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Abstract. Laser ablation is among the various methods employed for expedit-
ing the prototyping of printed circuit boards. Laser-induced breakdown spec-
troscopy (LIBS) serves as a convenient technique for overseeing the targeted
elimination of thin layers with lasers. Consequently, this approach facilitates
the rapid prototyping of printed circuit boards. In this paper the obtained
LIBS data are analyzed by using data dimension reduction techniques: princi-
pal component analysis (PCA), t-SNE and UMAP to obtain an indication that
copper layer is fully removed. For machine learning approach to data analy-
sis we use Solo+Mia software package (Version 9.1, Eigenvector Research Inc,
USA).

Key words: Machine learning — Dimensionality reduction — Laser induced
breakdown spectroscopy

1. Introduction

Machine learning methods, including both unsupervised techniques like PCA
(Principal Component Analysis) and supervised techniques like LDA (Linear
Discriminant Analysis), are increasingly being employed to analyze LIBS data.
These combinations of well-known machine learning algorithms with LIBS en-
able the swift and accurate classification of diverse samples Bellou et al. (2020);
Diaz et al. (2020); Porizka et al. (2018); Yang et al. (2020); Zhang et al. (2022).

Laser ablation offers a swift method for the rapid prototyping of printed cir-
cuit boards. A viable approach to this technique was introduced in a prior work
Rabasovi¢ et al. (2016). In our application, we have harnessed laser-induced
breakdown spectroscopy (LIBS) as a convenient method to both perform ab-
lation and monitor the precise removal of thin layers using lasers. A similar
technique has been detailed in a recent publication, as evidenced by Shiby &
Vasa (2022). In the study by Rabasovi¢ et al. (2016), LIBS data were scru-
tinized through the application of correlation coefficients. Presently, with the
increasing accessibility of high-speed computers capable of machine learning,
the trajectory of analysis algorithms has shifted from basic numerical calcula-
tions towards more advanced artificial intelligence methods. Our initial efforts
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for machine learning analysis of LIBS printed circuit board data, using princi-
pal component analysis are presented in Sevic et al. (2020). Interesting appli-
cations of machine learning algorithms for analysis of LIBS data are presented
in Boucher et al. (2015); Moros et al. (2013); Serranoa et al. (2014); Rabasovic
et al. (2022). State of the art approaches to the problem are reviewed in Pofizka
et al. (2018); Vrdbel et al. (2020); Zhang et al. (2022).

In this paper we study the spectral data by using data dimension reduction
techniques based on machine learning (ML). For ML approach to data analysis

we use Solo+Mia software package (Version 9.1, Eigenvector Research Inc, USA)
Wise et al. (2006).

2. Methods

Our experimental arrangement for acquiring the training spectra required for
data dimensionality reduction is comprehensively elucidated in Rabasovi¢ et al.
(2016). In brief, spectral images capturing the optical emissions from laser-
induced plasma on a printed circuit board are obtained using a streak camera.
These images are temporally integrated to generate spectra at different time
points. Importantly, due to the time-resolved nature of streak images, we had
the ability to carefully choose time intervals for spectrum integration, ensuring
that the highly intense optical emissions from the initial plasma phase were
excluded.

Data dimension reduction constitutes a fundamental technique within the
realm of machine learning. This method involves using a dataset with a particu-
lar structure to ”train” a machine, enabling it to discern specific features within
the input data. These discernible characteristics are accentuated through the
process of data dimension reduction. Subsequently, the machine becomes profi-
cient at recognizing and identifying these characteristics in newly presented data
that shares a similar structure and nature. A prevalent approach for automating
this analysis is by teaching the machine a low-dimensional representation of the
data. Within this low-dimensional representation, each object from the origi-
nal high-dimensional dataset is portrayed as a point in a reduced-dimensional
space. This representation is designed in such a way that proximate points cor-
respond to similar objects, while distant points correspond to dissimilar ones.
The low-dimensional embedding lends itself to straightforward visualization.

In this study we compare principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and uniform manifold approximation
and projection (UMAP) methods for analysis of LIBS spectral data to obtain
indication that copper layer is fully removed on given small area of printed
circuit board.

The PCA was proposed long ago, see Hotelling (1933); Karhunen (1947);
Lévy (1948). Efficient implementation of t-SNE is proposed in Van der Maaten
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& Hinton (2008). UMAP is proposed in McInnes et al. (2018, 2020); Sainburg
et al. (2020).

Similarly to most non-linear dimension reduction techniques, t-SNE and
UMAP lack the strong interpretability of PCA. In particular the dimensions
of the t-SNE and UMAP embedding space have no specific meaning, unlike
PCA where the dimensions are the directions of greatest variance in the source
data.

For obtaining the ML models we have used the set of 40 printed circuit
boards spectra. For testing purposes we used spectra from beggining and from
the end of ablation process.

3. Results and discussion

Plasma breakdown optical spectra of printed circuit board at the start, when
only copper is ablated; and when the substrate is fully exposed, are shown in
Fig. 1. Their differences could be seen by a naked eye.
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Figure 1. Plasma breakdown optical spectra of printed circuit board at the start,

when only copper is ablated; and when the substrate is fully exposed.

The first two principal components of LIBS data are shown in Fig. 2. Em-
beddings plots for two t-SNE and UMAP components are shown in Fig. 3 and
Fig. 4. Data dimension reducing techniques t-SNE and UMAP are designed for
visualization of data. Using numerical results of embedding components any
clustering technique will have no problem to put the test specrum into corre-
sponding cluster.

Visual comparisons of PCA, t-SNE and UMAP plots shows the best perfor-
mance of UMAP method. When reduced to two dimensions, dimension reduced
spectral data are the most closely grouped by UMAP method. It should be men-
tioned that results presented in Fig. 4 were obtained when UMAP algorithm was
initialized with parameters suggested by SOLO software. On the other hand,
we had to try varying parameters for initialization of t-SNE algorithm to obtain
acceptable results shown in Fig. 3.
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Figure 2. Scores plot of first two principal components.
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Figure 3. Embeddings plot for two t-SNE components.

4. Conclusions and Discussion

The rapid prototyping of printed circuit boards can be effectively accomplished
through the application of laser ablation and LIBS. Our analysis of LIBS data
related to printed circuit boards has involved the utilization of data dimension
reduction techniques.

In our previous investigations, we employed correlation coefficients and PCA
to determine the point at which laser ablation penetrates the composite sub-
strate of the printed circuit board. In this particular study, we conducted a
comparative analysis of PCA, t-SNE, and UMAP methods for reducing the di-
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Figure 4. Embeddings plot for two UMAP components.

mensionality of spectral data. Our findings have demonstrated that the UMAP
method stands out as the most promising candidate for pinpointing the precise
moment when the copper layer is completely ablated.
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