CAOSP abstracts, Volume: 45, No.: 1, year: 2015

Abstract: HXR and gamma-ray emissions in the 0.04—150 MeV energy range associated with the solar flare on 29 October 2003 (X10/3B) were observed at 20:38—20:58 UT by the SONG instrument aboard the CORONAS-F mission. We restored consecutive flare gamma-emission spectra from SONG and RHESSI data and found a good agreement of these spectra in the 0.1—10 MeV energy range. Two phases were identified which showed major changes in the spectral shape of flare emission: 20:38:00-20:44:20 UT and 20:44:20-20:58:00 UT. During the second phase an efficiency of proton acceleration increased considerably relatively to the efficiency of acceleration of high energy electrons. The pion-decay component of the flare gamma-emission was elicited statistically significant only during the second phase since 20:47:40 UT. A power law spectrum index of accelerated protons was estimated from the ratio between intensities of the pion-decay and gamma-line components. The hardest spectrum (power law index S=3.7) was at 20:48—20:51 UT when the intensity of the pion-decay emission was maximal. Our subdivision of the flare into two phases is consistent with sharp changes in the structure of the flare found by Ji et al. (2008) and Liu et al. (2009).

This flare was accompanied by GLE 66. The time profile of the pion-decay gamma-emission was compared with the GLE onset time. It was shown that both protons interacting at the Sun and the particles responsible for the GLE onset could belong to the same population of accelerated particles.

Full text version of this article in PostScript (600dpi) format compressed by gzip; or in PDF.

Back to:
CAOSP Vol. 45 No. 1 index
CAOSP archive main index
CAOSP main page
Astronomical Institute home page
Valid XHTML 1.0! Valid CSS!

Last update: May 22, 2015