The CoMP-S@LSO: polarimetric calibration

Jan Rybak, Steve Tomczyk, the LSO group

AISAS colloquium, TL, 2024/03/20

Content

- Polarimetry as an astronomical tool
- Instrumental polarization
- Polarimetric calibration
- CoMP-S as polarimeter
- CoMP-S polarimetric calibration procedure
- CoMP-S polarimetric calibration results
- A proposal for a new CoMP-S polarimetric package

Polarimetry as a tool

- Polarimetry measurements of the polarization properties of the light
- Polarization of the measured light result of the magnetic field surrounding the atoms emitting the observed light:
 - Only some atom transitions
 - The Zeeman and Hanle effects
 - (other physical effects)
- We can not measure polarization, we can measure only intensity...
- Approaches for measurements:
 - Sequential measuring of different individual pol. states
 - Sequential measuring of different combinations of the individual pol. states

Polarimetry as a tool

- The polarized light descriptions:
 - The Poincare sphere, the Jones vector
 - The Stokes vector [I,Q,U,V]: the standard Cartesian basis (x, y), the Cartesian basis rotated by 45° (a,b), and a circular basis (l, r), E
 the el. field amplitude

Wikipedia: https://en.wikipedia.org/wiki/Stokes_parameters

AISAS Colloquium

Instrumental polarization

- All optical parts of your instrument might alter (modulate) the polarimetric status of the light to be measured
- Your instrument as a whole: **O modulation matrix** (n_meas x 4)

$$\mathbf{I}_{\text{meas}} = \mathbf{OI}_{\text{in}} \quad \mathbf{I} \equiv (I, Q, U, V)^{T}$$
$$\mathbf{O} = \begin{pmatrix} I_{\text{in}} \rightarrow I_{\text{meas}} & Q_{\text{in}} \rightarrow I_{\text{meas}} & U_{\text{in}} \rightarrow I_{\text{meas}} & V_{\text{in}} \rightarrow I_{\text{meas}} \\ I_{\text{in}} \rightarrow Q_{\text{meas}} & Q_{\text{in}} \rightarrow Q_{\text{meas}} & U_{\text{in}} \rightarrow Q_{\text{meas}} & V_{\text{in}} \rightarrow Q_{\text{meas}} \\ I_{\text{in}} \rightarrow U_{\text{meas}} & Q_{\text{in}} \rightarrow U_{\text{meas}} & U_{\text{in}} \rightarrow U_{\text{meas}} & V_{\text{in}} \rightarrow U_{\text{meas}} \\ I_{\text{in}} \rightarrow V_{\text{meas}} & Q_{\text{in}} \rightarrow V_{\text{meas}} & U_{\text{in}} \rightarrow V_{\text{meas}} & V_{\text{in}} \rightarrow V_{\text{meas}} \end{pmatrix}$$

 This modulation of the light polarimetric status has to be determined in form of the O modulation matrix = the polarimetric calibration

Polarimetric calibration

- Method:
 - IN known polarimetric status
 - OUT measured polarimetric response to IN
 - O_{ij} determination from IN and OUT using an instrument description
- Approaches for measurements:
 - Sequential measuring of individual pol. states (+Q,-Q,+U,...)
 - Sequential measuring of different combinations of the individual pol. states

CoMP-S as polarimeter

• The CoMP-S instrument and the ZEISS 200/3000/4000 coronagraph

CoMP-S as polarimeter

- The CoMP-S instrument: 4-stage tunable Lyot filter + polarimeter
- Polarimeter: a half-wave plate + a quarter-wave plate + a fixed retarder
- Wave plates: Ferroelectric liquid crystals (DISPLAYTECH, # LV2500), external el. field ±5 VDC → 4 alternations of the passing light polarization state change (retardation) is wavelength dependent

AISAS Colloquium

- Polarimetric calibration: IN light of known polarimetric status:
 - polarimetric optics in the calibration wheel: CLEAR, lin. polarizer
 @ 0°, 90°, 45°, -45°; lin. polarizer @ 0° + ¼ wave retarder @ +45°;
 lin. polarizer 0° + ¼ wave retarder @ -45°

AISAS Colloquium

- Polarimetric calibration: OUT response to the light of known polarimetric status passing the instrument:
 - Horizontal: polarimeter 4 FLC combinations in the CoMP-S
 - Vertical: calibration optics CLEAR, lin. polarizer @ 0°, 90°, 45°, 45°; lin. polarizer @ 0° + ¼ wave retarder @ +45°; lin. polarizer 0° + ¼ wave retarder @ -45°
 - Example for 656.16 nm (FWHM ~0.05 nm): 2D images & 1 point

I_{meas} matrix:

	1.00	1.00	1.00	1.00
1.162	0.28	1.18	1.17	0.50
1000	1.04	0.16	0.16	0.82
	0.50	0.80	0.56	0.45
1.00	0.82	0.55	0.79	0.87
	0.67	0.59	0.62	0.50
	0.37	0.93	0.83	0.30

AISAS Colloquium

- Procedure for the determination of the O matrix from the measured response of the instrument Imeas to the input light of the known pol. states is inevitable
- A more sophisticate approach: a polarimetric model of the instrument with some free parameters to be adjustable in order to describe the instrument as good as possible. Reasons for this approach: optical properties of the pol. parts (transmission & retardation ~ wavelength, FoV spatial variations)

	1.00	1.00	1.00	1.00
1000	0.28	1.18	1.17	0.50
	1.04	0.16	0.16	0.82
	0.50	0.80	0.56	0.45
	0.82	0.55	0.79	0.87
	0.67	0.59	0.62	0.50
	0.37	0.93	0.83	0.30

- The polarimetric model of the CoMP-S instrument:
 - Parameters (initial guess):
 - Input light Stokes vector [I,Q,U,V] (I_mean,0,0,0)
 - linear polarizers (free: transmission (0.5), fixed: pol. ratio, orientation)
 - ¼ wave retarder (free: transmission (1.0), retardation (90. * wave_norm), fixed: orientation)
 - O matrix:

$$\begin{split} &|_{meas}(0,1) - |_{meas}(0,2))/2., (|_{meas}(0,3) - |_{meas}(0,4))2., (|_{meas}(0,5) - |_{meas}(0,6))/2. \\ &|_{meas}(1,1) - |_{meas}(1,2))/2., (|_{meas}(1,3) - |_{meas}(1,4))2., (|_{meas}(1,5) - |_{meas}(1,6))/2. \\ &|_{meas}(2,1) - |_{meas}(2,2))/2., (|_{meas}(2,3) - |_{meas}(2,4))2., (|_{meas}(2,5) - |_{meas}(2,6))/2. \\ &|_{meas}(3,1) - |_{meas}(3,2))/2., (|_{meas}(3,3) - |_{meas}(3,4))2., (|_{meas}(3,5) - |_{meas}(3,6))/2. \\ &|_{mean} \end{split}$$

- Definitions of the polarimetric calibration optics (type, orientation)
- Calculation of the calibration optics impact on the passing light (in form of the Mueller matrices)

- The polarimetric model of the CoMP-S instrument:
 - Fitting the model parameters to reach the minimum of the user-written function = sum of intensity differences (Imeas - Imodel)²
 - The IDL procedure **POWELL**: based on powell code for minimization in Ndimensions (section 10.5 of Numerical Recipes in C: The Art of Scientific Computing (Second Edition), Cambridge University Press, 1992)
 - Typical IDL performance for our data: 19 parameters, 28 measurements, 15-50 iterations to reach the 10⁻⁶ limit, normalized chi² <0.01, runtime ~10⁻¹ s
 - The parameters used to clarify appropriateness of the model:
 - normalized (I_{meas} I_{model})/I_{meas} intensity differences
 - reliability of the obtained values of the physical parameters: linear polarizer transmission, circular retarder transmission & retardation Stokes_input vector, efficiencies (and other additional parameters)

- The polarimetric model of the CoMP-S instrument:
 - normalized (I_{meas} I_{model})/I_{meas} intensity differences measure

Horizontal: polarimeter - 4 FLC combinations in the CoMP-S

Vertical: calibration optics - CLEAR, lin. polarizer @ 0°, 90°, 45°, -45°; lin. polarizer @ 0° + ¼ wave retarder @ +45°; lin. polarizer 0° + ¼ wave retarder @ - 45°

meas				(I _{meas} – I _{me}	odel)/I _{meas}		
1.00	1.00	1.00	1.00	0.001	0.001	0.004	-0.007
0.28	1.18	1.17	0.50	-0.014	-0.145	-0.023	0.104
1.04	0.16	0.16	0.82	0.036	0.065	-0.009	-0.110
0.50	0.80	0.56	0.45	-0.008	0.010	0.025	0.002
0.82	0.55	0.79	0.87	-0.013	0.034	0.011	0.002
0.67	0.59	0.62	0.50	0.044	0.187	0.002	-0.543
0.37	0.93	0.83	0.30	0.040	0.342	0.002	-0.561

- The polarimetric model of the CoMP-S instrument:
 - Resulting O matrix:

1.00	-0.58	-0.07	0.28
1.00	0.72	0.73	-0.01
1.00	0.73	0.50	0.07
1.00	-0.29	-0.05	0.38
$I_{in} \rightarrow I_{meas}$ $I_{in} \rightarrow Q_{meas}$	$\begin{array}{c} Q_{\rm in} \rightarrow I_{\rm meas} \\ Q_{\rm in} \rightarrow Q_{\rm meas} \end{array}$	$U_{\rm in} \rightarrow I_{\rm meas}$ $U_{\rm in} \rightarrow Q_{\rm meas}$	$V_{\rm in} \rightarrow I_{\rm meas}$ $V_{\rm in} \rightarrow Q_{\rm meas}$
$I_{\rm in} \rightarrow U_{\rm meas}$	$Q_{\rm in} \rightarrow U_{\rm meas}$	$U_{\rm in} \rightarrow U_{\rm meas}$	$V_{\rm in} \rightarrow U_{\rm meas}$
$I_{\rm in} \rightarrow V_{\rm meas}$	$Q_{\rm in} \rightarrow V_{\rm meas}$	$U_{\rm in} \rightarrow V_{\rm meas}$	$V_{\rm in} \rightarrow V_{\rm meas}$

- What is good and what bad? The measure is:
 - normalized (I_{meas} I_{model})/I_{meas} intensity differences
 - with a help of the obtained values of the physical parameters: linear polarizer transmission, circular retarder transmission & retardation Stokes_input vector, efficiencies (and other additional parameters)
 - Not the O matrix components...
- Results could be dependent on:
 - Position within the 2D field of view
 - Wavelength
 - other effects (e.g., mechanical structure bending, optical parts clearness)
- Results for 1 wavelength & 1 position in the FoV in this presentation

Original CoMP-S setup & 656 nm: (Imeas - Imodel)/Imea

$0.\overline{0}04511\overline{1}9$	0.000101250	5.81984e-06	-0.00473855
0.0213082	0.0573907	-0.0331494	-0.0306067
-0.0416938	-0.00697888	0.00598805	0.0341834
0.00717691	0.000137868	-0.00244441	-0.00689037
0.00280571	0.000276429	-0.00302491	-0.00267990
0.0914081	0.0443865	-0.0284551	-0.125710
0.141429	0.0337479	-0.0249009	-0.205270

- Something is wrong...
- Possible reason(s):
 - Reality: "wrong" optical parts?
 - Model : insufficient description of the optical system ?
- Step by step checks/tests/analysis/re-considerations...

Checks: calibration polarimetric optics: type, properties, orientation
 → lin. polarizer @ 0° + ¼ wave retarder @ +45°; lin. polarizer 0° + ¼ wave retarder
 @ -45°: orientation changes – unclear situation (really +/-45°?)

- Reconsiderations: CoMP-S "tertiary" optics dichroich mirror @ 45° + polarizing beam splitting cube
- Tests: model apatation for these 2 optical elements:
 - The dichroic mirror MM analytical form (the free value of the refractive idex): *Collett, E., 1971, Am. J. Phys. 39, 517*
 - The polarizing beam splitter MM analytical form (birefringence and retardation – both linear and circular, depolarization, with few simplifications): *Song Zhang et al., 2018, J. Opt. 20, 125606*
- No significal inprovement of results (Imeas Imodel)/Imeas

• Reconsiderations: the ZEISS coronagraph "secondary" optics (SO)

coronagraph secondary optics * CoMP-S instrument field lens 3 lenses 4-lens objective cal.+ filt. wheels Lyot filter ter. optics

- Polarimetric effects of the single optical surface (without a symmetry of illumination): the Fresnel equations
- the quiet complex ZEISS coronagraph secondary optics changes the polarimetric status of the passing light

- A conceptual problem of the instrument: the complex ZEISS coronagraph secondary optics (SO) changes the polarimetric status of the passing light
- **So far:** an assumption of the completely unpolarized light [I,Q,U,V]=[1,0,0,0] entering the polarimetric calibration optics...
- A realistic solution: placing the polarimetric calibration optics in front of the SO, i. e., where the artificial moon is located !

- **The realistic solution:** placing the polarimetric calibration optics in front of the SO, i. e., where the artificial moon is located
- Assumption: the completely unpolarized light [I,Q,U,V]=[1,0,0,0] entering the polarimetric calibration optics is fulfilled
- Model has to be extended for the SO part O_{so} matrix (4x4):
 - observations: O_{common} = O_{CoMP-S} # O_{SO}
 - pol. calibration measurements: O_{common} = O_{CoMP-S} # O_{pol_cal} # O_{SO}

- Analytical problem: 28 measurements but 31 unknown variables to be derived (O_{so} 4x3 + pol. optics 3 + Input 4 + O_{coMP-s} matrix 4x3)
- Numerical solutions:
 - a/ simplifications

28 measurements but 31 unknown variables to be derived (O_{so} 4x3 + pol. optics 3 + Input 4 + O_{comP-s} matrix 4x3

 \rightarrow

28 measurements and at maximum 28 unknown variables to be derived ($O_{so} 4x3 + pol.$ optics $3 + Input 4 + O_{COMP-S}$ matrix at maximum 9 only)

- b/ an iterative approach

- Preparation of a testing pol. calibration package #1:
 - Thorlabs lin. polarizer with variable orientation
 - lin. polarizer @ 0° + ¼ wave retarder @ +45°; lin. polarizer 0° + ¼ wave retarder @ -45° (HAO CPA/B parts)
 - in front of the SO simplified approach test data 2023/09/15

Results: (I _{meas} – I _{model})/I _{meas}					
-0.001	-0.002	0.002	0.001		
-0.099	-0.008	-0.001	0.055		
0.025	0.049	-0.035	-0.047		
-0.006	0.008	0.019	-0.007		
-0.004	0.011	0.014	-0.004		
0.118	0.042	-0.012	-0.193		
0.212	0.027	-0.009	-0.324		

(optics: 0.67 & 0.84, 65.95)

- Preparation of a testing pol. calibration package #2:
 - Thorlabs lin. polarizer with variable orientation
 - Thorlabs lin. polarizer @ 0° + ¼ wave retarder for 670 nm @ +/-45°
 - in front of SO simplified approach test data 2023/10/14
 - Results: (Imeas Imodel)/Imeas

-0.017	0.007	-0.005	0.016
0.025	-0.012	-0.017	-0.018
0.003	-0.072	-0.142	-0.006
0.165	0.039	-0.156	0.065
0.071	0.006	-0.077	-0.018
-0.056	0.016	-0.010	0.046
0.084	-0.041	0.035	-0.103

- Preparation of a testing pol. calibration package #2:
 - Thorlabs lin. polarizer with variable orientation
 - Thorlabs lin. polarizer @ 0° + ¼ wave retarder for 670 nm @ +/-45°
 - in front of SO simplified approach test data 2023/10/14
 - Results:
 - linear polarizes trans = 0.26
 - 1/4 wave retarder trans/ret = 0.97/90.6

• 0	matrices:	O _{Co}	MP-S	&	O _{so}		
1.00	-0.58	-0.06	0.29	9 1.00	0.53	0.10	0.10
1.00	0.71	0.73	-0.02	2 1.00	-1.03	0.05	0.04
1.00	0.72	0.49	0.08	B 1.00	-2.69	1.00	0.10
1.00	-0.28	-0.06	0.34	4 1.00	-3.55	0.65	0.68

• A (preliminary) summary:

It is needed to develop and fabricate an optimum achromatic pol. calibration package (500-1100 nm) which can be placed in front of the SO

A new CoMP-S pol. package

- Requirements:
 - Placement in front the SO
 - Achromatic properties (500-1100 nm)
 - Versatile: in/out of the optical system allowing to exchange the artificial moon and to be placed to any location (position angle) around the solar limb
 - Computer controlled motorized operation
- Limitations:
 - Space & money
- Minimum content:
 - Achromatic linear polarizer 4 orientations (0°, 90°, +45°, -45°)
 - Achromatic ¹/₄ wave retarder 2 orientations (+45°, -45°)

A new CoMP-S pol. package

- A preliminary concept:
 - Single linear polarizer rotatable to 4 orientations
 - Single achromatic ¼ wave retarder rotatable to 2 orientations
 - 2 rotatable platforms to place these pol. calibration optical parts to the required PA
 - Platform #1: 1 linear polarizer, #2: 1/4 wave retarder + 1 hole
 - The whole package has to removable from the coronagraph
 - Computer controlled motorized operation

AISAS Colloquium

CoMP-S polarization plan

- The iterative approach to derive the O_{COMP-S} + O_{SO} matrices JR (now in progress)
- The preliminary summary \rightarrow the final decision JR + the LSO group
- Polarimetric calibration and demodulation to the CoMP-S data pipeline - JR
- the new polarization package: project, realization, tests → regular usage – the LSO group

Who what?

- S. Tomczyk:
 - CoMP-S polarimeter design
 - model approach software: basics
 - some advice
- The LSO group:
 - discussions and suggestions: P. Schwartz, P. Gomory, ...
 - mechanical parts, help with handling optics: M. Trembac
 - operation of the LSO and its instruments CoMP-S + UJ2P + ...
- JR:
 - polarimetric test measurements
 - model approach software: extensions
 - data analysis \rightarrow results
 - new pol. calibration package concept and the polarimetry plan

Thank you for your attention

CoMP-S pol. demodulation

• The solar spectroscopy gold standard since the year 2000: del Toro Iniesta and Collados, "Optimum modulation and demodulation matrices for solar polarimetry", 2000, *Applied Optics* **39**, 1637

$\mathbf{I}_{\text{meas}} = \mathbf{O}\mathbf{I}_{\text{in}} \quad \mathbf{I} \equiv (I, Q, U, V)^T$ $\mathbf{I}_{\text{in}} = \mathbf{D}\mathbf{I}_{\text{meas}}$ $\mathbf{D} = (\mathbf{O}^T\mathbf{O})^{-1}\mathbf{O}^T = \mathbf{A}^{-1}\mathbf{O}^T$

CoMP-S polarization tests

• List of the pol_cal (test) measurements: the data analysis performed

Calibration optics type	Calibration optics location	Date	Position angle [°]
HAO CPA+CPB (CPA/B lin.pol. radially)	between SO and LF (calibration wheel)	(>27/04/2023) 2023/05/09 2023/05/10 2023/05/27	(~90) 105 105 105
HAO CPA+CPB (CPA/B lin.pol. radially)	in front of the SO (special holder)	(>19/07/2023) 2023/08/11 2023/09/06 2023/09/15	(90) 90 90 90
THORLABS lin_pol + wave/4	between SO and LF (calibration wheel)	-	-
THORLABS lin_pol + wave/4	In front of the SO (special holder)	2023/10/14 1w 2023/11/22 2w	90 90

LSO pipeline: done

- HAO (ST) soft + LSO (JR) fitting to derive the pol_cal modulation:
 - pol_cal calibration optics definition:

;pol= [0, 1, 1, 1, 1, 1, 1]; pol determines whether polarizer is present ;ret= [0, 0, 0, 0, 0, 1, 1]; ret determines whether retarder is present p_angle=[0., 0.,90., 45.,135., 0., 0.]; pol angles r_angle=[0., 0., 0., 0., 0., 45.,-45.]; ret angles

- Calculation of the calibration optics impact on the passing light:

```
if pol[i] eq 0 and ret[i] eq 0 then begin ; clear
    obs[*,i] = omx ## input
endif
if pol[i] eq 1 and ret[i] eq 0 then begin ; polarizer only
    obs[*,i] = omx ## mueller_partial_polarizer(ptrans,pp,p_angle[i]) ## input
endif
if pol(i) eq 1 and ret(i) eq 1 then begin ; retarder and polarizer
    obs[*,i] = omx ## mueller_retarder(rtrans,r_angle[i],delta) ## $
        mueller_partial_polarizer(ptrans,pp,p_angle[i]) ## input
endif
```

LSO pipeline: done

Test data: THORLABS lin.pol. + wave/4 @ in front of SO: 2023/10/14 & model variants: no adds, SO simplified, TO: PBS, TO: DM+PBS

no adds	SO simplified	TO: PE	35	TO:DM+PBS
(i_obs-model)/(i_obs)				
-0.045 0.023 -0.010 0.036	-0.034 0.010 0.	.001 0.022 -0.039	0.014 0.000 0.023	-0.036 0.014 0.001 0.022
0.027 -0.010 -0.017 -0.016	0.082 -0.004 0.	.005 -0.003 0.085	-0.000 0.006 0.007	0.079 -0.003 0.004 0.006
0.005 -0.061 -0.148 -0.007	0.018 -0.043 0.	.095 0.012 0.022	-0.019 0.113 0.021	0.019 -0.039 0.089 0.017
0.174 0.037 -0.161 0.052	0.013 0.030 -0.	.068 -0.075 0.009	0.015 -0.076 -0.075	0.005 0.028 -0.071 -0.073
0.061 0.011 -0.093 -0.007	0.017 0.034 -0.	.051 -0.031 0.009	0.039 -0.060 -0.029	0.014 0.030 -0.057 -0.029
-0.035 0.010 0.002 0.025	-0.015 -0.026 0.	.030 0.009 -0.008	-0.032 0.028 0.008	-0.015 -0.024 0.029 0.010
0.052 -0.034 0.021 -0.052	0.029 -0.040 0.	.034 -0.026 0.010	-0.030 0.032 -0.012	0.022 -0.039 0.031 -0.014
Pol.trans. Ret.trans Ret:				
0.53 0.97 90.62	0.57 0.86 81	0.57	0.86 81.56	0.57 0.86 81.78
Input Stokes Vector:			0100 0100	0.00 0.000
1.26 0.04 -0.44 -0.82	1.23 0.22 -0.	.33 -0.52 1.25	0.23 -0.31 -0.48	1.36 0.25 -0.35 -0.53
0 Matrix:				
1.00 -0.58 -0.07 0.28	1.04 -0.71 -0.	.10 0.25 1.01	-0.69 -0.12 0.23	0.93 -0.64 -0.09 0.22
1.00 0.72 0.73 -0.01	0.87 0.56 0.	.60 0.00 0.84	0.54 0.57 0.01	0.78 0.50 0.54 0.00
1.00 0.73 0.50 0.07	0.83 0.59 0.	.34 0.06 0.80	0.57 0.31 0.06	0.74 0.53 0.30 0.05
1.00 -0.29 -0.05 0.38	1.00 -0.41 -0.	.09 0.38 0.97	-0.40 -0.11 0.37	0.89 -0.37 -0.09 0.34
Efficiencies:				
0.108 0.157 0.053 0.037	0.173 0.195 0.	.076 0.053 0.198	0.192 0.081 0.058	0.162 0.176 0.069 0.049
Efficiencies MAX:				
1,000 0,606 0,445 0,240	0.938 0.577 0.	.352 0.228 0.907	0.561 0.336 0.220	0.841 0.518 0.313 0.205
Chisa: 0.00108556	0.000362365	0.0003	368211	0.000357809
d mx ## [1111.]				
1.00 0.00 -0.00 -0.00	1.14 0.23 -0.	.19 -0.17 1.16	0.24 -0.16 -0.11	1.25 0.25 -0.18 -0.13
и протокование стата стата и протокование стата и протокование стата и протокование стата и протокование стата и	I	Т	0.11 0.10 0.11	I COLD COLD COLD
1.01 0.01 -0.03 -0.03	1.15 0.24 -0.	.21 -0.19 1.16	0.25 -0.18 -0.13	1.26 0.27 -0.20 -0.15
0	0	0	0.120 0.120 0.120	0
0.06 1.33 -0.03 -0.05	0.25 1.37 0.	.02 -0.07 0.26	1.40 0.04 -0.05	0.28 1.52 0.04 -0.05
U 2105 0105 0105	U 01	U		U
-0.67 -0.19 1.84 0.53	-0.43 -0.04 1.	.54 0.14 -0.38	-0.04 1.52 0.06	-0.47 -0.05 1.71 0.13
V	V	v		V
-0.31 -0.03 0.51 2.30	-0.07 0.01 0.	.11 1.69 -0.03	0.01 0.02 1.58	-0.07 0.01 0.10 1.82
o mx ## input stokes vector				
1.040 0.979 1.016 0.961	1.029 0.993 1.0	005 0.974 1.034	0.988 1.006 0.973	1.031 0.988 1.005 0.974