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Abstract

The issue of dimensionality and signature of the observed universe is analysed. Neither of the two properties follows from first
principles of physics, save for a remarkably fruitful Cantorian fractal spacetime approach pursued by El Naschie, Nottale and Ord. In
the present paper, the author’s theory of pencil-generated spacetime(s) is invoked to provide a clue. This theory identifies spatial
coordinates with pencils of lines and the time dimension with a specific pencil of conics. Already its primitive form, where all pencils lie
in one and the same projective plane, implies an intricate connection between the observed multiplicity of spatial coordinates and the
(very) existence of the arrow of time. A qualitatively new insight into the matter is acquired, if these pencils are not constrained to be
coplanar and are identified with the pencils of fundamental elements of a Cremona transformation in a projective space. The correct
dimensionality of space (3) and time (1) is found to be uniquely tied to the so-called quadro-cubic Cremona transformations — the
simplest non-trivial, non-symmetrical Cremona transformations in a projective space of three dimensions. Moreover, these transfor-
mations also uniquely specify the type of a pencil of fundamental conics, i.e. the global structure of the time dimension. Some physical
and psychological implications of these findings are mentioned, and a relationship with the Cantorian model is briefly dis-
cussed. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Our universe is endowed with a large number of remarkable features of which its dimensionality can,
undoubtedly, be ranked among those of the top importance. It has been confirmed in innumerable ways
that, at a macroscopic level, the physical world has four dimensions. Not all the four are, however,
equivalent: three of them, we call spatial, are found to stand on a different footing than the remaining one,
the time dimension. Time and space are inseparable, forming a continuum referred to as spacetime. Yet,
they do considerably differ from each other, the difference being much more pronounced at the perceptual
than physical level. Physics, in its current state-of-the-art form, is not only clueless as for the total mul-
tiplicity of the dimensions, but it also lacks any reasonable explanation why there should be two distinct
kinds of them, and combined in a puzzling 3:1 ratio at that. In other words, neither the dimensionalisty nor
the signature of the observed universe follows from first principles of physics: these are free parameters to
be fixed observationally.

Yet, there have been numerous speculations to explain these two features using heuristic methods.
Among physically based arguments, it is worth mentioning the well-known Weyl’s observation that the
Maxwell equations are tied uniquely to the 3 + 1 spacetime, and/or intriguing Ehrenfest’s reasoning that
stable atoms are only possible in 3 + 1 dimensions [1]. Another class of heuristic inquiries is more
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mathematically-oriented. Here we can, for example, rank the fact that the Weyl tensor, which in Einstein’s
gravitation theory carries information about that part of the spacetime curvature which is not locally
determined by the energy-momentum, vanishes in less than four dimensions [2], or a topological reason
that n # 4 dimensional manifolds always feature a unique differentiable structure, while those with n = 4 do
not [3]. Finally, there is a large and still growing group of scholars who favour the so-called anthropic
principle for a rational explanation of the macro-dimensionality of spacetime [4].

A principally new and mathematically rigorous method to tackle this question was adopted by Ord [5],
Nottale [6] and most actively pursued by El Naschie [7-13]. According to the last-mentioned author, the
apparent dimensionality of our macro-spacetime is simply equal to a finite expectation value of an oth-
erwise infinite-dimensional transfinite fractal set called the Cantorian space, &> [7-13]. What strikes most
about this approach is the fact that it also provides a couple of intriguing clues about the possible origin of
the observed signature of spacetime [7,9,10,12]. The first argument is based on the finding that, under a
special assumption, the effective topological dimension of &), (n) = 3, differs from its averaged Hausdorff
dimension, (d) = 4. The author then argues that the distinction between space and time may simply reflect
the fact that our direct physical access is limited to (n) = 3 dimensions (space), so that the remaining di-
mension (time), (d) — (n) = 1, can be only felt, perceived mentally [7]. The other case is connected with a
space of hyperspheres, % [9,10]. This space can be viewed as an infinite collection of unit hyperspheres
with any conceivable dimension. As the volume of an n-dimensional unit sphere vanishes with n tending to
infinity, % has, like £, a finite effective dimension which is equal to 4. Yet, its ‘volume’ appearance is
that of a classical three-dimensional sphere. This difference is seen as another justification of the observed
factorization of 4D into (3 + 1)D [9,10].

Apart from this intriguing and fruitful number-probabilistic approach, there also exists what can be
termed an algebro-geometrical elucidation of the origin of the observed macro-dimensionality/macro-sig-
nature of spacetime. The latter is based on our theory of pencil-generated spacetimes [14-23]. This ‘pencil’
theory was originally motivated by and aimed at a deeper insight into a puzzling discrepancy between
perceptional and physical aspects of time. Yet, we soon realized that it has also something to say to the
problem in question. Namely, we found out an intricate connection between the observed multiplicity of
spatial dimensions and the appearance of a non-trivial internal structure (‘arrow’) of time [14-16,20,21].
Mathematically, this is substantiated by the fact that we treat time and space as standing on topologically
different footings. As for their ‘outer’ appearance, both the types of dimensions are identical, being re-
garded as pencils, i.e. linear single-parametrical aggregates, of constituting elements. It is their ‘inner’
structure where the difference comes in: thus, the constituting element (‘point’) of a spatial dimension is a
line, whereas that of the time dimension is a proper conic [14-16,20,21]. It may come as a surprise to the
reader to find out that the theory which offers us such important hints on the macro-dimensionality/macro-
signature of spacetime requires nothing more than a projective plane, i.e. a projective space of two
dimensions for its operational framework. Hence, one may wonder what happens if one lifts the dimen-
sionality of this projective setting by 1, i.e. if one moves into a projective space of three dimensions, allowing
so different pencils to lie in different planes. It is the subject of the present paper to show that relaxing the
constraint of ‘coplanarity’ gives indeed our theory a sufficiently extended framework to substantially
broaden and deepen our understanding of the dimensionality and signature of the observed universe.

2. Pencil-spacetime(s) having as a background the projective plane
2.1. Projective plane and its basic properties

We shall start by giving an overview of the pencil concept of spacetime; although we shall try to make
this account as self-contained as possible, the reader wishing to go into more details is referred to consult
our papers [14-19,23].

As already mentioned, the corner-stone of the concept is a projective plane, P,. There are a number of
ways to define this remarkable manifold [24,25]. The oldest and perhaps conforming best to our intuition is
its view as the familiar Euclidean plane extended/augmented by a single line, called the ‘ideal’ line, or
the line ‘at infinity.” The addition of the ideal line closes the projective plane, making it non-orientable (i.e.
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one-sided like a famous Mobius band) and endowing it with many other features not exhibited by the
original Euclidean plane. Equivalently, the projective plane can be regarded as a set of all lines in the usual
three-dimensional Euclidean space, E3, which concur in (pass through) a point, i.e. as a star of lines. Each
line in the star, representing a point of P, is uniquely specified by its intersection with a unit sphere en-
closing the point of concurrence. Since this line pierces the sphere twice, the two points must be treated as
identical. So, we have another model of P, as a unit sphere in £; whose antipodal points have been
identified. Topologically speaking, the projective plane can be constructed by gluing together both pairs of
opposite edges of a rectangle, giving them a half-twist. Due to its closeness and non-orientability, the
projective plane cannot be embedded in Ej, i.e. presented there as a smooth surface without self-inter-
sections. Yet, it can be represented as a surface having self-intersections and/or singular points. A re-
markable class of such surfaces are the so-called Steiner surfaces [25,26]. Another interesting image of the
projective plane in Ej is the so-called Boy surface [25].

In order to increase familiarity with the concept and reveal further details of the structure of the pro-
jective plane, it is necessary to perform its coordinatization. To this end, we return to the star representation
of P, discussed above. Selecting in E5 the Cartesian coordinate system x, y, z in such a way that its origin
coincides with the vertex of the star, a line of the star is simply given by

ax+by+cz=0, (1)

where a, b and ¢ are constants of which at least one is non-zero. Clearly, the triple (a, b, ¢) specifies the line
uniquely, as does any proportional triple (¢a, gb, oc), ¢ # 0. Recalling that the lines of the star are in a one-
to-one correspondence with the points of P, we see that the latter may also be represented in the same way.
Thus, the projective plane contains as points all triples (¥;,%»,%;), | disallowing the (0,0,0) one, with
proportional triples representing the same point; because scaling is unimportant, the coordinates X,
i=1,2,3, are called homogeneous coordinates.

Now, a line #(¥) in the projective plane is defined as the locus (i.e. the totality) of points ¥; satisfying a
linear equation of the form

3
L) =D 0=+ b + % =0, (2)

i=1

where the coefficients {; are not all zero. Since two linear equations have the same locus if and only if their
coefficients are proportional, the ordered triple ({, {,,{3) can be taken as homogeneous coordinates of the
line #(x). This is not the result of coincidence for, in P, there is a perfect symmetry between points and
lines, the two sets being regarded as dual to each other. This duality concept is another important property
of the projective plane that finds no analogue in the ordinary Euclidean geometry. A quadratic equation

3
2%) = ) eyt
ij=1
_ o2 ) ) o v e o v
= c1X] + en¥; + ey + 2eXi X + 203X X3 + 2003%0X3 = 0, (3)

where the coefficients ¢;; = ¢;; are not all zero, defines a conic. The conic may be irreducible (proper), or
reducible (composite) accordingly as det(c;;) deviates from zero or not. As for the former, we distinguish
between real and imaginary (i.e. having an empty image), while the latter comprise a pair of (real or
conjugate complex, distinct or coincident) lines (see, e.g., [27]).

Both lines and conics can be found to form aggregates of different orders and with a various degree of
complexity. The simplest of them, viz. linear and singly infinite, are usually referred to as pencils. Thus, a
couple of distinct lines " (¥) and #® (%) define a pencil

! We change to this accented subscript notation in order to be compatible with the notation adopted in our previous papers [14-23].
Also, if not stated otherwise, the ground field of the projective plane/space will be assumed to be that of the real numbers.
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3 3
Zy®) =0 LVE) + @) =) Px+ 0, (P =0, (4)
i=1 i=1

with (9, ¥,) being any real couple except for (0,0), which obviously consists of all the lines passing through
the point shared by the two lines; the point in question is called a vertex of the pencil. Similarly, given two
different (not necessarily proper) conics 2" (¥) and 2 (%), we have a pencil

3 3
2,(%) = 91 20(%) + 0,27 (%) =9, Y clfxx + 0,y e = 0. (5)
ij=1 ij=1

The situation here is, however, much more complex than in the case of lines. For two distinct conics have
four points in common, some or all of which may be imaginary and/or coincident; hence, we find as many
as nine different kinds of pencils of conics in the real projective plane [16,27]. The four points of intersection
of two given conics which determine the pencil clearly belong to every conics in the pencil, and they are
usually called the base points. Evidently, there is just one conic of the pencil through any point ¥; = X; of the

plane other than a base point. For, as ¥ is not a base point, at least one of the numbers 21" (¥°), 2 (¥°) is
non-zero. Therefore, the equation 2V (¥°) + 92 (¥°) = 0 determines the parameter ¥ = 1, /1, and so the
conic, uniquely.

2.2. Pencil concepts of space and time

As the elements of any pencil are fully described in terms of a single parameter («), this kind of aggregate
can be regarded, on par with a line, as the simplest one-dimensional geometrical structure of the projective
plane. It should not, therefore, come as a surprise that we postulate both the spatial and temporal di-
mensions to be represented by pencils [14-16]. That is, at the very abstract level there is no distinction
between time and space in our approach. The difference between the two concepts appears as soon as the
character of the elements of the corresponding pencils is concerned; for a spatial coordinate is taken to be
generated by a pencil of lines, while the temporal dimension is induced by a pencil of conics. In other words,
a ‘point’ of space is represented by a projective line, whereas a ‘point’ of time (an ‘event’) is represented by a
proper projective conic. Space, in our pencil view, is thus a simpler concept than time.

In general, any pencil of lines can serve as a spatial dimension and, similarly, any pencil of conics can
stand for the temporal coordinate. This original symmetry is broken after one fixes a particular ‘temporal’
pencil of conics and postulates that only those pencils of lines can generate spatial coordinates, whose
vertices lie on the composite conics of the conics’ pencil selected (such line-pencils will be referred to as
s-pencils). As there is only one kind of proper projective conic with a non-empty image, our temporal
dimension is still internally structureless. The final task, that is endowing time with its arrow-like structure,
is simply accomplished by ‘dehomogenizing’ the projective plane. This can be furnished, in particular, by
picking up one line (henceforth referred to as the d-line) and giving it a distinguished footing among the
other lines; stipulating, at the same time, that out of all potential spatial dimensions we can observe only
those represented by the s-pencils whose vertices fall on this line. It is namely here where the already-
mentioned intriguing connection between the appearance of time’s arrow and the number of the observed
spatial coordinates emerges [14-16,20,21].

2.3. Arrow of time and dimensionality of space

In order to see this feature explicitly, we shall consider the following pencil of conics:
25(%) = 01%1¥ + 2¥2 = 0 (6)

which, for many reasons [14,16-21], is our favourable time representative. This pencil features (see Fig. 1)
two distinct base points By : ¢x; = (0,1,0) and B, : ¢x; = (1,0,0), each of multiplicity 2, and a couple of
composite conics, viz. a double real line X; = 0 (i.e., B;B,) for ¥ = to00, and a pair of real lines ¥, = 0 (B;S)
and X, = 0 (B,S) that corresponds to ¥ = 0; the point S: ¢x; = (0,0, 1) being the meet of the two lines.
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Fig. 1. The structure of the temporal arrow (a) and the corresponding multiplicity of spatial coordinates (b) of a spacetime configuration
generated by a ‘regularly’ dehomogenized pencil of conics defined by Eq. (6). The symbols and notation are introduced in the text.

These degenerates separate the set of proper conics into two distinct families: —oo <9 < 0 and
0 <Y < 4o00.

Let us now dehomogenize the pencil by choosing the d-line (dashed in Fig. 1) in such a way that it
incorporates neither of the base points B, », nor the point S. It is obvious that the most general equation of a
line meeting such constraints reads

)vC] — mez — I’l)vC3 =0 (7)
if both m and n are non-zero (assumed, without any substantial loss of generality, to be positive). Inserting
this equation into Eq. (6) yields

P(x) =mx* +nx +19 =0, (8)

where we put x = X,/X3; this quadratic equation has the roots

—n+Vn? —49m
X+ = m . (9)

Now, as both m and n are fixed quantities, the value and character of the roots, that is, the intersection
properties of a conic of the pencil and the d-line, depend solely on the value of the parameter J. The proper
conics of (6) are thus seen to form, with respect to d-line, two distinct domains: the domain consisting of
conics having with this line two different real points in common (x. distinct and real; the ‘cutters’ — the
conics located in the shaded area in Fig. 1(a))

0 <9 <n?/dm (10)

as well as the domain featuring conics having with it no real intersections (x; distinct but imaginary; the
‘non-cutters’ — the curves occupying the dotted area in Fig. 1(a))

n?/4m < 9 < +oc; (11)

the two regions being separated from each other by the single proper conic having d-line for a tangent
(x4 = x_; the ‘toucher’ — the curve shown bold in Fig. 1(a))

9 =n’/4m. (12)

And this is really a very remarkable pattern because it reproduces strikingly well, at least at a qualitative
level, the observed arrow of time after we postulate [14-16] that the events of the past/future are represented
by the cutters/non-cutters, and that the toucher stands for the unique moment of the present.
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In addition to being a means that enables us, as we have just shown, to endow the temporal coordinate
with a non-trivial internal structure, the above-described dehomogenization of the projective plane also
induces a very interesting sort of non-equivalence among the potential spatial dimensions, i.e. among the s-
pencils. Clearly, in the case under discussion, any pencil of lines whose vertex falls on one of the lines B;S,
B,S or BB, is an s-pencil. So, there is an infinite number of them. Yet, only three of them, viz.

gwl(%):f1+wl()?1 —m)?z—n)?3):0, (13)

gﬁ,z(i‘) :)%2+WQ()?1 —m)%g —I’l)%3) :07 (14)
and

$w3()?) :)%3 +‘(U3(5€1 —m)sz—l’lJ\éj;) :O, (15)

where the parameters @;, i = 1,2, 3, run through all the real numbers and infinity, possess the property of
incorporating d-line. If we further suppose that only such line-pencils can generate the observable spatial
dimensions, we arrive at a nice elucidation of the correct macro-dimensionality of space. The situation is
illustrated in Fig. 1(b), where these pencils are represented by the ‘half-filled-up’ circles; we see, in par-
ticular, that two spatial coordinates (denoted by x' and x?) are borne by the ¥ = 0 degenerate, while the
remaining one (x*) is supported by the other, the ¥ = +-0co composite. As it can also be easily discerned from
Fig. 1, this unique relation ‘arrow of time « three-dimensionality of space’ holds only in the case if d-line is
not incident with any of the points S, B; and B,. With this restriction dropped, the arrow of time disap-
pears and space either loses one dimension or acquires infinitely many [16]; we enter the realm of singular/
degenerate spacetimes which, although quite bizarre and unusual, represent the observable aspects of
Nature, too! This fascinating topic lies, however, far outside the scope of the present paper and its in-depth
discussion can be found elsewhere [20,21,23].

Although the correct macro-dimensionality of space is found to follow rather naturally from our pencil-
formalism, it is not so with time: as the attentive reader may have noticed, the fact that there is just a single
temporal dimension is still a matter of postulation. And this is a serious shortcoming of the theory indeed.
Yet, there exists an easy way around. A crucial step to be made is to simply increase the dimensionality of
our projective setting by 1, i.e. to go into a projective space. This move will not only enable us to generalize
the pencil concept of spacetime in a fashion that obviates the problem mentioned, but it will also shift us
somewhat closer to the spirit of how a physicist tackles the problem. In particular, we shall find that a
special kind of birational transformations in the projective space, called Cremona transformations, may
even provide us with a much sought-after elementary connection between the physical description of
spacetime and the way we perceive it.

3. Pencil-spacetime(s) residing in the projective space
3.1. Rudiments of the projective space

As almost all of the concepts we have introduced in the projective plane, P, can straightforwardly be
extended to the projective space, P;, we shall pass over this part of the theory in a rather informative way.
Thus, with (0,0,0,0) prohibited, we define P; as the set of all quadruples (Z,%,,%,%), where the pro-
portional quadruples are identified. Slightly rephrased, Z,, « = 1,2, 3,4, can be regarded as the homoge-
neous coordinates of a point of P;. The most naive way of picturing the projective space is that of the usual
Euclidean space, E3, augmented by a special plane, called the ideal plane, or the plane at infinity (see, e.g.,
[28,29]). A plane, II(Z), is defined as the locus of the points Z, satisfying a linear equation

4
1) = an =111 + I1% + I13%; + I, = 0. (16)
a=1

This equation is determined by its coefficients I1,, which may clearly be taken as a quadruple of homo-
geneous coordinates of the plane. So, in a projective space, a point and a plane are dual concepts. A line is
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seen to be a self-dual concept, since it is both the join of two points or the intersection of two planes. A
point is incident with (or belongs to) a plane if its coordinates satisfy the equation of the plane, and it is
incident with a line when its coordinates simultaneously satisfy two equations defining the line. From these
two fundamental incidence relations, we get readily numerous incidence properties of planes and lines.
Thus a line either has a unique point in common with a plane, or it lies completely in it. Two distinct planes
share a unique line. Three distinct planes have either a single point, or a line in common. Two lines either lie
in a common plane, in which case they also have a unique common point, or they neither lie in a common
plane, nor possess a common point; in the latter case they are said to be skew.

Not only the points and the planes of P;, but also the lines can be represented by suitably chosen sets of
homogeneous coordinates. Let us consider a generic line p of P;. The line is uniquely defined by any two of
its points. Taking these as ) and 2%, we define the quantities

Py = 22 — 220, (17)
which are called the Pliicker homogeneous coordinates of the line p; the fundamental property of these line-
coordinates, as it is fairly easy to see, is that their ratios are independent of the choice of the two points on
p. There are altogether 16 quantities p,;, but since they are skew-symmetric (i.e., p,s = —pp,) their effective
number is reduced to 6. These six quantities are, however, not independent, for there are co® sets of ratios of
them, but only oo? lines in P;. The Pliicker coordinates of every line must therefore be connected by one and
the same identical relation, viz.

P12pss + pi3par + paprs = 0. (18)
Instead of determining a line by two of its points, it may be determined by two of its planes, say H,Sl) and
11, Putting

M = IO — 110112, (19)

then by duality of the previous argument, a set of quantities 7,5, not all zero and satisfying
12734 + T13T42 + MiaT3 = 0 (20)

also determine the line uniquely. There is thus a second, and equally justified, set of homogeneous coor-
dinates of the line. The two systems are, however, not independent, for obviously >

Po_pis_pa_Du_Po_Pn (21
T34 T4 T3 T2 T3 T4

Finally, let us find the condition when two lines p and ¢ intersect. If the ray coordinates of the lines are
given by their respective point pairs ), #2) and 2, 2/, then the lines are incident iff the four points are

coplanar, which amounts to

o1 o1 o1 v
Zézz 2%23 2%23 %2>
det| 4 2 & 4| o, (22)
5% % 4
A

Expanding this determinant and making use of Eq. (17), the condition of incidence reads

O, q) = p12gsa + P13qar + Pragas + pauqiz + poqiz + paqia = 0, (23)

2 In order to distinguish between the two kinds of Pliicker coordinates, the former (Eq. (17)) are usually called ray line-coordinates,
while the latter (Eq. (19)) are, as a rule, termed axial.
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which, in a dualized form, looks like

O(7,K) = MaK34 + T3Ke + TaKo3 + T4K1n + TyKi3 + T3k = 0. (24)

Incidentally, we observe that in a special case of p = ¢ Eqs. (23) and (24) reduce, respectively, into Egs. (18)
and (20), as expected.

Next, a surface of P is the totality of points which have two degrees of freedom, and it may be defined by
imposing a single analytical constraint on a generic point. If this constraint takes the form of a homoge-
neous quadratic equation

4
Z daﬁzméﬁ
o,f=1

+ dlléf + d225§ + d335§ + d44fi + 2d1y212, + 2d132123
+ 2d142124 + 2d035023 + 2dosZrZs + 2d343324 = 0, (25)

2(2)

the surface is called a quadric surface, or a quadric for short; it is clearly analogous to a conic of P, (see
Eq. (3)). A quadric is proper or degenerate according as det(d,s) deviates from zero or not; in the latter
case, there always exists a coordinate system in which the form 2 (Z) features fewer than four variables. As
for real proper quadrics, here we distinguish between ruled and non-ruled according as they do or do
not contain lines, respectively. The equation of a ruled quadric can always be reduced into a simple
canonical form

G(3) = 2124 — 573 = 0, (26)
from where it readily follows that such a quadric contains two distinct, singly infinite systems of lines (called
generators), viz. the A-system

5 -5 =0=1%— )% (27)
and the p-system

21— uh =0=12 — uz, (28)
as illustrated in Fig. 2; here, both 1 and p are variable parameters that can acquire any real value and
infinity as well. We leave it to the reader to verify that a line from one system is incident with any line of the

other system, and that any two distinct lines belonging to the same system are skew (both the features being
easily discernible from Fig. 2).

Fig. 2. The two complementary systems (reguli) of line generators lying on a ruled quadric surface (represented here as a hyperboloid
of one sheet).
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3.2. Homaloidal webs and Cremona transformations

In this subsection we shall introduce a very important new concept, that of the so-called Cremona
transformations, which will enable us to bring together under a common head the planar pencil-concepts of
time and space. In addition, it will serendipitously lend itself as an intriguing means of unifying the physical
aspects of spacetime with their perceptional/psychological counterparts.

To this end, we shall consider a web, i.e. a linear, triply-infinite aggregate of quadrics Z,(2):

4
99(2) =Y ,29(2) = 9V (E) + 297 (F) + 9.9 (2) + 9,29 (2) =0, (29)

g=1

where 2% (2), 0 = 1,2,3,4, are four linearly independent quadrics of P;, and where the parameters 9, run
through all the real numbers. Next, consider the quadratic transformation

0z, = 9(), 0#0, (30)

where Z/ are regarded as the homogeneous coordinates of a point in a second projective space, P;. Com-
bining the last equations and Eq. (29), we get

012, + 027, + 032, + 4%, = 0. (31)

The comparison of this equation with Eq. (16) implies that the quadrics of web (29) in P; are correlated by
the above-given transformation with the planes in P;. The quadrics 2,(2) may have base points, i.e. the
points shared by them all. Since each such point is a common zero of 2V (3), 2 (2), 2 () and 2 (3), it
renders Eq. (30) illusory; that is, the base points of the web have no counterparts in P.

Now, let us take three different, linearly independent planes in Pj. These define a unique point, viz. their
meet. The corresponding three distinct quadrics in P; have, however, (2 x 2 x 2 =)8§, not all necessarily real
and/or distinct, points of intersection in common. So, transformation (29) establishes, in general, an eight-
to-one correspondence between the points of Py and P;. It may, however, happen that seven points of the
eight are the base points of the web; then, obviously, the transformation is a one-to-one type, or birational.
Such a web is called homaloidal, and the corresponding transformation — a Cremona transformation [30]. In
other words, given a web of quadrics, Eq. (29), the necessary and sufficient condition for a Cremona
transformation to exist is that any three quadrics of the web have one and only one point of intersection
that varies with the parameters ¢,. In this case, the reverse transformation from P; to P; is also unam-
biguous and can be written as

on = y(g) (2/)7 Q 7é 07 (32)

where 20 (Z') are homogeneous polynomials whose degree is not necessarily equal to 2. Then,

4
2,&) =) _n,2°F) =2V (@) + n20E) + 0,2V (@) + 2 9() = 0, (33)
g=1
the #,’s being real-valued parameters, represents clearly a homaloidal web in P; whose surfaces correspond
to the planes of P;.

To find the degree of £,('), we proceed as follows. We first define the order of a curve of the
projective space as the number of points which the curve shares with an arbitrary plane, and introduce
without proof that the intersection of two surfaces of degree m and n is a curve of order mn. Then, we
consider two distinct quadrics of (29). If the base (i.e. shared by all the quadrics) curve of this web, %,
is of order g, the residual curve of intersection of the two quadrics, %,, is of order 2x2 —g=4—g.
Now, this residual curve is mapped by transformation (30) onto a line of P;; and this line clearly meets
2,(Z') in the same number of points as %, meets a generic plane of P;, which equals 4 — g. Hence, the
inverse transformation, Eq. (32), will be of the same degree as the original one, Eq. (30), only if the
base curve is a second degree curve, i.e. a conic; if 4, is a line, the inverse homaloidal web comprises
cubic surfaces, and, finally, if %, reduces to a point, the inverse surfaces are of the fourth degree
(quartics).
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3.3. Spacetime as a fundamental manifold of a Cremona transformation

We have found that each homaloidal web contains anomalous elements, viz. the base elements, which
make the corresponding Cremona transformations illusive. There also exists a different, and much more
important for our further purposes, kind of exceptional elements: these, called fundamental elements, are
defined as the elements in one projective space that corresponds to the base points of the associated ho-
maloidal web in the other space. The totality of the fundamental elements form a manifold whose un-
derlying algebro-geometrical structure, in its pencil understanding, is assumed to mimic sufficiently well
that of the observed macro-spacetime. As there are two fundamental manifolds, one in either projective
space, we have to be more specific: namely, we take spacetime to be represented by the fundamental manifold
of Ps, i.e. by the manifold associated with the web of quadrics, Eq. (29). With this assumption, we are def-
initely carried beyond the realm of coplanarity and, as we shall see in what follows, arrive at a remarkably
fertile ground on which our pencil view of spacetime acquires a qualitatively new footing and considerably
sharpens its predictive power.

3.4. Quadro-cubic Cremona transformations and the observed dimensionality and signature of spacetime

To demonstrate this, we shall in the sequel focus our attention on the Cremona transformations asso-
ciated with a web of quadrics possessing a base /ine. As the inverse web consists, as shown above, of cubic
surfaces, these Cremona transformations are usually called the quadro-cubic ones [30].

In order for the quadrics’ web to be homaloidal, it must feature, in addition to the base line, #®, a triple
of base points, B;, i = 1,2,3 [30]; the latter are regarded here as real, distinct, not lying on a line and none of
them being incident with the base line. Under these assumptions, the homogeneous coordinate system can
be chosen so that

B3 =0=3, (34)
B, : 0%, =(1,0,0,0), ¢#0, (35)
By: 02, =1(0,1,0,0), ¢#0, (36)
B;: 0%, = (1,1,1,0), ¢#0. (37)

The corresponding web of quadrics is thus of the form
T (2) = 0121(33 — ) + 9222(23 — 21) + 032124 + VaZaZy = 0, (38)

for each of Egs. (34)—(37) makes, indeed, the last equation vanish identically. This web generates the fol-
lowing Cremona transformation (¢ # 0):

QE,I = 21 (23 — 22), (39)

0Zy = %124, (41)
The inverse transformation, as it can straightforwardly be verified, is of a third-order, namely (& # 0):

=4 (54 - 24), 43)

e =222 - 42,), (44)
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e5 =27, (E’l - 22) (45)
e = 27, (zg - z;), (46)
and it relates to the following homaloidal web of cubic surfaces:
2y() = m3 (55 - 52) i (25 - 52)
A CEEA R ECA CEEA R (47)

The base manifold of this aggregate comprises four distinct lines:

L =0=4%, (48)
L2 =0=%, (49)
&y 2 =0=1%, (50)
LY - =0=%-1%, (51)

the first one being the double line of every cubic in (47). To see this, we consider a generic plane passing
through #1;:

7 =i, (52)

with k running through all the real numbers plus infinity. Inserting this equation into Eq. (47) yields
0=2; [(’h’C + 11+ 13K)Z) — k(K + 1y +13)2 + k(e — 1)Z ] (53)

from where it is apparent that every plane through |, meets the cubic g’ff (Z) in this line counted twice,
and in another line,

2y — Kz = 0= (i + 0y + n3K)2) — k(g + 0y + 13)25 + ne(ic — 1)z, (54)

We now proceed to examine the structure of the fundamental manifold associated with the web of
quadrics. We find that Egs. (39)—(42) send the plane z, = 0 into the line ¥, Z, = 0 into &), Z, — 2, = 0 into
&%, and, finally, Z, = 0 into .#,. This means that the fundamental elements of P; are located in these four
planes only. The four planes are, however, not all equivalent: the first three are linearly dependent, sharing
the line #® (and containing, respectively, the points B;, B, and B;), whilst the remaing plane, viz. the
B;B,B; one, is left aside — see Fig. 3, left. But there is much more (intricacy) to this remarkable three-to-one
factorization than meets the eye. This is revealed when the character of the fundamental elements in each of
the planes is concerned.

To this end in view, let us consider a pencil of lines in the plane B;.% B whose vortex is the point By. As
the variable point of #® can be parametrized as

LP(2): 0z(9) = (0,0,9,1), o #0, (55)
the moveable point of a line .#; in the pencil in question is obviously given by
Ly(2) : 0z:(k) = (1,0,0,0) +x(0,0,9,1) = (1,0,x9,x), 0 #0, (56)

where «, like 9, runs through all the reals and infinity. Putting the last equation into Egs. (39)-(42), we
obtain
0z, = (19,0,x,0) = x(¥9,0,1,0), ¢ #0, (57)

and immediately see that, for a fixed ¢, the last equation represents one and the same point of P,
irrespective of the value of x; that is, a(ny) line of the pencil transforms as a whole into a single point
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Fig. 3. Left: The fundamental manifold of P; associated with the homaloidal web of quadrics defined by Eq. (38). Right: Its P; image
furnished by the corresponding Cremona transformation, Eqs. (39)-(42). The manifold comprises three pencils of lines and a single
pencil of conics, and its image features, respectively, three skew lines and a fourth line incident with each of the three. The symbols and
notation are given in the text.

of ¥}, and is thus a fundamental line of P;. This mapping is clearly of a one-to-one type, i.e. to two
distinct lines Zy0) and Lye), 9V #£ 9@, there correspond two different points of #. Performing the
same reasoning for the i = 2 and i = 3 cases, we find a completely analogous result: all in all, given the
plane B;,.#®, i=1,2,3, the lines of the pencil centred at B; are the fundamental lines of P;, being
transformed by Egs. (39)—(42) into the points of P; lying on the base line ¢}, i = 1,2, 3, of the web of
cubics, Eq. (47) — as depicted in Fig. 3. And what about the remaining ‘base’ plane, the z; = 0 one?
Here we find, as expected, a different situation, because this plane cuts the web of quadrics in a pencil
of conics, viz.

29(2) =hz1(B — %) + hi(z— %) =0, (58)

the conics having in common the three base points B;, i = 1,2, 3, and the point L at which the plane meets
the base line #® — see Fig. 3, left. From the last equation and Egs. (39)—(42) we find that the whole conic
29=9,/9, 1s mapped into a single point of P;:

QE; = (_197 1a0a0)a 0 7é Oa (59)

which belongs to the double base line #}; hence, also every conic of pencil (58) is a fundamental curve of P;.
Again, the correspondence has a one-to-one character.

At this point it should be fairly obvious why and how the already enunciated identification of
pencil-spacetime with the fundamental manifold corresponding to the homaloidal web of quadrics
defined by Eq. (38) unravels, at one stroke, two long-standing mysteries connected with the macro-
scopic structure of spacetime, viz. its dimensionality and signature.The macro-dimensionality of
spacetime amounts to four simply because we have four pencils of fundamental elements, and its 3 + 1
signature reflects nothing but the fact that three of them are composed of lines (spatial dimensions),
whereas the remaining one features conics as the fundamental constituents (time). It is so natural and so
amazingly simple an explanation, following up nicely with the P, model and striking closest to the
heart of the matter in our current state of understanding! An appeal of this spatial model is further
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substantiated when we notice that it uniquely specifies the type of a pencil of conics (Eq. (58)), i.e. the
global character of the time dimension — a property which had to be independently postulated in our
debut model (see Section 2.3).

In order to introduce a non-trivial, arrow-resembling structurization into the pencil of fundamental
conics, Eq. (58), we have, as in the planar case, to dehomogenize the projective space. This can be done in a
way that is a natural and straightforward extension of what we did in the projective plane. To refresh our
memory (Section 2.2), we picked up one line that was pronounced to have a special standing with respect to
the other lines of P,. Since the spatial analogue of a line is obviously a plane, we pursue the same strategy:
we choose one plane of P;, we may call the d-plane, and assign to it a special status. If this plane does not
coincide with the plane of pencil (58), the B;B,B; plane, it cuts the latter in the unique line. This line clearly
plays the role of the d-line in the plane in question and, so, the rest of our analysis concerning time’s arrow
almost completely reduces to that carried out in our strictly planar model, Sections 2.2 and 2.3; the
only exception being that the pencil of conics defined by Eq. (58) is of a different type than that given by

Eq. (6).

3.5. Cremona transformations: a mediating link between physics and psychology?

The fundamental manifold of P; has just been found to be a remarkably useful qualitative framework for
the basic number-geometrical characteristics of ‘sensual’ macro-spacetime. Yet, it is also its P; image,
viz. the base manifold of the inverse web of cubics, that should play in our theory a part no less prominent
than the former. Then, the natural question arises: what kind of spacetime does this second manifold
correspond to?

To properly address this question, we shall have to carry out a bit closer inspection of the configuration
of four base lines defined by Eqs. (48)—(51). As already shown, one of the lines, |, differs from the others,
', i=1,2,3, in being the double line of a cubic ﬁf (Z). This distinction becomes more marked when we
notice that all the four lines lie on the ruled quadric

9'()=%% -2 =0. (60)

As this equation is formally identical to Eq. (26), conceiving Egs. (27) and (28) as primed we find that
&%, i=1,2,3, are contained in the u-system (corresponding, respectively, to u = 00,0, 1), whereas &}, is of
the A-family (4 = co) — as sketched in Fig. 3, right. Hence, a three-to-one splitting is also an inherent feature
among the elements of the base manifold of P;. In the present case, however, it is not pronounced so well as
in the case of the fundamental manifold of P;, for a projective line is a much simpler structure than a
projective plane. So, after relating the fundamental manifold of P; with the spacetime as experienced/
perceived by our senses, we are daringly led to identify the base manifold of P; with the spacetime as
described by physics. A principal justification for such a claim goes as follows. From a physicist’s point of
view, there is no distinction between time and space as far as their internal structure is concerned; the only
difference between the two is embodied in the Lorentz signature of a metric tensor on an underlying dif-
ferentiable manifold. And a strikingly similar phenomenon is taking place on the base manifold of P;. Here,
there is also no structural difference between the time dimension and spatial coordinates, for all of them are
represented by (base) /ines; yet, the time coordinate, represented by .}, acquires a different footing than
the three dimensions of space, generated by lines ', i=1,2,3, simply because ¥}, belongs to a different
regulus of 2’ than the triple of lines ¥ —¢%.

We thus have at our disposal two unequivalent, yet robust on their own, ‘Cremona’ ways of picturing the
universe, both reproducing strikingly well its dimensionality and signature: one (the fundamental manifold
of P;; Fig. 3, left) relates more to the properties of the universe as presented through our sensory processes
(a ‘subjective’ view), whilst the other (the base manifold of Pj; Fig. 3, right) portrays rather its physical
content (an ‘objective’ view). And the two representations are intimately coupled to each other via a specific
transformation, viz. the generic quadro-cubic Cremona transformation defined by Egs. (39)-(42). Being
algebraically elegant and geometrically very simple, this transformation may thus offer extraordinary
promise for being a crucial stepping-stone towards bridging the gap between two seemingly irreconcilable
domains of the human inquiry, viz. physics and psychology.
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3.6. The dimensionality of space and the global structure of time

The attentive reader surely noticed that the web of quadrics defined by Eq. (38) represents the most
general case of a homaloidal web of quadrics featuring a real base line, as the residual base points B;,
i=1,2,3, are all real and distinct. We shall, therefore, call the spacetime(s) associated with this web the
generic quadro-cubic Cremona spacetimes. The purpose of this section is to briefly examine a couple of
specific quadro-cubic configurations, namely those arising when two of the base points coalesce and/or
transform into a conjugate complex point-pair, and see the difference in the dimensionality/structure of the
corresponding ‘fundamental’ spacetimes when compared with the generic case.

We shall deal first with the case that we get from the generic one by making two base points, say B,
and Bj, approach each other until they ultimately get united, the merger point being denoted as B.
Clearly, the corresponding planes of fundamental lines, B,.#® and B;.#®, fuse in the limit into a single
plane, B#®, and the corresponding pencil-space thus becomes rwo-dimensional only. This reduction in
the dimensionality of space is accompanied by a change in the structure of the time dimension. Em-
ploying the classification of conics’ pencils given in [16], we see that the resulting pencil of fundamental
conics, since displaying only three distinct real base points L, B; and B, is of the 3%2-type, while our
generic pencil, Eq. (58), belongs to the 4%3-class. When two of the base points, we shall again denote as
B, and Bj, become imaginary (conjugate complex), there remains only one real plane containing a pencil
of fundamental lines, viz. the B;.#® plane, and, hence, space is endowed with a single dimension. The
corresponding pencil of fundamental conics possesses only two real base points, L and B, and is of type
2%1-B [16].

These two special cases illustrate sufficiently well the fact that the number of observed spatial coordinates
and the global structure of time dimension are closely related with each other characteristics of our quadro-
cubic pencil-spacetimes. This property ties in very nicely with the relationship ‘arrow of time « three-
dimensionality of space’ found in the planar model (Section 2.3), and may well turn out to be a valuable
hint for superstring and supermembrane theorists in their quest for answering the question why the alleged
extra dimensions of spacetime have to be spontaneously compactified (see, e.g., Ref. [31]).

3.7. A relationship with Cantorian spacetime

Following up its two-dimensional predecessor, the generic quadro-cubic Cremona spacetime sitting in
the projective space is also seen to share some formal features with the Cantorian space, &™), whose
principal properties were highlighted in the introductory section. Since any pencil of lines/conics in P; may
be regarded as a potential spatial/temporal dimension, the Cremona spacetime, like &, is formally in-
finite-dimensional. Hence, both the manifolds must undergo a specific dimensional reduction in order to
yield the finite number of dimensions offered to our senses. In the present case, this reduction is of algebro-
geometrical nature, for we demand the structure of the ‘residual’ macro-manifold to be in conformity with
particular algebraic transformations, while in the case of &), it results from a sort of statistical averaging,
i.e. it has a number-probabilistic character [7-13].

A second intriguing feature making the two models akin to each other concerns the signature of
spacetime. Within the &> framework, the difference between space and time, as already mentioned in the
introductory section, stems from the two different concepts of effective dimensionality, viz. topological and
Hausdorff. The topological dimension, being a simpler concept of the two, is argued to grasp only spatial
degrees of freedom, while the Hausdorff one, being more complex, is understood to incorporate also the
time dimension [7]. In our model, we have two distinct kinds of pencils instead. If we exclusively confine to
those consisting of lines, which are simpler ones, we can get hold just of the spatial manifold. Time enters
only if we also consider pencils of conics.

4. Summarizing conclusion

We gave a lucid exposition of a very interesting and fruitful generalization of the pencil concept
of spacetime by simply raising the dimensionality of its projective setting from two to three. When
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compared with its two-dimensional sibling, this extended, three-dimensional framework brings much
fresh air into old pressing issues concerning the structure of spacetime, and allows us to look at the latter
in novel, in some cases completely unexpected ways. Firstly, and of greatest importance, this framework
offers a natural qualitative elucidation of the observed dimensionality and signature of macro-spacetime,
based on the sound algebro-geometrical principles (Section 3.4). Secondly, it sheds substantial light at
and provides us with a promising conceptual basis for the eventual reconciliation between the two ex-
treme views of spacetime, namely physical and perceptual (Section 3.5). Thirdly, it gives a significant
boost to the idea already indicated by the planar model that the multiplicity of spatial dimensions and
the generic structure of time are intimately linked to each other (Section 3.6). Finally, being found to be
formally on a similar philosophical track as the fractal Cantorian approach, it grants the latter further
credibility (Section 3.7).
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