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Abstract

A rapidly oscillating Ap star pulsates in high-oder p-modes
under the influence of a strong magnetic field. The strong
field distorts spatially the angluar and radial the pulsa-
tion amplitude (eigenfunction). To study the effect of the
magnetic field on the radiative excitation and damping
of p-modes, we performed a fully nonadiabatic analysis
including the effect of a dipole magnetic field. A mag-
netic field always tends to stabilze low oder p-modes. For
high-order p-modes, on the other hand, the magnetic field
enhances kappa-mechanism excitation in some range of
the field strength, depending on the pulsation frequency.
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Rapidly Oscillating Ap (roAp) stars:

Periods;
� � ���

min
(Freq.; ���	� � � � � mHz)

Magnetic fields: a few kG

High-order p-modes under a
strong magnetic field

Balmforth et al. (2001)
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Dipole magnetic field:
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Nonadaibatic analysis for axisymmetric ( H � �
) modes

in terms of a series expansion.
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The nonmagnetic situation
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Pulsation frequency versus damping rate for the 2nd to
the 40th order � � �

p-modes in the absence of magnetic
field. The kappa-mechanism in the He

�
ionization zone

excites low order (3rd to 7th) p-modes, while the kappa-
mechanism in the H-izonization zone excites three (28th–
30th) high order-modes below the critical frequency.
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Magnetic damping on low-order modes
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Damping rate versus the strength of magnetic fields for
the low-order modes which are excited in the absence
of magnetic field. Due to the magnetic damping caused
by slow waves, all the � Scuti type pulsations are sup-
pressed if -

T
is larger than � �

kG.
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Comparison adivabatic vs nonadiabatic high-order modes I
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Pulsation frequency (upper panel) and damping rate (lower
panel) as functions of -

T
for the 29th order p-mode of

��� � �
. Filled and open circles show data from nona-

diabatic and adiabatic analyses, respectively. Compared
with the adiabatic situation, the frequency jumps (damping-
rate peaks) lie at different field strengths in the nonadia-
batic case. This mode is unstable for

' � � � -
T 0���� 5 � �

and -
T 0���� 5 � � .
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Comparison adivabatic vs nonadiabatic high-order modes II
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The same as the previous figure but for the 26th p-mode.
This mode is stable at - . � �

, but becomes marginally
unstable in a range of

� � -
T 0���� 5 � � � � .
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Latitudinal amplitude distribution

The modulus of the latitudinal amplitude distribution of
the 29th order p-mode of � � � �

at -
T �  � � . This

mode is excited with a growth rate of
� �	� �

� �����
s
���

.
Thick and thin lines refer to the photosphere and the outer
boundary (at �

� � � � � � ), respectively. The amplitude is
essentially confined in a range of

? �  $�	�
. Compared to

the adiabatic case at minimum damping, the confinment
to the magnetic axis is less pronounced.
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