Orionid meteor stream

B.A. Lindblad1 and V. Porubčan2

1 Lund Observatory, Box 43, S-221 00 Lund, Sweden

2 Astronomical Institute of the Slovak Academy of Sciences, Interplanetary Matter Division, Dúbravská cesta 9, 842 28 Bratislava, The Slovak Republic

Received: May 15, 1999

\textbf{Abstract.} Based on data available at the IAU Meteor Data Center in Lund 60 precisely reduced photographic Orionid orbits and 17 video observed orbits are analysed. Mean photographic and video orbits are compared with the orbit of comet Halley. The Orionid meteoroid stream structure and radiant motion is studied, and compared with previous visual and photographic studies of the stream. Reports based on visual observations of a very complicated radiant structure of the Orionid stream are not substantiated.

\textbf{Key words:} meteoroid streams – Orionids – orbits

1. Introduction

The Orionid meteor stream is active in the period October 2 - November 7 (Cook 1973). It normally reaches a broad maximum on October 20-22 with a peak visual hourly rate of 15-30 meteors per hour. An interesting feature of the Orionid stream is its suggested association (together with the Eta Aquarid stream) with comet Halley (McIntosh and Hajduk 1983 and others).

2. History

In the catalogue of principle apparitions of meteors Quetelet (1839) listed several historical accounts of increased meteor activity in mid-October. Independently Herrick (1839, 1840) reported an increased level of meteor activity in mid-October. It is, however, not clear if these reports actually refer to the present day Orionid meteor stream. The first precise radiant determination of the Orionids was made by A. Herschel in 1864 and 1865 (Denning 1899). The derived radiant position was $\alpha = 90^\circ$, $\delta = 15.5^\circ$. Numerous radiant studies were made during the following decades. Denning (1876) lists an Orionid radiant observed October 18-19, 1874 with a radiant position $\alpha = 88^\circ$, $\delta = 11^\circ$. Denning (1918) strongly emphasized that the Orionid radiant was stationary - i.e., the radiant appeared to be stationary in (α, δ) during the entire period of shower activity. A lively debate followed in the literature (Olivier 1923, Denning 1923, Dole 1929,

McIntosh 1929, Prentice 1933, 1936, 1941). The observations by Olivier, Dole, McIntosh and Prentice showed quite conclusively that a radiant motion in right ascension occurs. For details of this debate see Olivier (1925), Lovell (1954) and Kronk (1988). A list of authors dealing with the Orionid shower and its activity from 1900 to 1968 was summarized by Hajduk (1970).

An interesting feature of the Orionid shower as reported by many visual observers is the apparent complexity of the radiant. In particular van Rootsman (1930) and Prentice (1933, 1936 and 1939) have postulated a multiple radiant structure. Prentice lists three separate Orionid radiants each having its own radiant motion. He also lists different times of maximum activity for these radiants. On the other hand, Hoffmeister (1948) in his extensive studies of the major visual meteor showers finds a well defined Orionid radiant area centered at \(\alpha = 93.5^\circ, \delta = 15.9^\circ \) (equinox 1925.0). In Hoffmeister’s study (pp. 61, 114-115 and 274) there is only a very slight indication of a secondary radiant. A very precise set of Orionid radiants was obtained in 1911-20 by Pokrovsky (1928). Again there is no indication of a multiple radiant structure. Note that most of the above radiant positions are quoted for equinox 1925 or 1950. Hence for a direct comparison of these radiants with radiants referred to equinox 2000 add 1.05° or 0.70°, respectively, to the quoted right ascension values of the radiant.

3. Modern visual, telescopic and video observations

Observations of the Orionid meteor shower carried out by a team of visual observers at the Skalnate Pleso Observatory in 1945-50 have been analysed by Štolh and Porubčan (1981) and Porubčan and Zvoláňková (1984). The observations indicate a shower maximum in the solar longitude interval 207.0° - 207.8° (1950.0). During the International Halley Watch (IHW) visual recordings of the Orionid shower were carried out by a world-wide network of amateur observers (Edberg et al. 1988, Porubčan et al. 1991). The IHW visual data turned out to be a very heterogeneous data sample, and numerous difficulties were encountered in the data analysis (Porubčan et al. 1991).

The return of comet Halley in 1986 caused a renewed interest in the Orionid (and Eta Aquarid) meteor streams, and a number of theoretical studies on the evolution of these streams have appeared in the literature (Babadzhanov and Obrubov 1979, Hughes 1987, McIntosh and Jones 1988) and others. These theoretical studies were based on very few photographic Orionid and Eta Aquarid meteoroid orbits.

Telescopic observations of the Orionid meteor radiant have been analysed by Znojil (1968) and Porubčan (1973). In Porubčan’s study a total of 60 Orionid telescopic meteors were analysed and individual telescopic radiants were computed. A mean radiant \(\alpha = 94.8^\circ, \delta = 16.0^\circ \) at solar longitude 208° (equinox 1950) was determined. There is an indication of a splitting of the telescopic radiant into two subradiants during in the initial phase of Orionid activity. The
study showed that radiants of faint meteors are more dispersed than those obtained from photographic observations.

Two-station video observations of the Orionids have been reported by Hawkes, Jones and Ceplecha (1984) and de Lignie and Jobse (1995). In all 19 precisely reduced Orionid orbits have been published to date. A discussion of the video observations is given in section 9.

4. Photographic observations

The first photographic observations of the Orionid meteor shower were made at the Harvard Observatory, where three Orionids were recorded on October 20, 1922 (King 1923). A radiant position at $\alpha = 94.6^\circ$, $\delta = 15.7^\circ$ (equinox 1922) was determined in good agreement with A. Herschel’s observations in 1864-1865. Comparatively few double station Orionid orbits were obtained during the Harvard small camera photographic meteor program in Massachusetts and during the first few years of the Super Schmidt program. In Kresák and Porubčan (1970) the Orionids were studied based on only 30 photographic orbits. With this in mind we decided to make a new study of the Orionid radiant and orbit based on all precisely reduced photographic Orionid orbits available at the IAU Meteor Data Center in Lund (Lindblad 1991, 1995, Lindblad and Steel 1994).

The purpose of the study was: (1) to analyse the Orionid radiant structure and motion, (2) to study the activity profile of the stream and (3) to determine a precise mean Orionid orbit.

5. Photographic data sample and search method

The photographic orbital data available at the IAU Meteor Data Center (IAU MDC) were analysed using a computerised stream search technique based on the D-criterion of Southworth and Hawkins (1963). Southworth’s stream search program performs a cluster analysis in five-dimensional q, e, i, ω, Ω space. The stream search input file PRCORB96.TMP consisted of 446 precisely reduced orbits observed in the period 1936 to 1993. The data were searched for streams at the D-criterion rejection level $D_s = 0.09$. The correct D_s value to be used in a sample of N meteor orbits is approximately given by the formula $D_s = 0.80 N^{-1/4}$ (Lindblad 1971). A total of 66 Orionid orbits were identified by the computer search. All Orionids appeared in the period October 2-29, with 63 appearing in the interval October 16-29. A preliminary mean orbit for the Orionids was derived by the computer program. Individual Orionid orbits were next checked to see if they deviated from the mean orbit by more than 3σ in any of the orbital elements. The four deviating cases were meteors 11042 (229P), 22931 (104C), 027 (019O) and 113 (057N) which subsequently were rejected. In addition, we rejected two MORP orbits 0351 and 1131. These orbits were included in the 1990 version of the IAU MDC MORP file, but were not included
in the final MORP publication by Halliday, Griffin and Blackwell (1996). The final set of 60 photographic Orionid orbits is listed in chronological order in Table 1. A mean Orionid orbit derived from this set is shown in Table 3.

Table 1. Orbital elements and encounter data for photographic Orionids (1950.0). Vg and Vh in km s⁻¹, q in AU and 1/a in AU⁻¹.

<table>
<thead>
<tr>
<th>No</th>
<th>Y M Day</th>
<th>α</th>
<th>δ</th>
<th>Vg</th>
<th>Vh</th>
<th>q</th>
<th>1/a</th>
<th>e</th>
<th>i</th>
<th>ω</th>
<th>Ω</th>
<th>Publ no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22851</td>
<td>59 10 7.01 84.6 14.3 67.19 40.86 .715 .1163</td>
<td>.917 162.4 66.1 12.9 103C</td>
<td></td>
</tr>
<tr>
<td>12116</td>
<td>58 10 10.40 86.1 14.7 67.41 41.63 .668 .0474</td>
<td>.968 162.6 70.9 16.5 308P</td>
<td></td>
</tr>
<tr>
<td>12149</td>
<td>58 10 16.41 89.7 15.2 67.35 42.24 .610 -.0071</td>
<td>1.004 163.0 77.0 22.4 313P</td>
<td></td>
</tr>
<tr>
<td>372</td>
<td>64 10 17.06 92.3 16.0 67.20 41.50 .634 .0704</td>
<td>.955 164.9 75.2 23.5 088O</td>
<td></td>
</tr>
<tr>
<td>93010</td>
<td>93 10 18.08 91.4 15.4 67.53 42.31 .613 -.0103</td>
<td>1.006 163.5 76.5 24.1 351B</td>
<td></td>
</tr>
<tr>
<td>93011</td>
<td>93 10 18.13 91.6 14.9 66.68 41.52 .604 .0646</td>
<td>.961 162.3 78.7 24.1 352B</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>58 10 18.93 93.4 16.5 67.70 42.00 .635 .0215</td>
<td>.986 166.0 74.4 24.9 076C</td>
<td></td>
</tr>
<tr>
<td>93012</td>
<td>93 10 18.96 92.1 15.3 66.20 41.15 .584 .0993</td>
<td>.942 162.9 81.5 25.0 353B</td>
<td></td>
</tr>
<tr>
<td>93013</td>
<td>93 10 19.06 92.4 15.0 67.31 42.17 .609 .0036</td>
<td>.998 162.6 77.1 25.1 354B</td>
<td></td>
</tr>
<tr>
<td>93014</td>
<td>93 10 19.07 92.6 15.3 66.72 41.50 .602 .0663</td>
<td>.960 163.2 78.9 25.1 355B</td>
<td></td>
</tr>
<tr>
<td>2664</td>
<td>50 10 19.37 93.1 15.8 66.77 41.44 .607 .0701</td>
<td>.957 164.3 78.4 25.4 162W</td>
<td></td>
</tr>
<tr>
<td>9097</td>
<td>53 10 19.42 93.3 15.8 64.24 39.09 .553 .2836</td>
<td>.843 163.6 88.4 25.6 270H</td>
<td></td>
</tr>
<tr>
<td>2635</td>
<td>50 10 19.50 92.6 15.7 66.34 41.27 .585 .0861</td>
<td>.950 163.8 81.2 25.5 160W</td>
<td></td>
</tr>
<tr>
<td>12229</td>
<td>58 10 20.47 94.4 16.1 67.06 41.67 .610 .0493</td>
<td>.970 164.9 77.6 26.4 323P</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>79 10 20.75 91.7 14.2 67.40 43.00 .575 .0801</td>
<td>1.046 160.6 80.0 26.3 122N</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>77 10 20.77 94.9 15.3 64.50 38.90 .574 .3012</td>
<td>.827 162.7 86.4 26.9 054N</td>
<td></td>
</tr>
<tr>
<td>84005</td>
<td>84 10 20.96 93.5 15.4 66.61 41.81 .569 .0384</td>
<td>.978 163.1 82.3 27.3 032B</td>
<td></td>
</tr>
<tr>
<td>85028</td>
<td>85 10 21.13 94.2 15.4 67.72 42.61 .606 .0370</td>
<td>1.022 163.6 76.9 27.2 060B</td>
<td></td>
</tr>
<tr>
<td>14911</td>
<td>66 10 21.32 93.5 15.4 67.08 42.23 .582 .0038</td>
<td>1.002 163.1 80.2 27.2 208S</td>
<td></td>
</tr>
<tr>
<td>12255</td>
<td>58 10 21.34 95.7 15.8 66.81 41.30 .616 .0839</td>
<td>.948 164.5 77.5 27.3 325P</td>
<td></td>
</tr>
<tr>
<td>5006</td>
<td>52 10 21.35 96.0 16.0 66.98 41.49 .614 .0667</td>
<td>.959 164.8 77.4 27.8 344J</td>
<td></td>
</tr>
<tr>
<td>12358</td>
<td>58 10 21.37 95.3 15.8 64.31 39.08 .557 .2855</td>
<td>.841 163.7 87.9 27.3 333P</td>
<td></td>
</tr>
<tr>
<td>5015</td>
<td>52 10 21.38 95.2 15.7 66.66 41.44 .589 .0719</td>
<td>.958 165.1 80.5 27.8 277H</td>
<td></td>
</tr>
<tr>
<td>5039</td>
<td>52 10 21.44 95.5 15.7 66.73 41.47 .599 .0690</td>
<td>.959 164.0 79.3 27.8 278H</td>
<td></td>
</tr>
<tr>
<td>21001</td>
<td>92 10 21.69 94.7 15.6 66.77 41.75 .583 .0449</td>
<td>.974 163.7 80.8 27.9 046T</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>77 10 21.70 95.2 15.2 67.20 41.60 .611 .0540</td>
<td>.967 163.2 77.6 27.8 055N</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>76 10 21.71 95.4 14.6 64.70 39.40 .566 .2564</td>
<td>.855 161.4 86.3 28.1 037N</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>77 10 21.73 94.7 15.2 66.50 41.30 .588 .0902</td>
<td>.947 162.9 80.9 27.8 056N</td>
<td></td>
</tr>
<tr>
<td>22053</td>
<td>62 10 21.80 94.3 15.5 66.30 41.40 .571 .0820</td>
<td>.953 163.2 82.8 28.1 058D</td>
<td></td>
</tr>
<tr>
<td>21415</td>
<td>82 10 21.90 93.9 15.3 65.10 40.40 .541 .1695</td>
<td>.908 162.4 87.5 27.7 112D</td>
<td></td>
</tr>
<tr>
<td>342</td>
<td>62 10 21.92 92.6 16.0 69.20 44.60 .588 -.1792</td>
<td>1.110 164.4 77.2 27.9 064O</td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>63 10 22.05 95.8 15.5 63.60 38.30 .546 .3559</td>
<td>.806 163.1 90.7 27.7 077O</td>
<td></td>
</tr>
</tbody>
</table>
Table 1. -continued

<table>
<thead>
<tr>
<th>No</th>
<th>Y</th>
<th>M</th>
<th>Day</th>
<th>α</th>
<th>δ</th>
<th>Vg</th>
<th>Vh</th>
<th>q</th>
<th>1/a</th>
<th>e</th>
<th>i</th>
<th>ω</th>
<th>Ω</th>
<th>Publ no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>90013</td>
<td>90</td>
<td>10</td>
<td>22.10</td>
<td>94.6</td>
<td>16.1</td>
<td>66.40</td>
<td>41.40</td>
<td>.571</td>
<td>.0777</td>
<td>.956</td>
<td>164.5</td>
<td>82.7</td>
<td>27.9</td>
<td>169B</td>
</tr>
<tr>
<td>5079</td>
<td>50</td>
<td>10</td>
<td>22.32</td>
<td>96.3</td>
<td>15.8</td>
<td>66.60</td>
<td>41.37</td>
<td>.592</td>
<td>.0769</td>
<td>.953</td>
<td>164.3</td>
<td>80.2</td>
<td>28.8</td>
<td>350J</td>
</tr>
<tr>
<td>5083</td>
<td>50</td>
<td>10</td>
<td>22.34</td>
<td>94.0</td>
<td>16.0</td>
<td>66.07</td>
<td>41.65</td>
<td>.533</td>
<td>.0528</td>
<td>.972</td>
<td>163.8</td>
<td>86.7</td>
<td>28.8</td>
<td>351J</td>
</tr>
<tr>
<td>5101</td>
<td>50</td>
<td>10</td>
<td>22.38</td>
<td>95.8</td>
<td>15.7</td>
<td>66.26</td>
<td>41.25</td>
<td>.574</td>
<td>.0895</td>
<td>.949</td>
<td>163.8</td>
<td>82.5</td>
<td>28.9</td>
<td>352J</td>
</tr>
<tr>
<td>5102</td>
<td>50</td>
<td>10</td>
<td>22.40</td>
<td>95.1</td>
<td>16.2</td>
<td>66.72</td>
<td>41.86</td>
<td>.567</td>
<td>.0330</td>
<td>.981</td>
<td>164.8</td>
<td>82.5</td>
<td>28.8</td>
<td>281H</td>
</tr>
<tr>
<td>5112</td>
<td>50</td>
<td>10</td>
<td>22.43</td>
<td>94.5</td>
<td>16.6</td>
<td>66.50</td>
<td>41.85</td>
<td>.546</td>
<td>.0340</td>
<td>.981</td>
<td>165.5</td>
<td>84.9</td>
<td>28.9</td>
<td>353J</td>
</tr>
<tr>
<td>466</td>
<td>87</td>
<td>10</td>
<td>22.77</td>
<td>94.5</td>
<td>16.8</td>
<td>65.80</td>
<td>41.00</td>
<td>.546</td>
<td>.1153</td>
<td>.937</td>
<td>165.9</td>
<td>86.2</td>
<td>28.3</td>
<td>212N</td>
</tr>
<tr>
<td>16991</td>
<td>58</td>
<td>10</td>
<td>23.08</td>
<td>94.9</td>
<td>15.7</td>
<td>68.18</td>
<td>43.47</td>
<td>.583</td>
<td>.0010</td>
<td>.1000</td>
<td>164.0</td>
<td>78.5</td>
<td>29.0</td>
<td>076C</td>
</tr>
<tr>
<td>7</td>
<td>58</td>
<td>10</td>
<td>23.09</td>
<td>94.7</td>
<td>17.3</td>
<td>69.40</td>
<td>44.50</td>
<td>.590</td>
<td>.0010</td>
<td>.1000</td>
<td>167.4</td>
<td>76.0</td>
<td>29.0</td>
<td>007E</td>
</tr>
<tr>
<td>21</td>
<td>68</td>
<td>10</td>
<td>23.09</td>
<td>94.3</td>
<td>17.6</td>
<td>66.26</td>
<td>41.79</td>
<td>.521</td>
<td>.0417</td>
<td>.978</td>
<td>167.3</td>
<td>87.9</td>
<td>29.5</td>
<td>021E</td>
</tr>
<tr>
<td>1382</td>
<td>46</td>
<td>10</td>
<td>23.29</td>
<td>95.4</td>
<td>15.5</td>
<td>65.18</td>
<td>40.50</td>
<td>.537</td>
<td>.1582</td>
<td>.915</td>
<td>162.9</td>
<td>87.8</td>
<td>29.3</td>
<td>124W</td>
</tr>
<tr>
<td>5145</td>
<td>50</td>
<td>10</td>
<td>23.33</td>
<td>96.7</td>
<td>16.4</td>
<td>66.84</td>
<td>41.73</td>
<td>.580</td>
<td>.0451</td>
<td>.971</td>
<td>165.4</td>
<td>81.0</td>
<td>29.7</td>
<td>283H</td>
</tr>
<tr>
<td>5163</td>
<td>50</td>
<td>10</td>
<td>23.38</td>
<td>95.2</td>
<td>16.3</td>
<td>68.31</td>
<td>43.66</td>
<td>.574</td>
<td>.1406</td>
<td>1.018</td>
<td>165.2</td>
<td>79.3</td>
<td>29.8</td>
<td>284H</td>
</tr>
<tr>
<td>5165</td>
<td>50</td>
<td>10</td>
<td>23.38</td>
<td>96.8</td>
<td>17.1</td>
<td>66.91</td>
<td>41.75</td>
<td>.578</td>
<td>.0439</td>
<td>.975</td>
<td>166.9</td>
<td>81.2</td>
<td>29.8</td>
<td>285H</td>
</tr>
<tr>
<td>5183</td>
<td>50</td>
<td>10</td>
<td>23.45</td>
<td>96.7</td>
<td>15.6</td>
<td>67.32</td>
<td>42.31</td>
<td>.590</td>
<td>.0091</td>
<td>1.005</td>
<td>164.0</td>
<td>79.2</td>
<td>29.8</td>
<td>286H</td>
</tr>
<tr>
<td>5185</td>
<td>50</td>
<td>10</td>
<td>23.46</td>
<td>94.8</td>
<td>16.9</td>
<td>65.55</td>
<td>41.17</td>
<td>.511</td>
<td>.0983</td>
<td>.950</td>
<td>165.7</td>
<td>89.9</td>
<td>29.8</td>
<td>287H</td>
</tr>
<tr>
<td>5208</td>
<td>50</td>
<td>10</td>
<td>23.49</td>
<td>96.1</td>
<td>15.7</td>
<td>66.32</td>
<td>41.58</td>
<td>.557</td>
<td>.0594</td>
<td>.967</td>
<td>163.7</td>
<td>83.9</td>
<td>30.0</td>
<td>290H</td>
</tr>
<tr>
<td>5210</td>
<td>50</td>
<td>10</td>
<td>23.50</td>
<td>97.0</td>
<td>15.8</td>
<td>67.44</td>
<td>42.30</td>
<td>.596</td>
<td>.0089</td>
<td>1.005</td>
<td>164.5</td>
<td>78.4</td>
<td>30.0</td>
<td>291H</td>
</tr>
<tr>
<td>32943</td>
<td>63</td>
<td>10</td>
<td>23.94</td>
<td>96.3</td>
<td>15.5</td>
<td>66.90</td>
<td>41.90</td>
<td>.583</td>
<td>.0357</td>
<td>.979</td>
<td>163.6</td>
<td>80.7</td>
<td>29.6</td>
<td>059D</td>
</tr>
<tr>
<td>344</td>
<td>62</td>
<td>10</td>
<td>23.96</td>
<td>93.0</td>
<td>16.3</td>
<td>68.20</td>
<td>43.70</td>
<td>.532</td>
<td>.1401</td>
<td>1.070</td>
<td>164.3</td>
<td>84.1</td>
<td>30.0</td>
<td>066O</td>
</tr>
<tr>
<td>889</td>
<td>39</td>
<td>10</td>
<td>24.40</td>
<td>96.3</td>
<td>15.6</td>
<td>65.82</td>
<td>41.12</td>
<td>.548</td>
<td>.1016</td>
<td>.944</td>
<td>163.4</td>
<td>85.7</td>
<td>30.2</td>
<td>125W</td>
</tr>
<tr>
<td>5268</td>
<td>50</td>
<td>10</td>
<td>24.42</td>
<td>95.4</td>
<td>16.9</td>
<td>65.88</td>
<td>41.63</td>
<td>.508</td>
<td>.0551</td>
<td>.972</td>
<td>165.7</td>
<td>89.5</td>
<td>30.8</td>
<td>295H</td>
</tr>
<tr>
<td>7613</td>
<td>76</td>
<td>10</td>
<td>25.22</td>
<td>99.2</td>
<td>16.1</td>
<td>65.10</td>
<td>39.90</td>
<td>.558</td>
<td>.2174</td>
<td>.879</td>
<td>164.8</td>
<td>86.4</td>
<td>31.7</td>
<td>013G</td>
</tr>
<tr>
<td>11123</td>
<td>57</td>
<td>10</td>
<td>25.34</td>
<td>97.9</td>
<td>15.3</td>
<td>64.07</td>
<td>39.41</td>
<td>.518</td>
<td>.2590</td>
<td>.866</td>
<td>162.4</td>
<td>91.9</td>
<td>31.5</td>
<td>243P</td>
</tr>
<tr>
<td>11127</td>
<td>57</td>
<td>10</td>
<td>25.38</td>
<td>97.3</td>
<td>15.5</td>
<td>66.89</td>
<td>42.27</td>
<td>.558</td>
<td>.0045</td>
<td>1.002</td>
<td>163.4</td>
<td>82.9</td>
<td>31.6</td>
<td>244P</td>
</tr>
<tr>
<td>105</td>
<td>79</td>
<td>10</td>
<td>26.05</td>
<td>97.1</td>
<td>15.5</td>
<td>64.90</td>
<td>40.50</td>
<td>.520</td>
<td>.1667</td>
<td>.910</td>
<td>162.9</td>
<td>90.0</td>
<td>31.6</td>
<td>105E</td>
</tr>
<tr>
<td>107</td>
<td>79</td>
<td>10</td>
<td>28.15</td>
<td>97.3</td>
<td>16.0</td>
<td>65.60</td>
<td>41.80</td>
<td>.490</td>
<td>.0010</td>
<td>1.000</td>
<td>163.6</td>
<td>92.0</td>
<td>33.7</td>
<td>107E</td>
</tr>
<tr>
<td>285</td>
<td>57</td>
<td>10</td>
<td>29.10</td>
<td>100.1</td>
<td>16.2</td>
<td>66.20</td>
<td>41.90</td>
<td>.518</td>
<td>.0394</td>
<td>.980</td>
<td>164.8</td>
<td>88.1</td>
<td>35.3</td>
<td>020O</td>
</tr>
</tbody>
</table>

Alphabetical code for investigator or network:
B - Betlem (DMS), C - Cepheus, D - Dushanbe, E - European fireball network,
F - Prairie Network, G - Gale Harvey, New Mexico Univ., H - Hawkins and Southworth,
I - MORP Network, J - Jacchia, K - Kiehl, N - Nippon Meteor Society, O - Odessa,
P - Posen and McCrosky, S - Shao and McCrosky, T - Tokyo Network, W - Whipple.

6. Orionid activity profile

In general the activity curve of bright photographic meteors will delineate the activity profile of a meteor stream with high accuracy. In Fig. 1 the number of photographed Orionid meteors is plotted versus solar longitude. A step length of 1.0° in solar longitude (equinox 1950) is used. The histogram is based on a total of 60 bright Orionids photographed in the period 1946 to 1987 from in
all 10 different meteor networks. It follows from the world-wide coverage and long-term nature of this photographic collection that the derived activity curve of the shower is independent of local weather and lunation effects.

The magnitude interval of the photographed Orionids (40 Orionids with listed magnitudes) is -8.3 to +1.6, with a mean magnitude of -2.0. The median values of magnitudes from the ascending, maximum and descending period of activity (here defined as ascending node intervals of approximately equal number of Orionids, corresponding to Ω = 12-27, 27-29 and 29-34) are -3.0, -1.2 and -1.9, respectively.

From Fig. 1 we note that the activity profile of bright Orionids is slightly asymmetric with highest rates occurring in the solar longitude interval 208° – 210° (equinox 1950). There is also a central dip at shower maximum. Similar results have been reported by McIntosh and Hajduk (1983). The central dip at the maximum of the stream (in case of the Eta Aquarids) was firstly recognized by Hajduk (1980). A weighted mean of the three highest rate values in Fig.1 indicates a shower maximum at solar longitude 208.9° (equinox 1950).

![Figure 1. Number of photographic Orionids versus solar longitude (1950.0)](image)

7. Radiant motion and structure

The distribution of 60 photographic Orionid radiant points is plotted in the scatter diagram in Fig. 2 (designated by asterisks). Radiant activity is first detected on October 7 at approximately α = 84.5°, δ = 14.5° and ends on October 29 at α = 100.0°, δ = 16.0°. The derived radiant motion found by a least square fit is

\[\alpha = 94.64° + 0.694° (\odot - 208.0°) \] \hspace{1cm} (1)

\[\delta = 15.79° + 0.093° (\odot - 208.0°) \] \hspace{1cm} (2)

where \(\odot \) is the date measured in degrees of solar longitude at the time of observation and referred to the equinox of 1950.0. In order to investigate the radiant
area of the Orionid shower the positions of individual radiants in Fig. 2 must be corrected for radiant motion, i.e., reduced to a common solar longitude corresponding to shower maximum. The result using eqs. (1) and (2) is shown in Fig. 3. The size of the radiant area is estimated to be about 5° x 4°.

![Figure 2. Distribution of Orionid radiant points (1950.0)](image)

![Figure 3. Radiant positions reduced to solar longitude at maximum](image)

In Fig. 2, we have included 17 video Orionid radiants (designated by open squares). The video Orionid radiants represent faint meteors and they are recorded during one single night (October 19). Inspection of Fig. 3, where all photographic and video Orionid radiant positions are reduced to a common solar longitude of 208°, using eqs. (1) and (2), shows that the video radiants are very well consistent with the radiants of bright photographic meteors.

In his study of the Orionid radiant Prentice (1936) lists three separate sub-radiants, each of which he claims to show an individual radiant motion. We have not been able to find any support for these claims in the photographic
data sample. In particular Prentice's first radiant is completely absent in our data.

8. Orbit from photographic observations

The distribution in reciprocal semi-major axis of the 60 photographic and 17 video Orionids is shown in Fig. 4. We note that there are in all 12 meteors with negative values of $1/a$. We consider these negative $1/a$ values to represent the error tail of a Gaussian distribution. To what extent these errors are of an observational nature or are of a "cosmic" nature (i.e. represent very perturbed Orionid orbits) we do not know. The mean stream orbit derived from the 60 photographic Orionids is listed in Table 3 together with the orbit of Comet Halley and mean orbit of the Eta Aquarids derived by Lindblad et al. (1994). It is obvious that the current orbit of the Orionid meteor stream differs somewhat from the comet's orbit. In particular there is a displacement of the longitude of perihelion π by about 60°. This discrepancy has been noted by numerous researchers (Porter 1952, McIntosh and Hajduk 1983 and others). Porter considered this discrepancy so large that he doubted that there was a generic relation between the orbit of Halley's comet and the orbit of the Orionid stream. However, the agreement in several of the orbital elements (in particular the eccentricity and inclination) is very good and does support the belief that comet Halley is indeed the progenitor of the Orionid stream.

![Graph](image)

Figure 4. Distribution of reciprocal semi-major axis (AU^{-1}) for 60 photographic and 17 video Orionids

9. Orbit from video observations

The advent of comparatively inexpensive low-light level TV-systems has made it possible for both professional and amateur groups to make precise video observations of meteors. At present there exists at the IAU MDC a file of 1425
Table 2. Orbital elements and encounter data for video Orionids (1950.0). Vg and Vh in km s\(^{-1}\), q in AU and 1/a in AU\(^{-1}\).

<table>
<thead>
<tr>
<th>No</th>
<th>Y</th>
<th>M</th>
<th>Day</th>
<th>α</th>
<th>δ</th>
<th>Vg</th>
<th>Vh</th>
<th>q</th>
<th>I/a</th>
<th>e</th>
<th>i</th>
<th>ω</th>
<th>Ω</th>
<th>Publ</th>
</tr>
</thead>
<tbody>
<tr>
<td>93219</td>
<td>93</td>
<td>10</td>
<td>19.04</td>
<td>93.9</td>
<td>15.3</td>
<td>66.7</td>
<td>41.3</td>
<td>0.616</td>
<td>0.0836</td>
<td>0.949</td>
<td>163.4</td>
<td>77.6</td>
<td>25.8</td>
<td>076Y</td>
</tr>
<tr>
<td>93220</td>
<td>93</td>
<td>10</td>
<td>19.05</td>
<td>96.0</td>
<td>15.6</td>
<td>67.9</td>
<td>41.7</td>
<td>0.677</td>
<td>0.0441</td>
<td>0.970</td>
<td>164.6</td>
<td>69.5</td>
<td>25.8</td>
<td>077Y</td>
</tr>
<tr>
<td>93227</td>
<td>93</td>
<td>10</td>
<td>19.07</td>
<td>93.1</td>
<td>15.6</td>
<td>66.3</td>
<td>41.2</td>
<td>0.589</td>
<td>0.0987</td>
<td>0.942</td>
<td>163.7</td>
<td>80.9</td>
<td>25.8</td>
<td>081Y</td>
</tr>
<tr>
<td>93222</td>
<td>93</td>
<td>10</td>
<td>19.07</td>
<td>93.3</td>
<td>15.3</td>
<td>68.2</td>
<td>42.9</td>
<td>0.626</td>
<td>-0.0696</td>
<td>1.044</td>
<td>163.5</td>
<td>74.2</td>
<td>25.8</td>
<td>085Y</td>
</tr>
<tr>
<td>93235</td>
<td>93</td>
<td>10</td>
<td>19.07</td>
<td>91.4</td>
<td>15.8</td>
<td>65.0</td>
<td>40.5</td>
<td>0.526</td>
<td>0.1626</td>
<td>0.914</td>
<td>163.3</td>
<td>80.3</td>
<td>25.8</td>
<td>087Y</td>
</tr>
<tr>
<td>93236</td>
<td>93</td>
<td>10</td>
<td>19.08</td>
<td>92.2</td>
<td>15.3</td>
<td>67.8</td>
<td>42.9</td>
<td>0.596</td>
<td>-0.0674</td>
<td>1.040</td>
<td>163.1</td>
<td>77.7</td>
<td>25.8</td>
<td>088Y</td>
</tr>
<tr>
<td>93237</td>
<td>93</td>
<td>10</td>
<td>19.08</td>
<td>94.7</td>
<td>15.7</td>
<td>67.5</td>
<td>41.8</td>
<td>0.643</td>
<td>0.0407</td>
<td>0.974</td>
<td>164.5</td>
<td>73.5</td>
<td>25.8</td>
<td>089Y</td>
</tr>
<tr>
<td>93239</td>
<td>93</td>
<td>10</td>
<td>19.08</td>
<td>93.1</td>
<td>15.4</td>
<td>65.2</td>
<td>40.1</td>
<td>0.567</td>
<td>0.1916</td>
<td>0.891</td>
<td>162.9</td>
<td>85.0</td>
<td>25.8</td>
<td>090Y</td>
</tr>
<tr>
<td>93244</td>
<td>93</td>
<td>10</td>
<td>19.08</td>
<td>91.8</td>
<td>16.4</td>
<td>66.0</td>
<td>41.2</td>
<td>0.552</td>
<td>0.0926</td>
<td>0.949</td>
<td>164.8</td>
<td>85.1</td>
<td>25.8</td>
<td>093Y</td>
</tr>
<tr>
<td>93250</td>
<td>93</td>
<td>10</td>
<td>19.10</td>
<td>92.0</td>
<td>16.6</td>
<td>66.9</td>
<td>42.0</td>
<td>0.570</td>
<td>0.0183</td>
<td>0.990</td>
<td>165.6</td>
<td>81.9</td>
<td>25.8</td>
<td>097Y</td>
</tr>
<tr>
<td>93254</td>
<td>93</td>
<td>10</td>
<td>19.10</td>
<td>93.3</td>
<td>15.8</td>
<td>68.0</td>
<td>42.6</td>
<td>0.620</td>
<td>-0.0420</td>
<td>1.026</td>
<td>164.5</td>
<td>75.2</td>
<td>25.8</td>
<td>101Y</td>
</tr>
<tr>
<td>93256</td>
<td>93</td>
<td>10</td>
<td>19.10</td>
<td>92.2</td>
<td>16.1</td>
<td>66.3</td>
<td>41.4</td>
<td>0.567</td>
<td>0.0758</td>
<td>0.957</td>
<td>164.4</td>
<td>83.2</td>
<td>25.8</td>
<td>102Y</td>
</tr>
<tr>
<td>93259</td>
<td>93</td>
<td>10</td>
<td>19.11</td>
<td>94.0</td>
<td>15.9</td>
<td>65.6</td>
<td>40.1</td>
<td>0.591</td>
<td>0.1934</td>
<td>0.886</td>
<td>164.2</td>
<td>82.3</td>
<td>25.8</td>
<td>104Y</td>
</tr>
<tr>
<td>93267</td>
<td>93</td>
<td>10</td>
<td>19.13</td>
<td>93.1</td>
<td>14.9</td>
<td>68.4</td>
<td>43.3</td>
<td>0.627</td>
<td>-0.1012</td>
<td>1.064</td>
<td>162.8</td>
<td>73.6</td>
<td>25.8</td>
<td>108Y</td>
</tr>
<tr>
<td>93279</td>
<td>93</td>
<td>10</td>
<td>19.14</td>
<td>93.6</td>
<td>15.5</td>
<td>67.5</td>
<td>42.2</td>
<td>0.619</td>
<td>0.0031</td>
<td>0.998</td>
<td>163.9</td>
<td>76.0</td>
<td>25.9</td>
<td>116Y</td>
</tr>
<tr>
<td>93285</td>
<td>93</td>
<td>10</td>
<td>19.18</td>
<td>93.7</td>
<td>15.6</td>
<td>67.1</td>
<td>41.8</td>
<td>0.613</td>
<td>0.0407</td>
<td>0.975</td>
<td>163.8</td>
<td>77.3</td>
<td>25.9</td>
<td>120Y</td>
</tr>
<tr>
<td>93286</td>
<td>93</td>
<td>10</td>
<td>19.18</td>
<td>92.5</td>
<td>15.9</td>
<td>65.7</td>
<td>40.8</td>
<td>0.559</td>
<td>0.1350</td>
<td>0.925</td>
<td>163.9</td>
<td>85.0</td>
<td>25.9</td>
<td>121Y</td>
</tr>
</tbody>
</table>

Alphabetical code for investigator or network:
Y - Dutch Meteor Society (de Lignie and Jobse, 1995)

meteoroid orbits determined by video techniques (Lindblad 1999). A computer search in this file produced 19 orbits which were classified as Orionid meteors. Two of these orbits (observed on October 29) deviated from the mean by 3σ in the inclination and were subsequently rejected. Table 2 lists the 17 accepted Orionid orbits. In order to compare the video and photographic data the individual video orbits in Table 2 were reduced to the 1950 equinox.

The mean video orbit derived from Table 2 is compared in Table 3 with the photographic orbit. There is good agreement in most of the orbital elements. However, the mean video orbit is of slightly longer period than the photographic orbit. If this difference is due to smallness of sample or if the correction to pre-atmospheric velocity \(v_{\text{inj}} \) used for the reduction of the video meteor is inaccurate, is difficult to say. One should note that a very small inaccuracy in the assumed correction for atmospheric deceleration of a high velocity meteor is sufficient to transform the orbit from a long period orbit into a hyperbolic orbit.

10. Radar studies

Although not germane to the main objective of the present paper a few words may be said about radar studies of the Orionid meteor stream. Gartrell and
Elford (1975) detected the Orionid stream in their observations during October 1969. Their mean orbit is listed in Table 3. We note that the agreement with the photographic orbit is very good. However, Gartrell and Elford also list a hyperbolic "branch" of the Orionids. The separate listing of hyperbolic Orionids is most likely an artifact of the computer stream search program. Sekanina (1976) has published a mean Orionid orbit based on radar data obtained during the Harvard radio meteor program 1961-65 (Table 3).

Table 3. Mean Orionid orbits (1950.0)

<table>
<thead>
<tr>
<th>Name</th>
<th>α</th>
<th>δ</th>
<th>Vg</th>
<th>Vh</th>
<th>q</th>
<th>1/a</th>
<th>e</th>
<th>i</th>
<th>ω</th>
<th>Ω</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orionids (photogr.)</td>
<td>94.5</td>
<td>15.8</td>
<td>66.52</td>
<td>41.33</td>
<td>.576</td>
<td>.0689</td>
<td>.961</td>
<td>164.0</td>
<td>81.9</td>
<td>27.1</td>
<td>60</td>
</tr>
<tr>
<td>Stand. dev.</td>
<td>2.6</td>
<td>.7</td>
<td>1.16</td>
<td>1.20</td>
<td>.039</td>
<td>.1014</td>
<td>.057</td>
<td>1.3</td>
<td>5.2</td>
<td>3.4</td>
<td></td>
</tr>
<tr>
<td>Orionids (video)</td>
<td>92.5</td>
<td>15.7</td>
<td>66.83</td>
<td>41.64</td>
<td>.598</td>
<td>.0529</td>
<td>.970</td>
<td>163.9</td>
<td>79.3</td>
<td>25.1</td>
<td>17</td>
</tr>
<tr>
<td>Stand. dev.</td>
<td>1.1</td>
<td>.4</td>
<td>1.08</td>
<td>.96</td>
<td>.038</td>
<td>.0899</td>
<td>.052</td>
<td>.7</td>
<td>5.3</td>
<td>.0</td>
<td></td>
</tr>
<tr>
<td>Orionids (radar) (Gartrell and Elford 1975)</td>
<td>95</td>
<td>14</td>
<td>67°</td>
<td>-</td>
<td>0.65</td>
<td>0.14</td>
<td>0.85</td>
<td>161.8</td>
<td>76</td>
<td>24</td>
<td>6</td>
</tr>
<tr>
<td>Orionids (radar) (Sekanina 1976)</td>
<td>94.6</td>
<td>16.1</td>
<td>64.6</td>
<td>39.3</td>
<td>.562</td>
<td>.2597</td>
<td>.854</td>
<td>164.4</td>
<td>87.0</td>
<td>27.1</td>
<td>17</td>
</tr>
<tr>
<td>Eta Aquarids (Lindblad et al. 1994)</td>
<td>336.4</td>
<td>-1.8</td>
<td>65.4</td>
<td>40.8</td>
<td>.568</td>
<td>.1082</td>
<td>.940</td>
<td>164.0</td>
<td>95.6</td>
<td>43.9</td>
<td>17</td>
</tr>
<tr>
<td>1P/Halley (1986 III)</td>
<td>337.6</td>
<td>-5</td>
<td>65.90</td>
<td>.582</td>
<td>.0550</td>
<td>.967</td>
<td>162.2</td>
<td>111.8</td>
<td>58.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* - listed velocity is V_{in}

Acknowledgements. The authors acknowledge support from the Swedish Academy of Sciences and the Slovak Grant Agency for Science, Grant No. 5101/99. Two research Grants from Crafoordska Stiftelsen, Lund, Sweden are also acknowledged.

References

Orionid meteor stream

Denning, W.F.: 1918, *The Observatory* 41, 60
Denning, W.F.: 1923, *The Observatory* 46, 188
Herrick, E.: 1840, *Silliman’s J.* 39, 334
Olivier, C.P.: 1923, *The Observatory* 46, 17
Quetelet, H.: 1839, *Catalogue des principales apparitions d’étoiles filantes*, Brussels