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Abstract. Regularites and systematic trends among the sample of Stark widths
obtained by using modified semiempirical method from the STARK-B database
were analysed. Two different approaches are independently used – multiple re-
gression method combined with simple cluster analysis, and random forest
(RF) machine learning algorithm. Predicted values of Stark widths calculated
with estimate formulae obtained from multiple regression method, and those
values predicted by using RF algorithm, were compared with already known
corresponding experimental Stark widths published elsewhere. Results of this
analysis indicate that both of these methods can mostly predict new Stark
width values within the acceptable range of accuracy.

Key words: line profile — Stark broadening -– atomic data — machine learn-
ing

1. Introduction

Stark broadening theory plays the important role in investigation of high tem-
perature dense plasma, where the collisional processes between the charged par-
ticles contribute significantly to the spectral line broadening. From technological
perspective, Stark widths and shifts of spectral lines in the spectra of neutral
atoms and ions are of interest for a number of problems - for example, analysis
and modelling of laboratory, laser produced, fusion or technological plasmas,
accurate spectroscopic diagnostics and modelling, etc. Applications of Stark
broadening theory are also various in research of astrophysical plasma as well -
for example, for interpretation, synthesis and analysis of stellar spectral lines,
determination of chemical abundances of elements from equivalent widths of ab-
sorption lines, opacity calculations, estimation of the radiative transfer through
the stellar atmospheres and subphotospheric layers, radiative acceleration con-
siderations, nucleosynthesis research, etc.
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Calculation of Stark broadening parameters sometimes can be difficult, and
it can take a time, especially if quantum theory is applied. If conditions to ap-
ply less accurate but faster quasistatic, unified, semiempirical or semiclassical
methods are not satisfied, quick and simple estimates could become important,
especially if we do not need a great accuracy, or there is no time for more com-
plicated and more accurate calculations, or if we have a great number of Stark
broadening parameters to calculate in very small period of time. This is very
common case, for example, if astrophysical spectra are investigated. Accord-
ing to (Wiese, Konjevic, 1982), regularities and systematic trends (RST) can
be found among the Stark widths of atomic spectral lines, which can simplify
the way of obtaining these estimates. This is especially significant when some
atomic data, necessary to perform more accurate Stark broadening methods of
calculations, are missing. For example, the lack of atomic data, such as energy
levels or transition probabilities is usually noticed in the spectral data for rare-
earth elements. Analysis based on RST is mostly the only way to determine
Stark widths and shifts in sometimes very complex spectra of these elements,
which become more and more important in spectral investigations of hot stars
of spectral type A and B, and white dwarfs (Popović, Dimitrijević, 1998).

In this investigation, we focused on searching systematic trends among great
amount of Stark widths from STARK-B database (Sahal-Bréchot et al., 2014b,
2015), obtained by modified semiempirical (MSE) method (Dimitrijević, Kon-
jević, 1981) as a continuation of our previous work on determination of unknown
MSE Stark widths and studying of RST among the MSE Stark broadening pa-
rameters (see, for example, Majlinger et al., 2015, 2017a,b, 2020a). Two different
methods are used to analyse the sample – classical statistical regression method,
which has already been used many times in previous investigations of regular-
ities and systematic trends, and random forest (RF) algorithm from a group
of machine learning methods, which become very popular methods more often
used in these days whenever some classification or non-linear regression is needed
to be performed. Unlikely to previous analyses of RST, here some new atomic
parameters, which have not taken into consideration before, are included. We
will shortly explain both of these methods and finally discuss and compare the
obtained results.

2. Methods

2.1. Simple cluster and multiple regression analysis

Estimates of Stark widths can be divided into three main groups:

– approximations derived from the theory – e.g., Cowley’s formula (Cowley,
1971) or MSE formula (Dimitrijević, Konjević, 1987)

– formulae based on statistical analysis on a large number of existing Stark
widths (see e.g. Purić, Šćepanović, 1999; Purić et al., 1978).
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– formulae based on systematic trends noticed without statistical analysis on
corresponding examples (Wiese, Konjevic, 1982).

Whether it is one type or another, the formula for estimating Stark widths for
lines of multiple ionized atoms usually can be expressed as a non-linear function
of atomic and plasma parameters:

ωE = f(λ,Ne, T, Z,Eion, Eupper, Elower) (1)

Sometimes some of these parameters are included in the estimate implicitly,
through the effective ionization potential χj for level j:

χj = Eion − Ej , j = upper, lower (2)

according to Purić, or effective principal quantum number of the upper (n+) or
lower (n−) level, which has already been used, for example, in MSE theory of
Dimitrijević and Konjević (Dimitrijević, Konjević, 1981):

n2
+ =

Z2EH

χupper
(3)

n2
− =

Z2EH

χlower
(4)

Here Z − 1 is the charge of the ion, ωE is the estimated Stark width in Å, λ
is the wavelength in Å, Ne is the perturber density in cm−3, EH is the energy
of the hydrogen atom (or Rydberg constant), Eion is the ionization energy, and
Ej is the energy of upper or lower levels in cm−1 (j = upper, lower).

Immediately after the first article on Stark broadening (Holtsmark, 1919),
simple approximate formulas derived from the theory began to appear. Cowley’s
formula (Cowley, 1971) is probably the best known among them and it is still
commonly used in astrophysics. Cowley (1971) specified three different formu-
las, one for neutral emitters, one for electrically charged emitters (which humble
Cowley contributes to Griem), and one for estimating widths for temperatures
close to 10000 K. The authors use different variants of Cowley’s formula in ad-
dition to the original ones from the article (Cowley, 1971), and the difference
is in the neglect or addition of the lower effective principal quantum number as
a number and in the values of the numerical constant in the formula (see e.g.
Killian et al., 1991; Alwadie et al., 2020).

Jagoš Purić made a great effort in studying RST among the Stark width
values. The first works on regularities were published by (Purić, Ćirković, 1973)
and (Purić et al., 1978). Purić and his co-workers found the correlation between
Stark width and difference between ionization energy and energy of the upper
state (what he called the upper effective ionization potential) and a number
of experimental and theoretical values of Stark widths, offering a set of differ-
ent estimation formulae. In the following decades, a number of papers on this
topic were published, where different correlation parameters were stated for dif-
ferent transitions, different charges and different homologous and isoelectronic
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sequences (see e.g. Miller et al., 1980; Purić et al., 1978, 1993, 1997, 2008). This
statistical research is also supported by some other authors (see e.g. Djeniže,
1999; Djeniže et al., 2001), with occasional attempts to generalize this approach
for all different transitions, different elements and different charge values (Purić,
Šćepanović, 1999; Scepanovic, Puric, 2013). Comparing the great amount of
Stark width data from STARK-B database (Sahal-Bréchot et al., 2014b, 2015),
Purić offered so-called “generalized” estimate (Purić, Šćepanović, 1999) which
should be used, according to the authors, “to calculate Stark line widths of
the multiply charged ion of different elements along the periodic table.” These
scientific articles evolve over time, so Purić and co-workers later give up search-
ing for a universal formula for all lines and focus their statistical analysis only
on individual homologous or isoelectronic series (Dojčinović et al., 2011, 2012,
2013a,b; Tapalaga et al., 2011, 2018; Jevtić et al., 2012; Trklja et al., 2019b,a).
However, the possibility to apply all of these estimates to predict new unknown
Stark widths should be furtherly discussed (Majlinger et al., 2017a,b, 2020b).

The final purpose of this research was to find new general estimates accurate
enough to approximately predict the unknown values of Stark widths. Our as-
sumption is that these new estimates should be related on existing estimates, e.
g. Cowley’s from Cowley (1971) and Purić’s from Purić and Šćepanović (1999).
However, after investigation of accuracy in prediction of uknown Stark widths
by using of these two estimates, in the cases of MSE calculated electron-impact
widths for Lu III and Zr IV spectral lines, it was obvious that they don’t offer
enough accurate approximation (Majlinger et al., 2017a, 2020b). At least in the
case of Zr IV Stark widths, several possible reasons were suggested to explain
this discrepancy (Majlinger et al., 2017b):

– numerical coefficients in estimations are not properly adjusted

– some important parameters are neglected in equation (1) but significantly
contribute to the result, and

– temperature functions used in previous estimates could be incorrect

According to statistical analysis of Stark widths calculated for 143 transitions
from 26 multiply charged ions of 17 elements using the modified semiempirical
method, (for example, most of them are elaborated by (Dimitrijević, Konjević,
1981), and previous assumptions, new estimates of Stark widths were found.
After providing simple cluster analysis (Aggarval, V., 2014) and multiple re-
gression analysis (for example Chatterjee, Simonoff, 2014), we concluded that
MSE Stark width sample has to be devided in three separate groups:

1. For a type I of transitions: nl–nl′, L = l , L′ = l′ (for example, 2s1S−2p1P o,
3s3S–3p3P o, 3p1P o − 3d1D, 4s3S–4p3P o, etc), proper estimate is Cowley-
like:

ωE1 = 3.438 · 10−24Neλ
2 n4

+ + n4
−

Z2(2l> − 1)−
3
4

f(T ) (5)
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2. For a type II of transitions: nl–n′l′, L = l, L′ = l′ (for example, 2p3P o–3s3S,
4p2P o–5d2D, 4d2D–5f2F o, 4d2D − 6f2F o, etc), proper estimate is Purić-
like:

ωE2 = 0.808 · 10−25Neλ
2 n6

+ + n6
−

Z2(2l> − 1)−
1
5

f(T ) (6)

Here f(T ) is chosen temperature function (which will be explained later),
while l> = max(lupper, llower), where lupper and llower are orbital quantum
numbers for upper and lower level respectively.

3. For all other types of these simplest transitions (type III), like nl–nl′, L 6= l,
L′ 6= l′ and nl–n′l′, L 6= l, L′ 6= l′ (for example, 3s1P o–3p1D, 3s4P o–3p4P ,
3p5Do–3d5F , 3d1F o–4p1D, etc.), a well known general expression, valid also
for the first two types, can be used to obtain width for particular lines within
a multiplet from an average width as a whole:

ωE3 =
(λE3

λ0

)2

ω0 (7)

where ωE3 and ω0 are estimates of uknown Stark widths and a Stark width
obtained with estimates (5) or (6), while λE3 and λ0 are corresponding
wavelengths respectively.

After optimizing the number of parameters in these estimates according to min-
imum description length properties (see, for example, Grünwald, 2004), and
keeping in mind that all models are uncertain, idealizing reality (Wit et al.,
2012) and that sample is not equal to population, we rounded exponents in (5)
and (6) on the closest integer or rational number, to avoid physically meaning-
less results (for example, λ1.74 is replaced with λ2, Z1.95 with Z2, etc.) and to
approach enough to probable statistical model ideally concerning about popu-
lation.

From interpolation of analysed data, new temperature function is suggested:

f(T ) =
1− β√
T

+ β
lnT√
T

(8)

where β is the linear function of temperature defined as:

β = AT +B (9)

Numerical constants A and B are estimated to be A = 9.62 · 10−7 and B =
−4.167 ·10−2 from the values of lower temperature limit for all considered Stark
widths. Lower temperature limit for most of considered Stark widths lies in a
range 15000 – 70000 K which corresponds to range of distance between perturb-
ing and perturbed levels used in all considered Stark width calculations around
cca 7500 – 38500 cm−1. It is easy to see that relation 0 ≤ β ≤ 1 is mostly
valid for such choice of A and B, and that temperature function approximately
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simulates both lower and upper temperature limit conditions when β reach to
its limits, which is in a good agreement with some previous analyses of behavior
of Stark width values for highest and lowest value of temperature (for example
Sahal-Bréchot et al., 2014a).

Correlation between new estimates of full Stark width at half maximum
(FWHM) obtained by using relations (5), (6) and (7), and existing MSE val-
ues for transition type I, type II and type III with corresponding regression
lines are displayed in Figs. 1-3 respectively. To calculate correlation parameters
for each estimate, we used the general symbol ωEST instead of ωE1, ωE2, and
ωE3. Correlation coefficients corresponding to each estimate WEST are pre-
sented in Table 1. In the most idealistic scenario, for log-log regression equation
logωEST = C1 + C2 logωMSE , should be valid C1 = 0, C2 = 1 and therefore
ωEST = ωMSE . As the additional attemption to confirm a validation of this
method, predicted Stark widths with estimates from above are compared with
corresponding experimental values from references (Konjević et al., 1984, 2002).
Result of this comparison is presented in Fig. 4.

Table 1. Correlation parameters for log-log regression equation

logωEST = C1 + C2 logωMSE , between results of estimates (5), (6) and (7)

respectively, and MSE values of FWHM Stark widths from analysed sample.

Transition type C1 C2 ErrC1 ErrC2 St. dev. Rcorr

I -1.45E-5 0.9126 0.0325 0.0336 0.13 97.76
II -.28E-5 1.0266 0.0473 0.0262 0.19 99.32
III -0.0334 0.84 0.025 0.029 0.064 97.23

2.2. Machine learning methods and RF algorithm

As machine learning represents a very popular tool for different types of prob-
lems encountered in science, here it was applied on the study of regularities of
Stark broadening. Machine learning model based on Random Forest algorithm
was developed and described in detail in reference (Tapalaga et al., 2022), so
here it would be briefly described for the sake of completeness. Before devel-
oping the model, we needed to develop and create a database for training and
testing of the future models. This database was created as a combination of two
databases, namely NIST atomic database (Kramida et al., 2022), from which we
took atomic parameters of interest for every transition and Stark B database
(Sahal-Bréchot et al., 2015) from which we took Stark width and plasma pa-
rameters for each calculated width. After the completion of this database, it
contained around 53 000 lines. Features selected for this research were: Plasma
electron density, electron temperature, atomic number, charge of the emitter,
energies of both upper and lower levels, total angular momentum of both upper
and lower levels, principal and orbital quantum numbers for initial and final of
corresponding transitions.
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Figure 1. Log-log correlation between FWHM Stark width values obtained by us-

ing estimates from multiple regression analysis (ωE1) and MSE values (ωMSE), with

corresponding regression line.
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Figure 2. Log-log correlation between FWHM Stark width values obtained by us-

ing estimates from multiple regression analysis (ωE2) and MSE values (ωMSE), with

corresponding regression line.

Additionaly, ionization energy and quantity called upper level effective po-
tential after (Purić, Šćepanović, 1999) were taken into a set of input parameters,
which provides a label data comparison. Data outliers were removed as data
having higher energy of lower level than upper level. Finally, the analysis was
constrained to the following plasma parameters: N ≤ 1017 cm−3, Te ≤ 150 000
K and Eupper ≤ 500 eV. This restriction left us with around 32 000 available
transitions for further analysis. To choose the best model and corresponding
parameters, GridSearchCV (Grid Search Cross Validation) technique was ap-
plied. Here for every set of model parameters, model is trained and tested on
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Figure 3. Log-log correlation between FWHM Stark width values obtained by us-

ing estimates from multiple regression analysis (ωE3) and MSE values (ωMSE), with

corresponding regression line.

0 20 40 60 80 100
-20

0

20

40

60

80

100

120

140

160

180

W
EST

 [Å]

W
EXP

 [Å]

Figure 4. Linear correlation between FWHM Stark width values obtained by using

estimates from multiple regression analysis (ωEST ) and corresponding experimental

values (ωEXP ), with corresponding regression line.

given dataset, and best performance is reported. Along with best performance,
algorithm reports with which parameters has been obtained. Three models were
tested: Decission Tree, Random Forest and Gradient Boosting Regressor. Per-
formances of the model are reported in table 2.

It can be seen that the best results were obtained with Random Forest for
the following parameters: maximal depth of the tree equal to 10, minimal sam-
ples at one leaf set to 3 and number of estimators equal to 200. As in the case
of multiple regression method, Stark widths predicted with using RF algorithm
were compared with corresponding experimental widths from the same refer-
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Table 2. Comparison of preformances for three learning machine models used in anal-

ysis.

Model Parameters R2 score
Decision tree max depth = 5 0.9

Random Forest
max depth = 10

min samples leaf = 3
n estimators = 200

0.97

Gradient Boosting Regressor
max depth = 10

min samples leaf = 2
n estimators = 200

0.96

ences as before (Konjević et al., 1984, 2002). Results of this comparison are
shown in Fig. 5 and Fig. 6. As we can see on figure 5, RF model preforms well,
except of few points that are estimated badly. Also, from the figure 6 it can
be concluded that RF method performs better in visible part than in the ultra
violet or infrared part of the spectrum.
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Figure 5. Log-log correlation between FWHM Stark width values obtained by using

RF algorithm (ωRF ) and corresponding experimental values (ωEXP ), with correspond-

ing regression line.

To improve the model and to test whether we could reduce the number of
features in the dataset while keeping the accuracy of the model, permutation
importance test was performed. This method permutes each feature randomly
within dataset, and calculate the decrease in performance of the already trained
model. Greater the decrease, more important is the feature. Results of this
analysis are given in table 3.
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Figure 6. Dependence of ratio between experimental FWHM Stark widths (ωEXP )

and corresponding values obtained by using RF algorithm (ωRF ) on wavelength of

spectral lines for which Stark widths are calculated.

Table 3. Feature importance test results for RF model.

Feature Importance score

Electron density Ne 5.9 ± 0.2

Upper - level principal quantum number ni 3.50 ± 0.12

Charge of emitter q 1.04 ± 0.04

Upper-level effective potential χ 0.37 ± 0.04

Emitter Z 0.31 ± 0.03

Upper-level orbital quantum number li 0.19 ± 0.02

Energy of upper level Eupper 0.11 ± 0.02

Lower-level principal quantum number nf 0.11 ± 0.01

Energy of lower level Elower 0.048 ± 0.005

Lower-level orbital quantum number lf 0.029 ± 0.004

Lower-level total angular momentum quantum number Jupper 0.029 ± 0.007

Upper-level total angular momentum quantum number Jlower 0.021 ± 0.005

Te 0.017 ± 0.003

Ei 0.002 ± 0.001

Results in table 3 indicate that electron density is most important feature
as expected, while other important features are naturally emitter, its charge,
principal and orbital quantum numbers of upper level and upper-level effective
potential χ. Other parameters were removed from analysis, as upper level is
included in definition of χ, and model was retrained. As expected, model gave
very similar results as those reported in this work, which just confirms that
model didn’t got confused with some redundant data in initial run.
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3. Discussion

For Type I, ratios between estimates and MSE values vary between 0.5 and 2.6,
for type II between 0.4 and 1.7, and for type III between 0.7 and 2.0. so we can
say that accuracy of our estimates according to MSE values are mostly between
–50% and +160%. Including predicted accuracy of MSE results, which is ±50%,
we expect that global accuracy of our estimates, according to statistical sample
we used, should lie between ±50% and ±100% e.g. comparable with the old
Griem’s semiempirical theory (Griem, 1968).

Despite of several exceptions, ratio between most of new calculated estimates
and corresponding experimental Stark widths from references (Konjević et al.,
1984, 2002), lies between 0.2 and 2 (see Tab. 3), which leads to conclusion that
our estimates are usually accurate in a range of ±100%, in accordance with our
expectations. On the other hand, average value of this ratio for comparison of
estimates with experimental Stark widths is 1.38 ± 0.11, resulting with accuracy
in a range between ±30% and ±50%, which is even better than theoretically
predicted accuracy for modified semiempirical theory by Dimitrijević and Kon-
jević (1981).

Ratios between Stark widths predicted by using RF algorithm and corre-
sponding experimental Stark widths taken from the same references mentioned
above (Konjević et al., 1984, 2002), with the exception of two extreme values
0.06 and 4, lie between 0.16 and 2.23, but average ratio of these values is 0.96
± 0.16, leading to an accuracy of around ±20%, which is much better than
accuracy of predicted results obtained by using classical statistical method. To
express the accuracy for both methods, as it is usual in statistics, we used
arithmetical mean as the average value of analysed data, while the standard
deviation is used as a measure of data dispersion. As a final proof that both
of presented methods could be valid, in Fig. 7 we presented results obtained
from mutual comparison of Stark width values predicted with these two differ-
ent approaches. Linear regression equation which expresses dependence between
Stark widths predicted with RF method ωRF and those predicted by using es-
timates WEST obtained by using formulae (5), (6) and (7) is found to be ωRF

= 0.0523 + 1.0563 ωEST with correlation coefficient RCORR = 91.05%. Figure
7 and values of correlation parameters show that both of these two methods
are equivalent, e. g. the results of the estimates with RF model and classical
multiple regression statistical method are almost the same. Although it is feeded
with results obtained by using semiclassical perturbation method (see for exam-
ple Sahal-Bréchot et al., 2014a), RF algorthm is shown to be a good predictor,
despite of a theoretical method used to calculate analysed Stark width data,
because it gives results comparable with estimates based on set of calculations
obtained by using modified semiempirical method.
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Figure 7. Linear correlation between FWHM Stark width values obtained by using

estimates from multiple regression analysis (ωEST ) and corresponding values obtained

by using RF algorithm (ωRF ) , with corresponding regression line.

4. Conclusion

Both of the methods used in this study have some advantages and disadvan-
tages. In general, the advantage of ML models is that they are faster and easier
to perform with the proper knowledge of computer programming. On the other
hand, any of ML algorithms is some kind of black box, e. g. we finally don’t
know how input and output parameters are connected. If we want to find out
the relationship between Stark width values and atomic and plasma parame-
ters presented in a form of simple formula, we have to continue to investigate
regularities and systematic trends of Stark widths using the estimates as, for
example, were obtained here (equations (5)-(7)). If we don’t need to know this
connection, using of some ML algorithm is probably the best solution. Results
of predictions using RF model show that, if some general estimate really ex-
ists, according to previous vision of Jagoš Purić, it should be the function of 14
variables. In this case, number of input atomic and plasma parameters we used
before in a group of equations (1) to find systematic trends among the Stark
width value, should be enlarged. We proved that, with additional two parame-
ters (upper and lower orbital quantum number) and considering transition type
into analysis, strongly affect on result of estimate, as it is assumed, for example,
in (Majlinger et al., 2017b).

However, it is very important to stress that the estimates obtained in this
work should be valid under the assumption that they can be applied on simple
type of spectra, as they have been analysed in this case (for example, where for
all transtitions in a whole spectrum parent term remains the same). For more
complex spectra, these estimates should be improved, or some other methods
are welcome to be used. Furthermore, although RF model shows very strong
potential to be applied on RST analysis in future, it is tested only in the sample
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of Stark broadening parameters related to simple spectra described here, and
in the case of Li I spectral lines (Tapalaga et al., 2022), so it should also be
confirmed in a greater sample to make us sure that this method can be applied
generally in prediction of new Stark widths despite of complexity of a spec-
trum we investigate.For the application of these methods to study regularities
and systematic trends among the Stark broadening parameters of lines in more
complex spectra, additional investigations are needed, and development of both
of these method are neccessary. Created database used in this and previous
study is published online and it is available for use. It can be found on the link
https://github.com/ivantraparic/StarkBroadeningMLApproach.
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Konjević, N., Dimitrijević, M. S., Wiese, W. L. 1984, J. Phys. Chem. Ref. Data, 13,
649
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Tapalaga, I., Dojčinović, I. P., Purić, J. 2018, Mon. Not. R. Astron. Soc., 474, 5479

Tapalaga, I., Traparić, I., Trklja Boca, N., et al. 2022, Neural Comput. Applic., 34,
6349
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