NLTE wind models of A supergiants

Jiří Krtička ${ }^{1}$
Jifí́ Kubát ${ }^{2}$

${ }^{1}$ Masaryk University Brno, Czech Republic ${ }^{2}$ Astronomical Institute, Ondřejov, Czech Republic

Stellar wind of A supergiants

- similar properties as stellar wind of OB stars
- accelerated by the absorption of radiation mainly in the resonance lines of $\mathrm{C}, \mathrm{N}, \mathrm{O}$ or Fe
- the domain of A supergiants seems to be overlooked by wind theorists up to now

NLTE models of stellar wind

(Krtička \& Kubát 2004)

- spherically symmetric stationary wind models
- radiative force calculated using level occupation numbers obtained from the solution of statistical equilibrium equations
- wind density, velocity and temperature calculated as the solution of hydrodynamic equations
- enable prediction of \dot{M}, v_{∞}

Process of model calculation

radiative transfer equation

Process of model calculation

radiative transfer equation

NLTE equations

Process of model calculation

IAU Symposium No. 224 "The A-Star Puzzle", Poprad. Slovakia. Julv 8-13, 2004 - p.

Process of model calculation

Process of model calculation

Continuum radiative transfer

$$
\mu \frac{\partial I(r, \nu, \mu)}{\partial r}+\frac{1-\mu^{2}}{r} \frac{\partial I(r, \nu, \mu)}{\partial \mu}=\eta-\chi I(r, \nu, \mu)
$$

- wind motion neglected
- $I(r, \nu, \mu)$ is the specific intensity of radiation
- $\mu=\cos \theta$ is the direction cosine, ν is the frequency
- $\chi(r, \nu, \mu), \eta(r, \nu, \mu)$ are the emissivity and absorption coefficients
- solution obtained using Feautrier method

Line radiative transfer

Solution using Sobolev approximation

$$
\bar{J}_{i j}=(1-\beta) S_{i j}+\beta_{c} I_{c},
$$

- $\bar{J}_{i j}=\int_{0}^{\infty} \mathrm{d} \nu \int_{-1}^{1} \mathrm{~d} \mu \phi_{i j}(\nu) I(r, \nu, \mu)$ is the mean intensity, $\phi_{i j}(\nu)$ is the line profile
- I_{c} is the specific intensity of star,
$\beta=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} \mu \frac{1-e^{-\tau_{\mu}}}{\tau_{\mu}}, \beta_{c}=\frac{1}{2} \int_{\mu_{*}}^{1} d \mu \frac{1-e^{-\tau_{\mu}}}{\tau_{\mu}}$,
$\mu_{*}=\left(1-R_{*}^{2} / r^{2}\right)^{1 / 2}$,
- source function $S_{i j}=\eta_{i j} / \chi_{i j}$.

Statistical equilibrium equations

Occupation number N_{i} of atoms in the state i is given by the solution of

$$
\sum_{j \neq i} N_{j} P_{j i}-N_{i} \sum_{j \neq i} P_{i j}=0 .
$$

- $P_{i j}$ are rates of all processes that transfer an atom from a given state i to state j,
- radiative excitation and deexcitation, radiative ionization and recombination and corresponding collisional processes contribute to $P_{i j}$

Included ionization states

HI-II	Hel-III	CI-IV	NI-IV
OI-IV	NeI-IV	NaI-III	MgII-IV
AlI-V	Sill-V	SII-V	ArIII-IV
CaII-IV	FeII-V	NiII-V	

- model atoms are taken mostly from TLUSTY code (Hubeny \& Lanz 1992, 1995)
- the original set is extended using data from Opacity Project and Iron Project

Hydrodynamic equations

- continuity equation

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(r^{2} \rho v_{r}\right)=0 \Rightarrow \dot{M}=4 \pi r^{2} \rho v_{r}=\text { const. }
$$

- ρ is the wind density
- v_{r} is the radial velocity

Hydrodynamic equations

- equation of motion

$$
v_{r} \frac{\mathrm{~d} v_{r}}{\mathrm{~d} r}=g^{\mathrm{rad}}-g-\frac{1}{\rho} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(a^{2} \rho\right)
$$

- g is the gravity acceleration
- a is the isothermal sound speed
- $g^{\text {rad }}=g_{\text {lines }}^{\text {rad }}+g_{\mathrm{el}}^{\text {rad }}$ is the radiative acceleration

$$
g_{\text {lines }}^{\text {rad }}=\frac{8 \pi}{\rho c^{2}} \frac{v_{r}}{r} \sum_{\text {lines }} \nu H_{c} \int_{\mu_{c}}^{1} \mathrm{~d} \mu \mu\left(1+\sigma \mu^{2}\right)\left(1-e^{-\tau_{\mu}}\right)
$$

Hydrodynamic equations

- energy equation

$$
\frac{3}{2} v_{r} \rho \frac{\mathrm{~d} a^{2}}{\mathrm{~d} r}+\frac{a^{2} \rho}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(r^{2} v_{r}\right)=Q^{\mathrm{rad}}
$$

- $Q^{\text {rad }}$ is the radiative heating/cooling calculated using the thermal balance of electrons method (Kubát et al. 1999)

Stellar wind of HD 12953

- A1lae supergiant with parameters $T_{\text {eff }}=9100 \mathrm{~K}, R=145 \mathrm{R}_{\odot}$ and $M=9.7 \mathrm{M}_{\odot}$ (Kudritzki et al. 1999)

Stellar wind of HD 12953

- A1lae supergiant with parameters $T_{\text {eff }}=9100 \mathrm{~K}, R=145 \mathrm{R}_{\odot}$ and $M=9.7 \mathrm{M}_{\odot}$ (Kudritzki et al. 1999)
- observed wind mass-loss rate is $\dot{M}=4.3 \times 10^{-7} M_{\odot}$ year $^{-1}$ and observed wind terminal velocity is $v_{\infty}=150 \mathrm{~km} \mathrm{~s}^{-1}$ (Kudritzki et al. 1999)

Stellar wind of HD 12953

- A1lae supergiant with parameters $T_{\text {eff }}=9100 \mathrm{~K}, R=145 \mathrm{R}_{\odot}$ and $M=9.7 \mathrm{M}_{\odot}$ (Kudritzki et al. 1999)
- observed wind mass-loss rate is $\dot{M}=4.3 \times 10^{-7} M_{\odot}$ year $^{-1}$ and observed wind terminal velocity is $v_{\infty}=150 \mathrm{~km} \mathrm{~s}^{-1}$ (Kudritzki et al. 1999)
- calculated wind parameters are $\dot{M}=1.3 \times 10^{-7} M_{\odot}$ year $^{-1}$ and $v_{\infty}=140 \mathrm{~km} \mathrm{~s}^{-1}$

Wind model of HD 12953

Conclusions

- we presented NLTE code which is capable to calculate wind models of A supergiants,
- predicted wind parameters agree relatively well with observed parameters of HD 12953,
- model improvements are necessary (e.g. consistent radiative transfer, inclusion of X-rays, etc.)
- more model testing is necessary.

