FROM PAULI GROUPS TO STRINGY BLACK HOLES* (Part I: Projective (Near)Ring Lines)

Center for Interdisciplinary Research (ZiF)
University of Bielefeld 27 August 2008

METOD SANIGA

Astronomical Institute of the Slovak Academy of Sciences
SK-05960 Tatranská Lomnica, Slovak Republic
(msaniga@astro.sk)

AN OVERVIEW OF THE TALK

- Introduction
- Basic Definitions and Notation (Free Cyclic Submodules (FCSs))
- Projective Ring Line (PRL)
- Visualizing the Structure of PRL in Terms of FCSs
- Refinement of the Neighbor Relation
- Existence of "Outliers"
- Outliers Generating FCSs
- Geometry Behind Outliers's Generated FCSs
- Finest Difference Between PRLs over Non-Local Commutative Rings
- Classification up to Order 63
- Next Move: Geometries over Nearrings?
- References
*Joint work with Hans Havlicek (TUW, Vienna, AT), M. Kibler (IPNL/UCBL, Lyon, FR), Michel Planat (FEMTO-ST, Besançon, FR) and Petr Pracna (JH-Inst, Prague, CZ)

INTRODUCTION

Projective ring lines turned out to be a very important concept in unveiling the intricate geometrical nature of the structure of finite-dimensional Hilbert spaces [11-13].

It was our working on these intriguing physical applications when we discovered novel, and rather unexpected, properties of the fine structure of the projective lines not so far discussed by either physicists or mathematicians.

Hence, as the general theory does not exist yet, the purpose of the talk is simply to outline, in a rather illustrative way, the main findings and briefly address their possible applications.

BASIC DEFINITIONS AND NOTATION [1,2]

R : a finite associative ring with unity (1); we shall specifically refer to a ring as being of X / Y type, where X is the cardinality of R and Y the number of its zero-divisors.

$$
\begin{aligned}
& R(a, b): \text { a (left) cyclic submodule of } R^{2}, \\
& R(a, b)=\left\{(\alpha a, \alpha b) \mid(a, b) \in R^{2}, \alpha \in R\right\} ;
\end{aligned}
$$

a cyclic submodule $R(a, b)$ is called free if the mapping $\alpha \mapsto(\alpha a, \alpha b)$ is injective, i. e., if all $(\alpha a, \alpha b)$ are distinct.

Admissibility: a pair/vector $(a, b) \in R^{2}$ is called admissible, if it is the first row of an invertible 2×2 matrix over R

Unimodularity: a pair/vector $(a, b) \in R^{2}$ is called unimodular, if there exist $x, y \in R$ such that $a x+b y=1$

For the rings under consideration, admissibility and unimodularity mean the same

PROJECTIVE RING LINE [3-10]

$P(R)$, the projective line over R,
$P(R)=\left\{R(a, b) \subset R^{2} \mid(a, b)\right.$ admissible $\}$
Crucial property: if (a, b) is admissible, then $R(a, b)$ is free; there, however, are also rings in which there exist free cyclic submodules containing no admissible pairs!

Distant/Neighbour relation: Two distinct points $A=: R(a, b)$ and $B=$: $R(c, d)$ of $P(R)$ are called distant if the 2×2 matrix with the first row a, b and the second row c, d is invertible; otherwise, they are called neighbor.

It can easily be shown that any two distant points of $P(R)$ have only the pair $(0,0)$ in common. As this pair lies on any cyclic submodule, the distant/neighbour condition can be rephrased as follows:

Theorem 1: Two distinct points $A=: R(a, b)$ and $B=: R(c, d)$ of $P(R)$ are distant if $|R(a, b) \cap R(c, d)|=1$ and neighbor if $|R(a, b) \cap R(c, d)|>1$.

VISUALISING THE STRUCTURE OF PRL IN TERMS OF FCS'S

The structure of $P(R)$ can be visualized in terms of a "tree" comprising all the FCSs generated by admissible pairs. Any such tree consists of the "corolla" (α being units of R) and the "trunk" (α being zero-divisors of R) and in the figures that follow it is illustrated in the following way:
\hookrightarrow a pair/vector of R^{2} is represented by a circle whose size is proportional
to the number of FCSs containing this pair and
\hookrightarrow the fact that two different pairs/vectors lie on a FCS is indicated by a line segment joining the corresponding circles.

The finest traits of the structure of the line pertain uniquely to the trunk - this fact is already fairly obvious from the examples of projective lines defined over (all) unital rings of order four (Figure 1)

GF(2) $[\mathrm{x}] /<\mathrm{x}^{2}>$ or $\mathbf{Z}(4)$

GF(2) $[\mathrm{x}] /<\mathrm{x}^{2}+\mathrm{x}+1>$
\cong GF(4)

GF(2) $[x] /<x(x+1)>$
\cong
GF(2) $\mathbf{x} \mathbf{G F}(2)$

Figure 1: The forms of the trees representing the projective lines defined over rings with unity of order four; we see that (left-to-right) as the number of zero-divisors (and maximal ideals) of the ring increases, the trunk becomes more pronounced and intricate.

REFINEMENT OF THE NEIGHBOR RELATION

From Theorem 1 it follows that one can refine the neighbor relation by introducing the degree of the "neighborness" between any two neighbor points in terms of the number of shared pairs/vectors by their representing FCSs. This is illustrated in Figure 2 on an example of the projective line defined over $Z_{12} \cong Z_{3} \times Z_{4}$.

Figure 2:

EXISTENCE OF "OUTLIERS"

Outlier: a pair/vector of R^{2} not belonging to any FCS generated by an admissible pair/vector.

Smallest order where they occur are some rings of $8 / 4$ type (Figure 3 , right) and the non-commutative $8 / 6$ ring (Figure 4 , right); many more are found in the case of commutative $16 / 8$ rings (Figure 5, bottom and top right). Also all non-commutative rings of type $16 / 8$ and $16 / 12$ feature outliers, as well as the non-commutative ring of type $16 / 14$; interestingly, the line over the full two-by-two matrix ring with Z_{2}-valued coefficients has no outliers.

Figure 3: A generic shape of the trees representing projective lines defined over local rings of $8 / 4$ type: left - lines featuring no outliers (three distinct kinds of non-isomorphic rings, including Z_{8} and $Z_{2}[x] /\left\langle x^{3}\right\rangle$), right - lines featuring six outliers (two kinds of non-isomorphic rings).

Figure 4: The trees of the projective lines defined over the rings of $8 / 6$ type: left - the commutative ring $Z_{2} \times Z_{4}$ (line features no outliers), right - the non-commutative ring of ternions (i. e., ring of upper/lower triangular matrices over Z_{2} - six outliers).

Figure 5: Four qualitatively different kinds of a tree (shown trunks only) of the projective lines over local commutative rings of 16/8 type: top left - no outliers (four distinct kinds of non-isomorphic rings, including Z_{16} and $Z_{2}[x] /\left\langle x^{4}\right\rangle$), bottom left - 24 outliers (5 rings; this is also the tree exhibited by projective lines defined over all the four non-commutative rings of the same type), bottom right - 30 outliers (4 rings) and top right -42 outliers (2 rings).

OUTLIERS GENERATING FCS'S

The smallest order where they appear is $8 / 6$ non-commutative (Figure 6).
They are also found in all but one non-commutative rings of type 16/12 and in the non-commutative ring of type 16/14.

No commutative example has been found among the rings so-far-analyzed.

Figure 6: A diagrammatic illustration of the structure of the unimodular (left) and non-unimodular (right) parts of the projective line over the smallest ring of ternions. The symbols and notation are explained in the text.

Figure 7: A diagrammatic sketch of the intricate link between the two parts of the line shown in the preceding figure.

GEOMETRY BEHIND OUTLIERS' GENERATED FCS'S

In each (non-commutative) example listed below, all outliers' generated FCSs share apart from the pair $(0,0)$ also several other pairs. In the 27/15 case the number of such additional pairs is eight, whereas in all the remaining cases it is three (cf. Figure 6 for the $8 / 6$ case). This suggests to consider the "condensed" lines grouping nine (the former case) resp. four (the latter cases) different pairs on any outlier's generated FCS into a single entity and looking what the resulting "condensed" trees look like:

$8 / 6$	$6 / 6$	Z_{2}
$16 / 12 \mathrm{a}$	$30 / 24$	Z_{4} or $Z_{2}[x] /\left\langle x^{2}\right\rangle$
$16 / 12 \mathrm{~b}$	$42 / 36$	$? ? ?$
$16 / 14$	$24 / 18$	$Z_{2} \times Z_{2}$
$24 / 20$	$54 / 48$	$Z_{6} \simeq Z_{2} \times Z_{3}$
$27 / 15$	$48 / 48$	Z_{3}

Here the first column gives the line type, the second column features the number of its outliers (total vs generating FCSs) and the last column lists the type of "condensed" line.

FINEST DIFFERENCE BETWEEN PRL'S OVER NON-LOCAL COMMUTATIVE RINGS

$Z_{4} \times Z_{4}$ versus $Z_{2} \times Z_{8}:$
They are both non-local of the same $(16 / 12)$ type and they both feature no outliers; having identical corollas and all "macroscopic" characteristics (total number of points, cardinality of neighborhoods, intersections of neighborhoods of two distant points, number of Jacobson points and maximum number of pairwise distant points), they differ profoundly in the "microscopic" structure of their trunks (Figure 8).

Figure 8: The tree of the projective line defined over $Z_{4} \times Z_{4}$ (left) and that defined over $Z_{2} \times Z_{8}($ right $)$.

FULL MATRIX RING $M_{2}(G F(2))$ AND ITS SUBRINGS

The projective line we are exclusively interested in here is the one defined over the full two-by-two matrix ring with $G F(2)$-valued coefficients, i.e.,

$$
R=M_{2}(G F(2)) \equiv\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \tag{1}\\
\gamma & \delta
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in G F(2)\right\}
$$

In an explicit form:
UNITS: Invertible matrices (i.e., matrices with non-zero determinant). They are of two distinct kinds: those which square to 1 ,

$$
1 \equiv\left(\begin{array}{ll}
1 & 0 \tag{2}\\
0 & 1
\end{array}\right), \quad 2 \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad 9 \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad 11 \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

and those which square to each other,

$$
12 \equiv\left(\begin{array}{ll}
0 & 1 \tag{3}\\
1 & 1
\end{array}\right), \quad 13 \equiv\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right) .
$$

ZERO-DIVISORS: Matrices with vanishing determinant. These are also of two different types: nilpotent, i. e. those which square to zero,

$$
3 \equiv\left(\begin{array}{ll}
1 & 1 \tag{4}\\
1 & 1
\end{array}\right), \quad 8 \equiv\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right), \quad 10 \equiv\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad 0 \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

and idempotent, i.e. those which square to themselves,

$$
\begin{align*}
4 & \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), \quad 5 \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), \quad 6 \equiv\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), \quad 7 \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) \tag{5}\\
14 & \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \quad 15 \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \tag{6}
\end{align*}
$$

The structure of this full matrix ring can be well understood from the accompanying colour figure featuring its most important subrings, namely those isomorphic to

- $G F(4)$ (yellow),
- $G F(2)[x] /\left\langle x^{2}\right\rangle$ (red),
- $G F(2) \otimes G F(2)$ (pink) and to
- the non-commutative ring of $8 / 6$ type (green).

Irrespectively of colour, the dashed/dotted lines join elements represented by upper/lower triangular matrices, while the solid lines link elements represented by "diagonal parity preserving" matrices.

It is worth mentioning a very interesting symmetry of the picture. Namely, the "dpp" ring of $8 / 6$ type (solid green) incorporates both the upper and lower triangular matrix rings isomorphic to $G F(2) \otimes G F(2)$, while, in turn, the "dpp" $G F(2) \otimes G F(2)$ ring (solid pink) is the intersection of the upper and lower triangular matrix rings of 8/6 type.

It is also to be noted that $G F(4)$ has only one representative, the "dpp" set, whereas each of the remaining types have three distinct (namely upper and lower triangular, and "dpp") representatives. The shaded circles denote a Jordan system.

Figure 9: The subrings and a Jordan system of $\mathrm{M}_{2}(\mathrm{GF}(2))$.

CLASSIFICATION OF PROJECTIVE RING LINES UP TO ORDER 63

Line Type	Cardinalities of Points							Representative Rings
	Tot	TpI	1 N	$\cap 2 \mathrm{~N}$	$\cap 3 \mathrm{~N}$	Jcb	MD	
63/15	80	78	16	2	0	2	8	$G F(7) \otimes G F(9)$
63/27	96	90	32	6	0	14	4	$G F(7) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
63/39	128	102	64	26	6	4	4	$G F(7) \otimes G F(3) \otimes G F(3)$
62/32	96	94	33	2	0	29	3	$G F(2) \otimes G F(31)$
61/1	62	62	0	0	0	0	62	$G F(61)$
60/36	120	96	59	24	6	5	4	$G F(3) \otimes G F(5) \otimes G F(4)$
60/44	144	104	83	40	12	15	3	$G F(3) \otimes G F(5) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
60/52	216	112	155	104	60	7	3	$G F(3) \otimes G F(5) \otimes G F(2) \otimes G F(2)$
59/1	60	60	0	0	0	0	60	$G F(59)$
58/30	90	88	31	2	0	27	3	$G F(2) \otimes G F(29)$
57/21	80	78	22	2	0	16	4	$G F(3) \otimes G F(19)$
56/14	72	70	15	2	0	1	8	$G F(7) \otimes G F(8)$
56/32	96	88	39	8	0	23	3	$G F(7) \otimes Z_{8}, G F(7) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$
56/38	120	94	63	26	6	17	3	$G F(7) \otimes G F(2) \otimes G F(4)$
56/44	144	100	87	44	12	11	3	$G F(7) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
56/50	216	106	159	110	66	5	3	$G F(7) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
55/15	72	70	16	2	0	6	6	$G F(5) \otimes G F(11)$
54/28	84	82	29	2	0	25	3	$G F(2) \otimes G F(27)$
54/36	108	90	53	18	0	17	3	$G F(2) \otimes Z_{27}, G F(2) \otimes G F(3)[x] /\left\langle x^{3}\right\rangle,$.
54/38	120	92	65	28	6	15	3	$G F(2) \otimes G F(3) \otimes G F(9)$
54/42	144	96	89	48	18	11	3	$G F(2) \otimes G F(3) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
54/46	192	100	137	92	54	7	3	$G F(2) \otimes G F(3) \otimes G F(3) \otimes G F(3)$
53/1	54	54	0	0	0	0	54	$G F(53)$
52/16	70	68	17	2	0	9	5	$G F(13) \otimes G F(4)$
52/28	84	80	31	4	0	23	3	$G F(13) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
52/40	126	92	73	34	6	11	3	$G F(13) \otimes G F(2) \otimes G F(2)$
51/19	72	70	20	2	0	14	4	$G F(3) \otimes G F(17)$
50/26	78	76	27	2	0	23	3	$G F(2) \otimes G F(25)$
50/30	90	80	39	10	0	19	3	$G F(2) \otimes\left[Z_{25}\right.$ or $\left.G F(5)[x] /\left\langle x^{2}\right\rangle\right]$
50/34	108	84	57	24	6	15	3	$G F(2) \otimes G F(5) \otimes G F(5)$
49/1	50	50	0	0	0	0	50	$G F(49)$
49/7	56	56	6	0	0	6	8	$Z_{49}, G F(7)[x] /\left\langle x^{2}\right\rangle$
49/13	64	62	14	2	0	0	8	$G F(7) \otimes G F(7)$
48/18	68	66	19	2	0	13	4	$G F(3) \otimes G F(16)$
48/24	80	72	31	8	0	7	4	$G F(3) \otimes\left[G F(4)[x] /\left\langle x^{2}\right\rangle\right.$ or $\left.Z_{4}[x] /\left\langle x^{2}+x+1\right\rangle\right]$
48/30	100	78	51	22	6	3	4	$G F(3) \otimes G F(4) \otimes G F(4)$
48/32	96	80	47	16	0	15	3	$G F(3) \otimes Z_{16}, G F(3) \otimes Z_{4}[x] /\left\langle x^{2}\right\rangle$,
48/34	108	82	59	26	6	13	3	$G F(3) \otimes G F(2) \otimes G F(8)$
48/36 ${ }^{\star}$	120	84	71	36	12	11	3	$G F(3) \otimes G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
48/40	144	88	95	56	24	7	3	$G F(3) \otimes Z_{4} \otimes Z_{4}, G F(3) \otimes G F(2) \otimes Z_{8}, \ldots$
48/42	180	90	131	90	54	5	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(4)$
48/44	216	92	167	124	84	3	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
48/46	324	94	275	230	186	1	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
47/1	48	48	0	0	0	0	48	$G F(47)$
46/24	72	70	25	2	0	21	3	$G F(2) \otimes G F(23)$
45/13	60	58	14	2	0	4	6	$G F(5) \otimes G F(9)$
45/21	72	66	26	6	0	8	4	$G F(5) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
45/29	96	74	50	22	6	2	4	$G F(5) \otimes G F(3) \otimes G F(3)$
44/14	60	58	15	2	0	7	5	$G F(11) \otimes G F(4)$
44/24	72	68	27	4	0	19	3	$G F(11) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
44/34	108	78	63	30	6	9	3	$G F(11) \otimes G F(2) \otimes G F(2)$

Line Type	Cardinalities of Points							Representative Rings	
	Tot	TpI	1N	$\cap 2 \mathrm{~N}$	$\cap 3 \mathrm{~N}$	Jcb	MD		
43/1	44	44	0	0	0	0	44	$G F(43)$	
42/30	96	72	57	24	6	11	3	$G F(2) \otimes G F(3) \otimes G F(7)$	
41/1	42	42	0	0	0	0	42	$G F(41)$	
40/12	54	52	13	2	0	3	6	$G F(5) \otimes G F(8)$	
40/24	72	64	31	8	0	15	3	$G F(5) \otimes Z_{8}, G F(5) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$	
40/28	90	68	49	22	6	11	3	$G F(5) \otimes G F(2) \otimes G F(4)$	
40/32	108	72	67	36	12	7	3	$G F(5) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
40/36	162	76	121	86	54	3	3	$G F(5) \otimes G F(2) \otimes G F(2) \otimes G F(2)$	
39/15	56	54	16	2	0	10	4	$G F(3) \otimes G F(13)$	
38/20	60	58	21	2	0	17	3	$G F(2) \otimes G F(19)$	
37/1	38	38	0	0	0	0	38	$G F(37)$	
36/12	50	48	13	2	0	5	5	$G F(4) \otimes G F(9)$	
36/18	60	54	23	6	0	5	4	$G F(4) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$	
36/24a	80	60	43	20	6	1	4	$G F(4) \otimes G F(3) \otimes G F(3)$	
36/20	60	56	23	4	0	15	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes G F(9)$	
36/24b	72	60	35	12	0	11	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$	
36/28a	90	64	53	26	6	7	3	$G F(2) \otimes G F(2) \otimes G F(9)$	
$36 / 28 \mathrm{~b}$	96	64	59	32	12	7	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes G F(3) \otimes G F(3)$	
36/30	108	66	71	42	18	5	3	$G F(2) \otimes G F(2) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$	
36/32	144	68	107	76	48	3	3	$G F(2) \otimes G F(2) \otimes G F(3) \otimes G F(3)$	
35/11	48	46	12	2	0	2	6	$G F(5) \otimes G F(7)$	
34/18	54	52	19	2	0	15	3	$G F(2) \otimes G F(17)$	
33/13	48	46	14	2	0	8	4	$G F(3) \otimes G F(11)$	
32/1	33	33	0	0	0	0	33	$G F(32)$	
32/11	45	43	12	2	0	0	5	$G F(4) \otimes G F(8)$	
32/16	48	48	15	0	0	15	3	$Z_{32}, G F(2)[x] /\left\langle x^{5}\right\rangle, \ldots$	
32/17	51	49	18	2	0	14	3	$G F(2) \otimes G F(16)$	
32/18	54	50	21	4	0	13	3	$G F(8) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
32/20	60	52	27	8	0	11	3	$G F(4) \otimes Z_{8}, G F(2) \otimes G F(4)[x] /\left\langle x^{2}\right\rangle,$.	
32/23	75	55	42	20	6	8	3	$G F(2) \otimes G F(4) \otimes G F(4)$	
32/24	72	56	39	16	0	7	3	$G F(2) \otimes Z_{16}, Z_{4} \otimes Z_{8}, \ldots$	
32/25	81	57	48	24	6	6	3	$G F(2) \otimes G F(2) \otimes G F(8)$	
32/26 ${ }^{\star}$	90	58	57	32	12	5	3	$G F(2) \otimes G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
32/28	108	60	75	48	24	3	3	$G F(2) \otimes G F(2) \otimes Z_{8}, G F(2) \otimes Z_{4} \otimes Z_{4}, \ldots$	
32/29	135	61	102	74	48	2	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(4)$	
32/30	162	62	129	100	72	1	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
32/31	243	63	210	180	150	0	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$	
31/1	32	32	0	0	0	0	32	$G F(31)$	
30/22	72	52	41	20	6	7	3	$G F(2) \otimes G F(3) \otimes G F(5)$	
\|	$29 / 1$	30	30	0	0	0	0	30	$G F(29)$
28/10	40	38	11	2	0	3	5	$G F(7) \otimes G F(4)$	
28/16	48	44	19	4	0	11	3	$G F(7) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
28/22	72	50	43	22	6	5	3	$G F(7) \otimes G F(2) \otimes G F(2)$	
27/1	28	28	0	0	0	0	28	$G F(27)$	
27/9	36	36	8	0	0	8	4	$Z_{27}, G F(3)[x] /\left\langle x^{3}\right\rangle, \ldots$	
27/11	40	38	12	2	0	6	4	$G F(3) \otimes G F(9)$	
27/15	48	42	20	6	0	2	4	$G F(3) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$	
27/19	64	46	36	18	6	0	4	$G F(3) \otimes G F(3) \otimes G F(3)$	
26/14	42	40	15	2	0	11	3	$G F(2) \otimes G F(13)$	
25/1	26	26	0	0	0	0	26	$G F(25)$	
25/5	30	30	4	0	0	4	6	$Z_{25}, G F(5)[x] /\left\langle x^{2}\right\rangle$	
25/9	36	34	10	2	0	0	6	$G F(5) \otimes G F(5)$	

Line Type	Cardinalities of Points							Representative Rings	
	Tot	TpI	1N	$\cap 2 \mathrm{~N}$	ก3N	Jcb	MD		
24/10	36	34	11	2	0	5	4	$G F(3) \otimes G F(8)$	
24/16	48	40	23	8	0	7	3	$G F(3) \otimes Z_{8}, G F(3) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$	
24/18	60	42	35	18	6	5	3	$G F(3) \otimes G F(2) \otimes G F(4)$	
24/20	72	44	47	28	12	3	3	$G F(3) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
24/22	108	46	83	62	42	1	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(2)$	
23/1	24	24	0	0	0	0	24	$G F(23)$	
22/12	36	34	13	2	0	9	3	$G F(2) \otimes G F(11)$	
21/9	32	30	10	2	0	4	4	$G F(3) \otimes G F(7)$	
20/8	30	28	9	2	0	1	5	$G F(5) \otimes G F(4)$	
20/12	36	32	15	4	0	7	3	$G F(5) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
20/16	54	36	33	18	6	3	3	$G F(5) \otimes G F(2) \otimes G F(2)$	
19/1	20	20	0	0	0	0	20	$G F(19)$	
18/10	30	28	11	2	0	7	3	$G F(2) \otimes G F(9)$	
18/12	36	30	17	6	0	5	3	$G F(2) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$	
18/14	48	32	29	16	6	3	3	$G F(2) \otimes G F(3) \otimes G F(3)$	
17/1	18	18	0	0	0	0	18	$G F(17)$	
16/1	17	17	0	0	0	0	17	$G F(16)$	
16/4	20	20	3	0	0	3	5	$Z_{4}[x] /\left\langle x^{2}+x+1\right\rangle, G F(4)[x] /\left\langle x^{2}\right\rangle$	
16/7	25	23	8	2	0	0	5	$G F(4) \otimes G F(4)$	
16/8	24	24	7	0	0	7	3	$Z_{16}, Z_{4}[x] /\left\langle x^{2}\right\rangle, G F(2)[x] /\left\langle x^{4}\right\rangle, \ldots$	
16/9	27	25	10	2	0	6	3	$G F(2) \otimes G F(8)$	
16/10*	30	26	13	4	0	5	3	$G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
16/12	36	28	19	8	0	3	3	$Z_{4} \otimes Z_{4}, G F(2) \otimes Z_{8}, \ldots$	
16/13	45	29	28	16	6	2	3	$G F(2) \otimes G F(2) \otimes G F(4)$	
16/14	54	30	37	24	12	1	3	$G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
16/15	81	31	64	50	36	0	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$	
15/7	24	22	8	2	0	2	4	$G F(3) \otimes G F(5)$	
14/8	24	22	9	2	0	5	3	$G F(2) \otimes G F(7)$	
13/1	14	14	0	0	0	0	14	$G F(13)$	
12/6	20	18	7	2	0	1	4	$G F(3) \otimes G F(4)$	
12/8	24	20	11	4	0	3	3	$G F(3) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
12/10	36	22	23	14	6	1	3	$G F(3) \otimes G F(2) \otimes G F(2)$	
11/1	12	12	0	0	0	0	12	$G F(11)$	
10/6	18	16	7	2	0	3	3	$G F(2) \otimes G F(5)$	
9/1	10	10	0	0	0	0	10	$G F(9)$	
9/3	12	12	2	0	0	2	4	$Z_{9}, G F(3)[x] /\left\langle x^{2}\right\rangle$	
9/5	16	14	6	2	0	0	4	$G F(3) \otimes G F(3)$	
8/1	9	9	0	0	0	0	9	$G F(8)$	
8/4	12	12	3	0	0	3	3	$Z_{8}, G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$	
8/5	15	13	6	2	0	2	3	$G F(2) \otimes G F(4)$	
8/6	18	14	9	4	0	1	3	$G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$	
8/7	27	15	18	12	6	0	3	$G F(2) \otimes G F(2) \otimes G F(2)$	
7/1	8	8	0	0	0	0	8	$G F(7)$	
\|	$6 / 4$	12	10	5	2	0	1	3	$G F(2) \otimes G F(3)$
5/1	6	6	0	0	0	0	6	$G F(5)$	
4/1	5	5	0	0	0	0	5	$G F(4)$	
4/2	6	6	1	0	0	1	3	$Z_{4}, G F(2)[x] /\left\langle x^{2}\right\rangle$	
$4 / 3$	9	7	4	2	0	0	3	$G F(2) \otimes G F(2)$	
\|	$3 / 1$	4	4	0	0	0	0	4	$G F(3)$
\|	$2 / 1$	3	3	0	0	0	0	3	$G F(2)$

POSSIBLE PHYSICAL APPLICATIONS

There exists a bijection between the pairs/vectors (a, b) of the modular ring Z_{d} and the elements of the generalized Pauli group of the d-dimensional Hilbert space generated by the standard shift (X) and clock (Z) operators, $\omega^{c} X^{a} Z^{b}$.

Under this correspondence, the operators of the group commuting with a given operator form:
\hookrightarrow the set-theoretic union of the points of the projective line over Z_{d} which contain a given pair (Figure 10) if d is a product of distinct primes [11], and
\hookrightarrow the span of the points for any other values of $d[12]$.

Figure 10: The projective line over $Z_{6} \simeq Z_{2} \times Z_{3}$; shown is the set-theoretic union of the points of the pair/vector (3, 3) (highlighted), which comprises all the pairs/vectors joined by heavy line segments.

As yet, there is no general theory for tensorial products of the abovedefined operators, but some interesting particular cases have already been computer-analyzed [13].

NEXT MOVE: GEOMETRIES OVER NEARRINGS?

A (left) nearring $N(+, \cdot)$ meets all the axioms of a ring except that the group $N(+)$ is not necessarily commutative and only left distributive law holds, i. e. $x \cdot(y+z)=x \cdot y+x \cdot z$.

Fundamental difference with respect to rings [14]:
$\hookrightarrow x \cdot 0=0$ for any $x(x \cdot 0=x \cdot(0+0)=x \cdot 0+x \cdot 0 \Rightarrow x \cdot 0=0)$
\hookrightarrow whereas, in general, $0 \cdot x \neq 0$.

As a group, N is the semi-direct product of N_{Z} and N_{C}, i.e., N_{Z} is a normal subgroup of $N, N=N_{Z}+N_{C}$ and $N_{Z} \cap N_{C}=\{0\}$, where
$N_{Z} \equiv\{r \in N \mid 0 \cdot r=0\}$ is called the zero-symmetric part of N, and
$N_{C} \equiv\{r \in N \mid 0 \cdot r=r\}$
$=\{r \in N \mid \forall x \in N: x \cdot r=r\}$ is called the constant part of N.
N is called zero-symmetric if $N=N_{Z}$.

Let N be a nearring with unity 1 ; then its group of units factorizes as $N^{*}=N_{Z}{ }^{*}\left(N_{C}+1\right)$ with $N_{Z}{ }^{*} \cap\left(N_{C}+1\right)=\{1\}$.

Towards defining geometries over N :
$N_{l}(a, b)=\{(\alpha a, \alpha b) \mid \alpha \in N\}$ is not a submodule of N^{2}, for, in general, $(\alpha a, \alpha b)+(\beta a, \beta b)=(\alpha a+\beta a, \alpha b+\beta b) \neq((\alpha+\beta) a,(\alpha+\beta) b)$
$N_{r}(a, b)=\{(a \alpha, b \alpha) \mid \alpha \in N\}$ is also to be checked if it meets all the requirements (I haven't done it yet).
Yet, irrespectively of these tasks, I shall call both the sets free cyclic sets (FCSs) if $\left|N_{l}(a, b)\right|=\left|N_{r}(a, b)\right|=|N|$.

Let's us have a look at what such sets look like for a few simplest cases of finite nearrings in order to get the feeling how beautiful geometries they can generate.

The non-zero-symmetric nearring of a particular type p^{n} / p^{n-1} (p being a prime and n a positive integer ≥ 2) such that all p^{n-1} non-units ${ }^{1}$ are the constant elements of the nearring.

- $N_{l}(a, b)$ (l.h.s. of the figures, trunks only):
\hookrightarrow their number is always equal to $p^{n}+p^{n-1}$ and for $n=2$ they can be regarded as the lines of the affine plane over $G F(p), A G(n, p)$;
\hookrightarrow the trunk of the tree consists solely of $p^{2(n-1)}$ pairs of the constant elements; for $n=2$ these pairs can be viewed as the points of $A G(n, p)$.
- $N_{r}(a, b)$ (r.h.s. of the figures, full trees):
\hookrightarrow the trunk of the tree features only p^{n-1} "diagonal" pairs of constant elements, i.e., pairs of type (c, c);
\hookrightarrow the number of FCSs equals the number of pairs in the corolla divided by the number of units in the nearring, viz. $\left(p^{2 n}-p^{n-1}\right) /\left(p^{n}-p^{n-1}\right)=$ $\left(p^{n+1}-1\right)(p-1)=p^{n}+p^{n-1}+\cdots+p+1$, that is to the number of points of the ordinary n-dimensional projective space over $G F(p), P G(n, p)$; in fact, "condensing" p^{n-1} pairs into a single pair in an obvious way we get the tree of $P G(n, p)$;
\hookrightarrow out of them, there are $p^{n-2}+p^{n-3}+\cdots+p+1$ such which consist solely of "off-diagonal" pairs of constant elements (these are represented by bullets in accompanying figures).

[^0]

Figure 11: $n=2$ and $p=2$ (top), $p=3$ (middle) and $p=5$ (bottom)

Figure 12: $n=3$ and $p=2$ (top) and $p=3$ (bottom)

Figure 13: $n=4$ and $p=2$
$N_{l}(a, b)$ - Full trees over some small non-zero-symmetric nearrings; notice that each consists of four copies of the tree over the zero-symmetric part of the nearring in question and that exactly half of FCSs do not pass through the $(0,0)$ pair!!!

Figure 14: 8/4: $N_{Z} \simeq Z_{4}$

Figure 15: 8/6a: $N_{Z} \simeq Z_{2} \times Z_{2}$

Figure 16: 8/6b: $N_{Z} \simeq$ proper nearring of $4 / 3$ type

Figure 17: $12 / 8: N_{Z} \simeq Z_{6}$

Last example - non-abelian, non-zero-symmetric nearring of $16 / 8$ type; note that the left tree features four copies of the projective line over Z_{8}, whilst the right tree (of which only trunk is shown) comprises two copies of what seems not to be any line over (near)rings of order eight.

Figure 18: $16 / 8:$ non-abelian, $N_{Z} \simeq Z_{8}$

Interesting Fact:
If the cardinality of a nearring with identity is the product of distinct primes, then this nearring is a ring (Maxson, 1967)

References

［1］BR McDonald，Finite rings with identity，Marcel Dekker，New York， 1974.
［2］R Raghavendran，Finite associative rings，Comp Mathematica 1969；21：195－229．
［3］A Blunck and H Havlicek，Projective representations I：Projective lines over rings，Abh Math Sem Univ Hamburg 2000；70：287－299．
［4］H Havlicek，Divisible designs，Laguerre geometry，and beyond， Quaderni del Seminario Matematico di Brescia 2006；11：1－63， available from 〈http：／／www．geometrie．tuwien．ac．at／havlicek／pdf／dd－ laguerre．pdf \rangle ．
［5］M Saniga，M Planat，MR Kibler and P Pracna，A classification of the projective lines over small rings，Chaos，Solitons and Fractals 2007；33：1095－1102．
［6］A Herzer，Chain geometries，in Handbook of incidence geometry，F Buekenhout（ed），Amsterdam，Elsevier，1995：781－842．
［7］A Blunck and A Herzer，Kettengeometrien－Eine Einführung， Shaker－Verlag，Aachen， 2005.
［8］M Saniga，M Planat，and P Pracna，A Classification of the Projective Lines over Small Rings II．Non－Commutative Case，math．AG／0606500．
［9］C Nöbauer，The Book of the Rings－Part I，2000，available from \langle http：／／www．algebra．uni－linz．ac．at／～noebsi／pub／rings．ps〉．
［10］C Nöbauer，The Book of the Rings－Part II，2000，available from〈http：／／www．algebra．uni－linz．ac．at／～noebsi／pub／ringsII．ps〉．
［11］H Havlicek and M Saniga，Projective ring line of a specific qudit，J Phys A：Math Theor 2007；40：F943－F952
［12］H Havlicek and M Saniga，Projective ring line of an arbitrary single qudit，J Phys A：Math Theor 2008；41：015302（12pp）．
［13］M Planat and A－C Baboin，Qudits of composite dimension，mutually unbiased bases and projective ring geometry，J Phys A：Math Theor 2007；40：F1005－F1012．
［14］JDP Meldrum，Near－rings and their links with groups，Pitman Pub－ lishing Ltd．，Boston， 1985

[^0]: ${ }^{1}$ I deliberately avoid using here the term "zero-divisor" because in the case of a non-zero-symmetric nearring a unit can also be a (one-sided) zero-divisor.

