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Point-Line Incidence Geometry

GQ(2,4), generalized quadrangle of order (2,4),
and

Split Cayley Hexagon of Order Two,
the main characters of our story,

are examples of a

point-line incidence geometry.

INnt-line incidence structure?



Point-Line Incidence Geometry

An incidence structure is a triple (P, B, I), where:
a) P is a set, the elements of which are called points;

b) B Is a set, the elements of which are called lines
(or blocks); and

c) | Is an incidence relation between P and B (the
elements of | are also called flags).

Usually, lines are regarded as subsets of P.
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GQ(1,1) - Trivial

TRIANGLE - FREE

GQ(L1)
'




GQ(1,2) - Less Trivial
GQ(1,2), a dual grid; 6 points / 9 lines




GQ(2,1) - Less Trivial
GQ(2,1), agrid; 9 points / 6 lines

b
*.5
£




GQ(2,2) — Non-Trivial
GQ(2,2), the doily

15 points/lines; self-dual

Contains both GQ(2,1)

and GQ(1,2)
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One of 245,342
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GQ(2,2) — A Construction

GQ(2,2), a duad-syntheme construction

Duad: an unordered pair of elements (i, J) such that
| # ] are from the set {1, 2, 3, 4, 5, 6};
there are (6 choose 2) = 15 of them

Syntheme: a set {(i ,)), (k, I), (m, n)} of three duads
such that I, |, k, I, m and n are all distinct;
there are (6 choose 2)(4 choose 2)(2 choose 2)/
3! =15 of them, too.
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Duads & Synthemes

The Entire Set of Duads:
{(1,2), (1,3), (1,4), (1,9), (1,6), (2,3), (2,4), (2,5), (2,6),
(3,4), (3,5), (3,6), (4,5), (4,6), (5,6)}.

The Entire Set of Synthemes:
{(1,2), 3,4), (5,6)}, {(1,2), (3,5), (4,6)}, {(1,2), (3,6), (4,5)},
{(1,3), (2,4), (5,6)}, {(1,3), (2,5), (4,6)}, {(1,3),(2,6), (4,5)},
{(1,4), (2,3), (5,6)}, {(1,4), (2,5), (3,6)}, {(1,4), (2,6), (3,9)},
{(1,5), (2,3), (4,6)}, {(1,5), (2,4), (3,6)}, {(1,5), (2,6), (3,4)},
1(1,6),(2;3):(4:5)}, {(1.6), (2,4), (3,9)}, {(1.6), (2,5), 3. )}}
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GQ(2,2) and the Number 6

GQ(2,2): Its points are the duads and
Its lines are the synthemes, or vice versa

S 6, the automorphism
group of the dolily, Is the
only symmetric group
having non-trivial outer
automorphisms.

53 (1,2 (4,6)
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GQ(2,4)

GQ(2,4): 27 points on 45 lines, 3 points per line
and 5 lines through a point
A Construction:
Given the syntheme-duad construction of GQ(2,2),
one takes additional twelve points 1, 2,...,6 and

1', 2", ....,6'and lets {i, 1}, '}, 1 <1,] < 6, 1], denote
thirty additional lines. It is easy to verify that the
15+12=)27 points and (15+30=)45 lines thus

leld a representation of GQ(2,4).
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GQ(2,4) Visualised
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GH(1,1) - Trivial

Triangle-, Quadrangle- and Pentagon-Free
GH 1,1)

ADCKC)
Ok
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GH(1,2)/GH(2,1) — Less Trivial

GH(L,2) & GH(2,1)

14 points / 21 lines 21 points / 14 lines
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GH(2,2) — Non-Trivial

GH(2,2): Split Cayley
Hexagon of Order Two;

/o)

Contains GH(1,2),

63 points/lines, v&& S Qv
not self-dual VL peo o T
P
o




GQ vs GH - Remarkable Link

An intricate link between GQ(2,4) and GH(2,2)

One starts with a (distance-3-)spread of GH(2,2), I. e., a set of 27
points located on 9 lines that are pairwise at maximum distance
from each other, and constructs GQ(2, 4) as follows:

—> the points of GQ(2, 4) are the 27 points of the spread
= Its lines are the 9 lines of the spread and
another 36 lines each of which comprises three points
of the spread which are collinear with a particular off-
oint of the hexagon.
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GQ vs GH - Remarkable Link

The 9 lines of the

(distance-3-)spread
of GH(2,2) form a
spread of GQ(2,4)

VX
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Geometric Hyperplanes

A geometric hyperplane H of a point-line geometry
IS a proper subset of points such that
each line of the geometry meets H in
one or all points.
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Geometric Hyperplanes of GQ(2,2)

3 distinct types:
= Ovolid: a set 5 mutually non-collinear points;
there are 6 of them
— Perp-set: all the points collinear with a given
point, inclusive the point itself; there
are 15 of them;
= Grid (i.e., GQ(2,1)); there are 10 of them

25} — 1; => V(GQ(2,2)) isomorphic PG(4,2)
i

Catalan number)
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Geometric Hyperplanes of GQ

20
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Geometric Hyperplanes of GH(2,2)

There are

2M14} — 1 = 16,383 (!) of them

i (4th Catalan number)

falling into

5 different types.
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Geometric Hyperplanes of GH(2,2)

28.8.2009

Table 1: Types of geometric hyperplanes of the split Cayley hexagon of order two.

Type | Pts Lns DPts Cps StGr Name FJ Type

H, 21 0 0 36 PGL(2,7)  distance-2-ovoid V2(21;21,0,0,0)
Hy 27 9 0 28  X);:QDig  “Wootters” V1(27;0,27,0,0)
Hj 33 18 3+1 1008 Do “Besancon” V20(33;2,12,15,4)
H, 31 15 6+1 63 (4x4):Dys “unexpected” V6(31;0,24,0,7)
H; 37 24 8 756 Dy “patrimoine” V15(37;1,8,20,8)
Hg 35 21 14 36 PGL(2,7) “symmetric” V3(35;0,21,0,14)
Hy 29 12 0 1008 Dy, “sorgeous” V158(29;5,12,12,0)
Hg 49 42 28 36 PGL(2,7) “fat” V4(49;0,0,21,28)
Hy 33 18 242 756 D¢ “Besangon™” V14(33;4,8,17,4)
Hyp 27 8+1 0 756 D1 “Petr” V13(27;8,11,8,0)
Hip 39 27 8+4+1 378 8:2:2 “midnight” V10(39;0,10,16,13)
Hise | 31 15 241 1512 Ds “lake” V24(31:4,12,12.3)
Hip | 31 15 3 2016 Sa “noon” Va5 (31:4,12,12,3)
His 27 9 3+1 252 2 x Sy “desperate” Vg(27;8,15,0,4)
Hyy 39 21 44-2 756 D1 “luminous” V16(35;0,13,16,6)
His | 29 12 % 1512 Ds “dusky” V23(29 4,16,7,2)
Hyg 37 24 6+3+1 1008 Dy, “surprising” 2(37,0,12,15,10)
Hq 27 643 0 1008 Do “delicate” V17(27;6,15,6,0)
Hqg 35 21 6 1008 Do “fine” V21(35,2,9 18,6)
H19 29 12 2nc 1008 D12 “hidden” V19(29,6,12,9,2)
Hag 45 36 18 56 X5, Dg “queen” V5(45;0,0,27,18)
Hy, 23 3 1 126 (4x4):85;3 “high-rise” V7(23;16,6,0,1)
HQQ 43 33 124+3+1 252 2 % S4 “late” V9(43;0,3,24,16)
Hos 25 6 0 504 . S “Immediate” V11(25;10,12,3,0)
Hy | 29 12 4 504 Sa “crispy” V12(29;7,12,6,4)
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Geometric Hyperplanes of GH(2,2

28.8.2009

Table 2: Classes of geometric hyperplanes of the split Cayley hexagon of order two.

| Class | Types | Pts Lns  DPts Cps StGr Name FJ Type |
I H, 21 0 0 36 PGL(2,7)  distance-2-ovoid V5(21;21,0,0,0)
II Hy 23 3 1 126 (4 x4):S3  “high-rise” V7(23;16,6,0,1)
I11 Hys 25 6 0 504 Sy “immediate” V11(25;10,12,3,0)
IV Hy 27 9 0 28 X, :QDys “Wootters” V1(27;0,27,0,0)
H10 27 8+1 0 756 D16 “Petr” V13(27;8,11,8,0)
His 27 9 3+1 252 2 xSy “desperate” Vs(27;8,15,0,4)
Hy; 27  6+3 0 1008 Do “delicate” V17(27:6,15,6,0)
A% Hy 29 12 0 1008 D1q “gorgeous” V13(29;5,12,12,0)
His 29 12 % 1512 Dsg “dusky” V23(29:4,16,7,2)
Hyg 29 12 2nc 1008 Do “hidden” V10(29;6,12,9,2)
Hoy 29 12 4 504 Sy “crispy” V12(29;7,12,6,4)
VI Hy 31 15 6+1 63 (4x4):Dja “unexpected” V6(31;0,24,0,7)
Hys, 31 15 2+1 1512 Dg “lake” V24(31;4,12,12,3)
Hygp 31 15 3 2016 Ss “noon” V25(31;4,12,12,3)
VII Hjy 33 18 3+1 1008 Dqo “Besangon” V20(33;2,12,15,4)
Hy 33 18 2+2 756 Dig “Besancon*” V14(33;4,8,17 4)
VIII | He 35 21 14 36 PGL(2,7) “symmetric’ V3(35;0,21,0,14)
Hyy 39 21 442 756 Dy “luminous” V16(35;0,13,16,6)
ng 39 21 6 1008 D12 “fine” V21(35;2,9,18,6)
IX H; 37 24 8 756 Dig “patrimoine” V15(37;1,8,20,8)
Hyg 37 24 6+3+1 1008 D, “surprising” V22(37;0,12,15,10)
X Hy, 39 27 8+4+41 378 8:2:2 “midnight” V10(39;0,10,16,13)
X1 Hy, 43 33 1243+1 252 2 x84 “late” V9(43;0,3,24,16)
XII Hyg 45 36 18 * 56 X5 : Dsg “queen” V5(45;0,0,27,18)
XIIT | Hg 49 42 28 36 PGL(2,7) “fat” V4(49;0,0,21,28)
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Geom. Hypl. of GH(2,2) — Examples

The complement of H 1
IS a disjoint union of

the Heawood graph
and DA
the Coxeter graph = &9 0

0%

24




Coxeter Graph




Geom. Hypl. of GH(2,2) - Examples

Distance-3-spread,; its
complementis a
disjoint union of two
Pappus graphs

26
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Pappus Graph
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Pappus Configuration




Geom. Hypl. of GH(2,2) - Examples

All the points
whose distance
from a given point
(biggest bullet)

IS less than or
equal to 2
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Geom. Hypl. of GH(2,2) - Examples

The complement w
of H 6 Is the
Coxeter graph
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Geom. Hypl. of GH(2,2) - Examples

The complement of
H 8is the
Heawood graph

NG e %
DL
| AQL ) ﬁé@ m?\\
SN -f
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Geom. Hypl. of GH(2,2) - Examples

H 11
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Geom. Hypl. of GH(2,2) - Examples

H_16
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Geom. Hypl. of GH(2,2) - Examples

The complement

of H {20} is the
Pappus graph
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GQ(2,4) — 3 Notable Subgeometries

Two types of a geometric hyperplane, viz.
1) GQ(2,2)’s, the doilies; 36 of them,;
2) Perp-Sets, sets of 11 points collinear with a
given one; 27 of them;
and
3) GQ(2,1)s, i.e. grids, 120 of them,
forming 40 triples of pairwise disjoint members

35



GQ(2,4) — 3 Notable Splits of Points

1) Doily-Induced: 27=15 + 2x6
2) Perp-Induced: 27= 11 + 16
3) 3-Grid-Induced: 27= 9 + 9 + 9

These are essential for a deeper understanding
E_{6(6)} symmetric entropy formula
describing black holes and black stringsin D =5
and its different truncations with
15,11 and 9 charges.

28.8.2009
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Extremal Black Holes

Consider, e.g.,
the Reissner-Nordstroem Solution
of the Einstein-Maxwell Theory

Extremality:

— Mass = Charge

— QOuter and Inner Horizons Coincide
perature Goes to Zero
IS Finite; Function of Charges Only

37



Embedding in String Theory

String theory compactified to D dimensions
typically involves many more fields/charges
than those appearing in the Einstein-Maxwell
Lagrangian.

Here, we consider the D=5, N=8 supersymmetric
black holes/strings endowed with
2 ( electric/magnetic charges.

38



Cubic Jordan Algebra

28.8.2009

the charge configu-
rations of D = 5 black holes/strings are related to the
structure of cubic Jordan algebras. An element of a cubic
Jordan algebra can be represented as a 3 X 3 Hermitian
matrix with entries taken from a division algebra A, i.e. R,
C, H or O. (The real and complex numbers, the quatern-
1ons and the octonions.) Explicitly, we have

q1 Q" Q_*
KO =10 q 0 g ER, QU EA,
Q' QO g

(D)

where an overbar refers to conjugation in A. These charge
configurations describe electric black holes of the N = 2,
D = 5 magic supergravities

39



Entropy Formula

28.8.2009

The magnetic analogue of J;(Q) is

pi pv I':'i.s'
./3(P) — 131.» p2 pe pf = R_, prac A,
P ]3(.' p'3

(2)
describing black strings related to the previous case by the

electric-magnetic duality. The black hole entropy is given
by the cubic invariant

L(0) = ¢19293 — (1 Q°0° + 2 Q*QF + q;0V0")
+ 2Re(Q“Q* QV), (3)

as

and for the black string we get a similar formula with I3(Q)
replaced by I3(P).

40



Entropy Formula: 3-Grid Split

28.8.2009

Since except for the octonionic magic all the N =2
magic supergravities can be obtained as consistent trunca-
tions of the N = § split-octonionic case, let us consider the
cubic invariant /3 of Eq. (3) with the U-duality group Eg,.
Let us consider the decomposition of the 27-dimensional
fundamental representation of Egg with respect to its
SL(3, R)®* subgroup. We have the decomposition

Ege) D SL(3,R)y X SL(3,R)p; X SL(3,R)¢c  (6)

under which
27 — (3.3 1 (1.3, 3)2 (3,1, 3). (7)

As it is known [7,10], the above-given decomposition is
related to the “bipartite entanglement of three-qutrits™
interpretation of the 27 of E¢(C). Neglecting the details,
all we need is three 3 X 3 real matrices a, b and ¢ with the
index structure

aty, bBC, Cear ABC=012 (8

where the upper indices are transformed according to the
(contragredient) 3’ and the lower ones by 3.

41



Entropy Formula: 3-Grid Split

28.8.2009

We can express I5 of Eq. (3) in the alternative form as

I; = DelJ5(P) = a* + b3 + 3 + Gabe. (13)

Here
1 .
(13 == g 8‘4[A2‘43 SBIB'_‘_BE aAI Bl (1/1232 (I.A:‘.B?" (14)
1 .
3 B,C BzC: B';C' 5
b ngBIBBBTiEClC;’.CSb e p b 4 (13)
l .
3 CyCCy QA AAS - n - 1
o= 58 P2 38 12 3('C1A|(’C2,42((:3A3’ (16)

1 .
abe = gaABbB( Cea (17)

Notice that the terms like ¢ produce just the determinant
of the corresponding 3 X 3 matrix. Since each determinant
contributes six terms, altogether we have 18 terms from the
first three terms in Eq. (13). Moreover, since it is easy to
see that the fourth term contains 27 terms, altogether I,
contains precisely 45 terms, i.e. the number which is equal
to that of lines in GQ(2, 4).
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Entropy Formula: 3-Grid Split




Entropy Formula: Doily Split

28.8.2009

It is easy to find a physical interpretation of the hyper-
planes of GQ(2, 4). The doily has 15 lines, hence we should
have a truncation of our cubic invariant which has 15
charges. Of course, we can interpret this truncation in
many different ways corresponding to the 36 different
doilies residing in our GQ(2, 4). One possibility is a
truncation related to the one which employs instead of
the split octonions, the split quaternions in our J3(P).
The other is to use ordinary quaternions inside our split
octonions, yielding the Jordan algebras corresponding to
the quaternionic magic. In all these cases the relevant
entropy formula is related to the Pfaffian of an antisym-
metric 6 X 6 matrix A/, i, j =1,2,...,6, defined as

Pf (A) = Sffjkim.nAijAklAmn- (22)

3127

The simplest way of finding a decomposition of Egq,
directly related to a doily sitting inside GQ(2, 4) is the
following one [10,36,37]:

Eg6) 2 SL(2) X SL(6) (23)
under which

27 — (2,6) (1, 15). (24)
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Entropy Formula: Perp-Set Split

28.8.2009

As we already know, perp sets are obtained by
selecting an arbitrary point and considering all the points
collinear with it. Since we have five lines through a point,
any perp set has 1+ 10 =11 points. A decomposition
which corresponds to perp sets is thus of the form [10]

under which
27 — 1612 10_, & 1. (27)

This is the usual decomposition of the U-duality group into
the T-duality and S-duality [10]. It is interesting to see that
the last term (1.e. the one corresponding to the fixed/central
point in a perp set) describes the NS five-brane charge.
Notice that we have five lines going through this fixed
point of a perp set. These correspond to the 7° of the
corresponding compactification. The two remaining points
on each of these five lines correspond to 2 X 5 = 10
charges. They correspond to the five directions of KK
momentum and the five directions of fundamental string
winding. In this picture the 16 charges nor belonging to the
perp set correspond to the 16 D-brane charges.
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Entropy Formula: Perp-Set Split

46



Entropy Formula: 3-Qubit Labels

28.8.2009

let us define the real 3-qubit Pauli operators by in-
troducing the notation [12] X = ¢, Y = iop and Z = 075
here, o;, j =1, 2, 3 are the usual 2 X 2 Pauli matrices.
Then we can define the real operators of the 3-qubit Pauli
group by forming the tensor products of the form ABC =
A ® B ® C that are 8 X 8 matrices. For example, we have

ZYXEZ®Y®X=(Y®X 0 )

0 -vex
0 X 0 0
X 0 0 0

= ' 2
0 0 0 -x| (28)
0 0 X 0

Notice that operators containing an even number of ¥'s are
symmetric and the ones containing an odd number of Y’s
are antisymmetric. Disregarding the identity, /11, (I is the
2 X 2 identity matrix) we have 63 of such operators. We
have shown [12] that they can be mapped bijectively to the
63 points of the split Cayley hexagon of order 2 in such a
way that its 63 lines are formed by three pairwise commut-
ing operators, These 63 triples of operators have the prop-
erty that their product equals 11! up to a sign.
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Entropy Formula: 3-Qubit Labels

28.8.2009
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Entropy Formula: 3-Qubit Labels

Now we employ
the spread construction
of GQ(2,4) from
the hexagon...
XY YIL

49




Entropy Formula: 3-Qubit Labels

...to get a set of 3-qubit
‘ l

operators with a natural
choice of signs as non
Iy 11 ‘L@
176 5\ ®

& @(/I'é‘\’“ iz
L J,.r )

the points of GQ(2,4)
- E“ : 1




Entropy Formula: 2-Quitrit Labels

W(3), aka the symplectic GQ(3,3), having 40
points/lines, with 4 points/lines on a line /
through a point, is geometry behind

two-qutrit Pauli o

products of the fol

X =

28.8.2009

o = O
— o O
o O =

nerators, which are the tensor
owing single-qutrit ones:

1 0 0

7 = 0 Y =XZ W = X?Z

0 w
0 0 w?

I X XYY Z Z W W
X X I W Z Y W Z Y
X I X Z W W 'Y Y Z
Y| W zZ Y I W X Z X
Y| Z W I Y X W X Z
Z Y W W X Z I Y X
Z| W'Y X W I Z XY
W Z'Y Z X 'Y X W I
wl| Y Z X Z X Y I W 51




Entropy Formula: 2-Qutrit Labels

There are 9"2-1=80

such operators, and their

40 pairs of the type {O, 02}
are in a bijection with 40
points of W(3), where
colinear means commuting




Entropy Formula: 2-Qutrit Labels

GQ(2,4) as derived geometry at a point, say P,
of W(3):

—> the points of GQ(2,4) are all the points of W(3) not
collinear with P (40 -1 -4 x 3 =27),

= the lines of GQ(2,4) are, on the one hand, the lines of
W(3) not containing P (40 — 4 = 36) and, on the other
hand, the (9) hyperbolic lines of W(3) through P, with
natural incidence.

Taking P = WY, one gets:

28.8.2009 93



Entropy Formula: 2-Qutrit Labels

The 9 hyperbolic lines of
W(3) (highlighted by
different colours) form

a spread of GQ(2,4)
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Entropy Formula: 2-Qutrit Labels

Or, more
&
"\
S @

explicitly xw
ﬂ,@
O
O @(’@’ SN

SO

2 @\ﬁ(f@\\?f o

@)
w ® ®




Main Message

Different versions of
| 3
and, so, of the
black hole entropy formula(s)
are obtained as different parametrizations of
the underlying finite geometrical object, our

GQ(2,4).

structure shaped by its closest
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..."the POLYGONS”

The POLYGONS G,

of order 2, Math. Intelligencer, to appear)

iy .
s
\‘

Figure 7: The points and lines of the
(HERAGON ) correspomd (0 the subsets of size 1.2,
(and 3) of a S-gon (T-gon). To aveid a crowded
appearance of the FEXAGON, the |-clement subsets
of the 7-gon are represented by (small) solid

blue points. The lines in the QUADR ANGLE
correspond b partitions of the S-gon int 1-

and 2-clement subsets; see Figure 10. For the
lines of the BEXAGON, in terms of the labels of

its poants see Figure 9. Highlighted in the
dingrams are the points of geometric
hyperplanes—purple (TRIANGLE and QUADRANGLE )
al green (HERAGON ). Afler removing these
geometric hyperplanes from these geometries,

we are left with models of some of the most
hamaogencous graphs—the complete graph on

four vertices in the case of TRIANGLE, the Petersen
graph in the case of the QUADRANGLE. and the
disjoint union of the Coxeter graph (blue points and
blue and green lines) and the Heawood graph (yellow
points and lines) in the case of the HEXAGON. Note that
every point of the MGON forms a geometric hyperplane.

HEXAGON

TRIANGLE
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