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Abstract

It is shown that the notion of fundamental elements can be extended to any, i.e. not necessarily homaloidal, web of

rational surfaces in a three-dimensional projective space. A Cremonian space–time can then be viewed as an emergent

phenomenon when the condition of ‘‘homaloidity’’ of the corresponding web is satisfied. The point is illustrated by a

couple of particular types of ‘‘almost-homaloidal’’ webs of quadratic surfaces. In the first case, the quadrics have a line

and two distinct points in common and the corresponding pseudo-Cremonian manifold is endowed with just two spatial

dimensions. In the second case, the quadrics share six distinct points, no three of them collinear, that lie in quadruples in

three different planes, and the corresponding pseudo-Cremonian configuration features three time dimensions. In both

the cases, the limiting process of the emergence of generic Cremonian space–times is explicitly demonstrated.

� 2004 Elsevier Ltd. All rights reserved.
Although the theory of Cremonian space–time, first introduced in [1], is relatively new, it has already proven to be

remarkably fertile and attracted attention of both the lay public [2] and specialists [3] alike. The concept not only offers

us a feasible explanation for why our Universe is, at the macroscopic scale, endowed with three spatial and one time

dimensions [1,4–7], but also indicates unsuspected intricacies of a coupling between the two [6]. Moreover, it gives us

important qualitative hints as for a possible underlying algebraic geometrical structure of a large variety of non-or-

dinary forms of psychological time (and space) [6,8]. These fascinating properties alone are enough to realize that the

theory deserves further serious exploration.

One of the most natural and fruitful ways of getting a deeper insight into a(ny) theory is to relax one (or several)

assumptions that the theory is based on and see what structural and conceptual changes such a step involves. In order to

pursue this strategy in our case one has to recall the underlying geometrical principle behind our concept of Cremonian

space–time: the existence of a homaloidal web of (quadric) surfaces in a three-dimensional projective space, P3 [1,4,5].
An aggregate of surfaces (of any order, not necessarily quadratic) in P3, is homaloidal [1,9]: if (a) it is linear and of

freedom three (i.e. contains a triple infinity of surfaces), (b) all its surfaces are rational, and (c) any three distinct

members of the set have only one free (variable) intersection. The generalized theory outlined in what follows is based

on abandoning the last assumption, i.e. on allowing any three distinct surfaces of the web to have two (or more) points

in common.

Of the couple of different types of homaloidal web of quadrics we have so far dealt with we shall first consider that

whose corresponding Cremonian space–time was found to mimic best the basic observed macroscopic properties of the

Universe, viz. a web whose base configuration comprises a (straight-)line and three distinct, non-collinear points, none

incident with the line in question [1,6]. So, in this case, any web of quadrics that features a base line and where the

number of isolated base points falls short of three may serve our purpose.
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We shall, naturally, focus on the case where there are just two base points as this case represents, obviously, the

smallest possible deviation from the ‘‘homaloidity’’ condition. In order to facilitate our reasoning, we shall choose a

system of homogeneous coordinates z
^
i, i ¼ 1; 2; 3; 4, in which the equation of base line, cL, reads
cL : z
^
1 ¼ 0 ¼ z

^
2 ð1Þ
and the two isolated base points, bB1 and bB2, coincide, respectively, with the vertices V1 and V2 of the coordinate tet-
rahedron, i.e.
bB1 : . z
^

i ¼ ð1; 0; 0; 0Þ; ð2Þ

bB2 : . z
^

i ¼ ð0; 1; 0; 0Þ; ð3Þ
where . is, in what follows, a non-zero proportionality factor. Now, employing the equation of a generic quadric, D, of

P3,
D �
X4
i;j¼1

dij z
^

i z
^

j

¼ d11 z
^2

1 þ d22 z
^2

2 þ d33 z
^2

3 þ d44 z
^2

4 þ 2d12 z
^
1 z
^
2 þ 2d13 z

^
1 z
^
3 þ 2d14 z

^
1 z
^
4 þ 2d23 z

^
2 z
^
3 þ 2d24 z

^
2 z
^
4 þ 2d34 z

^
3 z
^
4

¼ 0; ð4Þ
we find that the system of quadrics that contain cL and pass through bB1 and bB2 is given by
d12 z
^
1 z
^
2 þ d13 z

^
1 z
^
3 þ d14 z

^
1 z
^
4 þ d23 z

^
2 z
^
3 þ d24 z

^
2 z
^
4 ¼ 0; ð5Þ
where each d’s may acquire any real value. This aggregate is, however, not a web for it effectively depends on four,

instead of three, parameters. In order to get a web from it, a linear constraint has to be imposed on the parameters d’s.

As d12 6¼ 0––otherwise the aggregate would contain another base line (the z
^
3 ¼ 0 ¼ z

^
4 one)––this constraint can be

written, without any loss of generality, in the form
d12 ¼ j1d13 þ j2d23 þ j3d14 þ j4d24; ð6Þ
where ji, i ¼ 1; 2; 3; 4, are regarded as fixed constants. After substituting the last equation into Eq. (5), we get the web

desired
W|ð#Þ ¼
X4
i¼1

#iD
|
i � #1 z

^
1ð z

^
3 þ j1 z

^
2Þ þ #2 z

^
2ð z

^
3 þ j2 z

^
1Þ þ #3 z

^
1ð z

^
4 þ j3 z

^
2Þ þ #4 z

^
2ð z

^
4 þ j4 z

^
1Þ ¼ 0; ð7Þ
where we simplified the notation by putting d13 � #1, d23 � #2, d14 � #3, and d24 � #4.

At this point we recall the definition of a Cremonian space–time as a configuration composed of the totality of

fundamental elements associated with a homaloidal web [1,4–7]. A fundamental element of a given homaloidal web is

any algebraic geometrical object (a curve, or a surface) whose only intersections with a member of the web are the base

elements of the latter [9]. In the case of quadrics, the fundamental elements are of two distinct kinds, namely lines and

conics, and form pencils, i.e. linear, singly-parametrical aggregates/systems. A pencil of lines is taken to generate/

represent a macroscopic dimension of space, while that of conics––time. From its definition it readily follows that the

concept of a fundamental element, and so that of a Cremonian space–time, is not tied solely to homaloidal webs, but it

can be extended perfectly to any web whatsoever! A crucial property of fundamental elements is that they are located on

the Jacobian surface of the web [9], i.e. on the surface formed by the totality of vertices of the cones contained in the

web; or, what amounts to the same, the totality of singular points of degenerate/composite quadrics in the web.

Our forthcoming task is thus to find the form of the Jacobian surface, J, for the web given by Eq. (7). From the

above-given properties it follows that given a generic web of quadrics,
Wð#Þ ¼
X4
i¼1

#iDi ¼ 0; ð8Þ
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its J is the locus of points satisfying the following Eq. (9)
J ¼ det

@D1=@ z
^
1 @D2=@ z

^
1 @D3=@ z

^
1 @D4=@ z

^
1

@D1=@ z
^
2 @D2=@ z

^
2 @D3=@ z

^
2 @D4=@ z

^
2

@D1=@ z
^
3 @D2=@ z

^
3 @D3=@ z

^
3 @D4=@ z

^
3

@D1=@ z
^
4 @D2=@ z

^
4 @D3=@ z

^
4 @D4=@ z

^
4

0
BB@

1
CCA ¼ 0; ð9Þ
which when combined with Eq. (7) yields
J| ¼ 2 z
^
1 z
^
2D

| ¼ 0; ð10Þ
where
D
| � z

^
4ðj1 z

^
2 � j2 z

^
1Þ � z

^
3ðj3 z

^
2 � j4 z

^
1Þ: ð11Þ
It is a quite straightforward task for the reader to verify that the fundamental elements of web (7) are, in a general

case, located only in the planes z
^
2 and z

^
1, in both the cases these elements are lines forming pencils centered,

respectively, at bB1, viz.
fL1ð#Þ : z
^
2 ¼ 0 ¼ #1 z

^
3 þ #3 z

^
4; ð12Þ
and bB2, viz.
fL2ð#Þ : z
^
1 ¼ 0 ¼ #2 z

^
3 þ #4 z

^
4; ð13Þ
for a line meets a quadric in two (not necessarily distinct and/or real) points and these are in our cases furnished,

respectively, by bB1 and bB2 and a point of cL. The quadric D
| ¼ 0 contains, in general, only one further fundamental

element apart from a couple of lines shared with fL1ð#Þ and fL2ð#Þ namely the line joining the points bB1 and bB2. Yet,

this quadric is the most interesting piece of J| because when it becomes composite (singular), the web W| becomes

homaloidal and the quadric itself exhibits two different, singly-infinite aggregates of fundamentals.

In order to see that explicitly, one recalls [1,9] that a quadric D, Eq. (4), is composite iff
det

d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44

0
BB@

1
CCA ¼ 0 ð14Þ
and, for Eq. (11), this equation reduces to
j1j4 � j2j3 ¼ 0: ð15Þ
To find the form of this composite quadric, D
|
	, we may assume, without any substantial loss of generality, that j1 is

non-zero, rewrite Eq. (15) as
j4 ¼
j2j3

j1

ð16Þ
and insert the latter into Eq. (11) to arrive at
D
|
	 ¼ 1

j1

ðj1 z
^
2 � j2 z

^
1Þðj1 z

^
4 � j3 z

^
3Þ; ð17Þ
that is, D
|
	 consists of a pair of planes, j1 z

^
2 � j2 z

^
1 ¼ 0 and j1 z

^
4 � j3 z

^
3 ¼ 0. As Eq. (7) acquires under Eq. (16) the

form
W|
	ð#Þ ¼ #1 z

^
1ð z

^
3 þ j1 z

^
2Þ þ #2 z

^
2ð z

^
3 þ j2 z

^
1Þ þ #3 z

^
1ð z

^
4 þ j3 z

^
2Þ þ #4 z

^
2 z

^
4

�
þ j2j3

j1

z
^
1

�
¼ 0; ð18Þ
it is easy to spot that this ‘‘constrained’’ web contains, indeed, a third base point, viz.
bB	
3 : .zi

^ ¼ ðj1; j2;�j1j2;�j2j3Þ; ð19Þ
and is thus homaloidal [1,6,9], featuring, in addition to fL1ð#Þ and fL2ð#Þ, one more pencil of fundamental lines, viz.
fL	
3 ð#Þ : j1 z

^
2 � j2 z

^
1 ¼ 0 ¼ j1

j2

#1

�
þ #2

�
ð z^3 þ j1 z

^
2Þ þ

j1

j2

#3

�
þ #4

�
ð z^4 þ j3 z

^
2Þ; ð20Þ
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and a pencil of fundamental conics, viz.
eQ	ð#Þ : j1 z
^
4 � j3 z

^
3 ¼ 0 ¼ #1

�
þ j3

j1

#3

�
z
^
1ð z

^
3 þ j1 z

^
2Þ þ #2

�
þ j3

j1

#4

�
z
^
2ð z

^
3 þ j2 z

^
1Þ; ð21Þ
the two aggregates being located, as expected, in the two sheets of D
|
	. Our findings can be rephrased as follows. The

‘‘pseudo-’’, or ‘‘proto-’’ Cremonian configuration associated with a generic W| consists of two space dimensions

(fL1ð#Þ and fL2ð#ÞÞ and transforms into a fully-developed ‘‘classical’’ Cremonian space–time [1,3,6], endowed with an

additional space dimension ðfL	
3 ð#ÞÞ and time ðeQ	ð#ÞÞ, whenever the web becomes homaloidal. This phenomenon can

be given another nice geometrical picture. We may regard ji’s as homogenous coordinates of a variable point in an

abstract three-dimensional projective space. Eq. (15) (or, equivalently, Eq. (16)) then defines a quadric surface in this

space and the ‘‘homaloidity’’ condition simply answers to the fact that the point happens to fall on this quadric.

In order to get a deeper insight into the nature of this ‘‘emergence phenomenon’’, we shall consider a web of quadrics

through the following six distinct points
bB1 : . z
^
i ¼ ð1; 0; 0; 0Þ; bB4 : . z

^
i ¼ ðj; 0; 0; 1Þ;bB2 : . z

^
i ¼ ð0; 1; 0; 0Þ; bB5 : . z

^
i ¼ ð0; j; 0; 1Þ;bB3 : . z

^
i ¼ ð0; 0; 1; 0Þ; bB6 : . z

^
i ¼ ð0; 0; j; 1Þ;

ð22Þ
where j is a variable real parameter. These points are, obviously, all real, lying in quadruples in three different planes

and no three on the same line. The web they define is of the form
W€ð#Þ ¼ #1 z
^
2 z
^
3 þ #2 z

^
1 z
^
3 þ #3 z

^
1 z
^
2 þ #4 z

^
4ð z

^
1 þ z

^
2 þ z

^
3 � j z

^
4Þ ¼ 0 ð23Þ
and its Jacobian reads
J€ ¼ 2 z
^
1 z
^
2 z
^
3ð z

^
1 þ z

^
2 þ z

^
3 � 2j z

^
4Þ ¼ 0: ð24Þ
Although the Jacobian features four distinct planes, in a general case, j 6¼ 0, only three of them carry sets of

fundamental elements. These are the planes z
^
1 ¼ 0, z

^
2 ¼ 0 and z

^
3 ¼ 0, and the corresponding fundamental elements

are conics in the following pencils:
eQ1ð#Þ : z
^
1 ¼ 0 ¼ #1 z

^
2 z
^
3 þ #4 z

^
4ð z

^
2 þ z

^
3 � j z

^
4Þ ð25Þ

eQ2ð#Þ : z
^
2 ¼ 0 ¼ #2 z

^
1 z
^
3 þ #4 z

^
4ð z

^
1 þ z

^
3 � j z

^
4Þ ð26Þ
and
eQ3ð#Þ : z
^
3 ¼ 0 ¼ #3 z

^
1 z
^
2 þ #4 z

^
4ð z

^
1 þ z

^
4 � j z

^
4Þ ð27Þ
respectively. The conics (of a triply-infinite system),
eQHð#Þ : z^1 þ z
^
2 þ z

^
3 � 2j z

^
4 ¼ 0 ¼ #1 z

^
2 z
^
3 þ #2 z

^
1 z
^
3 þ #3 z

^
1 z
^
2 þ j#4 z

^2

4; ð28Þ
cut out from W€ by the remaining Jacobian plane, z
^
1 þ z

^
2 þ z

^
3 � 2j z

^
4 ¼ 0, cannot be fundamental elements as they

do not contain any of the base points (see Eq. (22)). W€ becomes homaloidal for j ! 0,
W€
	ð#Þ � W€

j!0ð#Þ ¼ #1 z
^
2 z
^
3 þ #2 z

^
1 z
^
3 þ #3 z

^
1 z
^
2 þ #4 z

^
4ð z

^
1 þ z

^
2 þ z

^
3Þ ¼ 0; ð29Þ
in which case, in addition to the three pencils of fundamental conics
eQ	
a ð#Þ � eQj!0

a ð#Þ : z^a ¼ 0 ¼ #a z
^

b z
^

c þ #4 z
^
4ð z

^
b þ z

^
cÞ; a 6¼ b 6¼ c; a; b; c ¼ 1; 2; 3; ð30Þ
we also have a pencil of fundamental lines, namely
fL	ð#Þ � eQH

j!0ð#Þ : z
^
1 þ z

^
2 þ z

^
3 ¼ 0 ¼ #1 z

^
2 z
^
3 þ #2 z

^
1 z
^
3 þ #3 z

^
1 z
^
2; ð31Þ
these lines share point V4 ð. z
^

i ¼ ð0; 0; 0; 1ÞÞ, the common merger of three of the base points, viz. bB4, bB5 and bB6, and the

point at which all the quadrics of W€
	 touch the plane z

^
1 þ z

^
2 þ z

^
3 ¼ 0 [5,9]. Although this emerging Cremonian

space–time features three time dimensions ðeQ	
a ð#ÞÞ and a single spatial one ðfL	ð#ÞÞ, and is thus an inverse to that

offered to our senses, the case itself serves as an important illustration of the intricacy of the coupling between the

extrinsic structure of time (i.e. the type of a pencil of conics) and the number of spatial coordinates. For the three time
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dimensions of our pseudo-Cremonian manifold, eQað#Þ, represent each a generic pencil of conics, i.e. a pencil endowed

with four distinct base points, while those of the limiting Cremonian sibling, ðeQ	
a ð#ÞÞ, are each a pencil with three

distinct base points only, namely eBb, eBc and V4, the last one being of multiplicity two (see Figs. 1(a) and (b) of Ref. [6]).
One thus sees that the ‘‘birth’’ of a space dimension, fL	ð#Þ, entails serious structural changes in all the three time

coordinates. This feature dovetails nicely with what we found for strictly homaloidal transitions [6], characterized,

however, by a drop in the number of spatial dimensions.

From this reasoning it is obvious that a Cremonian space–time is a rather exceptional structure, whose emergence is

of a fairly complex nature. Following the strategy employed above, it should represent no difficulty for the interested

reader to examine other potential transitions, in particular those where pseudo-Cremonian configurations feature only a

finite (or even zero) number of elements. Insights might also be obtained from an analysis of (pseudo-)Cremonian

space–times associated with webs of cubic and/or higher order surfaces. All this implies a wealth of additional possi-

bilities to those outlined in [7] regarding ’’Cremonian’’ scenarios of how our Universe might have come into being.

Here, we are confronted with a fascinating possibility that the Universe may have spent a substantial fraction of its life-

time in some pseudo-Cremonian regime and acquired its current generic ‘‘quadro-cubic’’ Cremonian form [1,6,7] only

‘‘relatively recently’’. This intriguing scenario will be examined in more detail in a separate paper.

As a final note, it is worth stressing that all the foregoing pieces of reasoning have been based on an implicit

assumption that the ground field of the background projective setting of our model is identical with that of the real

numbers. Yet, all the basic emergence properties can easily be shown to be valid for an arbitrary ground field, including,

for example, the well-known non-Archimedean field of p-adic numbers, or finite (Galois) fields. In these cases, however,

our (pseudo-)Cremonian space–time loses not only its ordering (the former case), but even its continuity and differ-

entiability (the latter one). And these are obviously aspects where our theory bears again a striking formal resemblance,

as pointed out on several occasions earlier [1,4,5], to the so-called Cantorian ðeð1ÞÞ space–time. This notable and

intriguing concept was first introduced by El Naschie more than a decade ago [10], and has been subsequently elab-

orated in numerous papers by the author himself (see Ref. [11] for a recent review) as well as by many others (see, e.g.,

Refs. [12–14] for most interesting generalizations/applications). The last-mentioned paper, [14], deserves a particular

attention as it represents a bold attempt to generalize this Cantorian approach employing algebras/number systems

having zero divisors, the latter being the issue of renewed interest in pure mathematics [15–17].
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