The effect of a magnetic field

on the radiative excitation and
damping of p-modes
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Abstract

A rapidly oscillating Ap star pulsates in high-oder p-modes
under the influence of a strong magnetic field. The strong
field distorts spatially the angluar and radial the pulsa-
tion amplitude (eigenfunction). To study the effect of the
magnetic field on the radiative excitation and damping
of p-modes, we performed a fully nonadiabatic analysis
iIncluding the effect of a dipole magnetic field. A mag-
netic field always tends to stabilze low oder p-modes. For
high-order p-modes, on the other hand, the magnetic field
enhances kappa-mechanism excitation in some range of
the field strength, depending on the pulsation frequency.



Rapidly Oscillating Ap (roAp) stars:
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Balmforth et al. (2001)

Unperturbed model: 1.9M main-sequence star
X =0.7,Z = 0.02; Convection is suppressed.
logL = 1.164, l|logTesf = 3.9125, logR =0.281

Dipole magnetic field:
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Nonadaibatic analysis for axisymmetric (m = 0) modes
In terms of a series expansion.
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The nonmagnetic situation

M =19 log L = 1.164, log R = 0.28006, log Teff = 3.9125
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Pulsation frequency versus damping rate for the 2nd to
the 40th order £ = 1 p-modes in the absence of magnetic
field. The kappa-mechanism in the He™ ionization zone
excites low order (3rd to 7th) p-modes, while the kappa-
mechanism in the H-izonization zone excites three (28th—
30th) high order-modes below the critical frequency.



Magnetic damping on low-order modes

Nonadiabatic analysis (1_ =

1, low—order modes)
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Damping rate versus the strength of magnetic fields for
the low-order modes which are excited in the absence
of magnetic field. Due to the magnetic damping caused
by slow waves, all the § Scuti type pulsations are sup-
pressed if Bp is larger than ~ 1kG.



Comparison adivabatic vs nonadiabatic high-order modes |
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Pulsation frequency (upper panel) and damping rate (lower
panel) as functions of Bp for the 29th order p-mode of
¢y = 1. Filled and open circles show data from nona-
diabatic and adiabatic analyses, respectively. Compared
with the adiabatic situation, the frequency jumps (damping-
rate peaks) lie at different field strengths in the nonadia-
batic case. This mode is unstable for 3.5 < Bp(kG) < 6
and Bp(kG) < 2.



Comparison adivabatic vs nonadiabatic high-order modes Il
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The same as the previous figure but for the 26th p-mode.
This mode is stable at B, = 0, but becomes marginally
unstable in a range of 5 < Bp(kG) < 6.5.



Latitudinal amplitude distribution
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The modulus of the latitudinal amplitude distribution of
the 29th order p-mode of 4,, 1 at Bp = 4.5. This
mode is excited with a growth rate of 1.7 x 10 °s— 1,
Thick and thin lines refer to the photosphere and the outer
boundary (at - = 0.002), respectively. The amplitude is
essentially confined in a range of § < 45°. Compared to
the adiabatic case at minimum damping, the confinment
to the magnetic axis is less pronounced.



