12288	34.9	76°	24°	13430	8000
HD 200311	52.01	88°	25°	14550	8500

The model parameters for the construction of the magnetic structure are the *virtual magnetic charges*, which are derived by fitting the calculated magnetic phase curves to the observed ones. Two of these stars, HD12288 and HD200311, show also considerable photometric variations in phase with rotation.

8 E: Magnetic fields