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Point-Line Incidence Geometry
GQ(2,4), generalized quadrangle of order (2,4),  

and
Split Cayley Hexagon of Order Two,

the main characters of our story, 

are examples of a

point-line incidence geometry.

What is a point-line incidence structure?
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Point-Line Incidence Geometry
An incidence structure is a triple (P, B, I), where: 
a) P is a set, the elements of which are called points; 

b) B is a set, the elements of which are called lines
(or blocks); and

c) I is an incidence relation between P and B (the 
elements of I are also called flags). 

Usually, lines are regarded as subsets of P.
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GQ(1,1) – Trivial
TRIANGLE – FREE

GQ(1,1)  
⇓
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GQ(1,2) – Less Trivial
GQ(1,2), a dual grid; 6 points / 9 lines
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GQ(2,1) – Less Trivial
GQ(2,1), a grid; 9 points / 6 lines 
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GQ(2,2) – Non-Trivial
GQ(2,2), the doily
15 points/lines; self-dual

Contains both GQ(2,1)
and GQ(1,2)

One of 245,342 
15_3 configurations; 
the only one
triangle-free!
(Also known as the Cremona-Richmond configuration)
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GQ(2,2) – A Construction 

GQ(2,2), a duad-syntheme construction
Duad: an unordered pair of elements (i, j) such that 

i ≠ j are from the set {1, 2, 3, 4, 5, 6}; 
there are (6 choose 2) = 15 of them

Syntheme: a set {(i ,j), (k, l), (m, n)} of three duads 
such that i, j, k, l, m and n are all distinct;
there are (6 choose 2)(4 choose 2)(2 choose 2)/
3! = 15 of them, too.
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Duads & Synthemes
The Entire Set of Duads:   

{(1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), 
(3,4), (3,5), (3,6), (4,5), (4,6), (5,6)}. 

The Entire Set of Synthemes:
{{(1,2), (3,4), (5,6)}, {(1,2), (3,5), (4,6)}, {(1,2), (3,6), (4,5)},
{(1,3), (2,4), (5,6)}, {(1,3), (2,5), (4,6)}, {(1,3), (2,6), (4,5)},
{(1,4), (2,3), (5,6)}, {(1,4), (2,5), (3,6)}, {(1,4), (2,6), (3,5)},
{(1,5), (2,3), (4,6)}, {(1,5), (2,4), (3,6)}, {(1,5), (2,6), (3,4)},
{(1,6), (2,3), (4,5)}, {(1,6), (2,4), (3,5)}, {(1,6), (2,5), (3,4)}}
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GQ(2,2) and the Number 6
GQ(2,2): its points are the duads and 

its lines are the synthemes, or vice versa

S_6, the automorphism
group of the doily, is the
only symmetric group 
having non-trivial outer
automorphisms.
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GQ(2,4)
GQ(2,4): 27 points on 45 lines, 3 points per line  

and 5 lines through a point
A Construction:

Given the syntheme-duad construction of GQ(2,2), 
one takes additional twelve points 1, 2,...,6 and 
1', 2', ...,6' and lets {i, ij, j'}, 1 ≤ i, j ≤ 6, i ≠ j, denote 
thirty additional lines. It is easy to verify that the 
(15+12=)27 points and (15+30=)45 lines thus 
constructed yield a representation of GQ(2,4). 
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GQ(2,4) Visualised
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GH(1,1) – Trivial 
Triangle-, Quadrangle- and Pentagon-Free

GH(1,1)

⇓
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GH(1,2)/GH(2,1) – Less Trivial 
GH(1,2)                &              GH(2,1)

14 points / 21 lines                                       21 points / 14 lines

⇑
(Heawood graph = incidence graph of the Fano plane)
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GH(2,2) – Non-Trivial
GH(2,2): Split Cayley
Hexagon of Order Two; 
63 points/lines, 
not self-dual

Contains GH(1,2), 
but not GH(2,1)!
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GQ vs GH – Remarkable Link 
An intricate link between GQ(2,4) and GH(2,2)

One starts with a (distance-3-)spread of GH(2,2), i. e., a set of 27
points located on 9 lines that are pairwise at maximum distance
from each other, and constructs GQ(2, 4) as follows:
⇒ the points of GQ(2, 4) are the 27 points of the spread
⇒ its lines are the 9 lines of the spread and

another 36 lines each of which comprises three points
of the spread which are collinear with a particular off-
spread point of the hexagon.
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GQ vs GH – Remarkable Link
The 9 lines of the 
(distance-3-)spread 
of GH(2,2) form a
spread of GQ(2,4)
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Geometric Hyperplanes
A geometric hyperplane H of a point-line geometry

is a proper subset of points such that 
each line of the geometry meets H in 
one or all points.
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Geometric Hyperplanes of GQ(2,2)
3 distinct types:
⇒ Ovoid: a set 5 mutually non-collinear points; 

there are 6 of them
⇒ Perp-set: all the points collinear with a given  

point, inclusive the point itself; there  
are 15 of them; 

⇒ Grid (i.e., GQ(2,1)); there are 10 of them

Altogether 31 = 2^{5} – 1; => V(GQ(2,2)) isomorphic PG(4,2)
⇑

(3rd Catalan number)
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Geometric Hyperplanes of GQ(2,2)
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Geometric Hyperplanes of GH(2,2)
There are

2^{14} – 1 = 16,383 (!) of them
⇑ (4th Catalan number)

falling into 

25 different types.
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Geometric Hyperplanes of GH(2,2)
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Geometric Hyperplanes of GH(2,2)
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Geom. Hypl. of GH(2,2) – Examples
The complement of H_1 
is a disjoint union of 
the Heawood graph 
and
the Coxeter graph



Coxeter Graph
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Geom. Hypl. of GH(2,2) - Examples
Distance-3-spread; its
complement is a 
disjoint union of two
Pappus graphs



Pappus Graph
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Pappus Configuration
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Geom. Hypl. of GH(2,2) - Examples
All the points
whose distance
from a given point
(biggest bullet)
is less than or
equal to 2
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Geom. Hypl. of GH(2,2) - Examples
The complement 

of H_6 is the 
Coxeter graph
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Geom. Hypl. of GH(2,2) - Examples
The complement of 

H_8 is the 
Heawood graph
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Geom. Hypl. of GH(2,2) - Examples
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Geom. Hypl. of GH(2,2) - Examples
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Geom. Hypl. of GH(2,2) - Examples
The complement 

of H_{20} is the 
Pappus graph
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GQ(2,4) – 3 Notable Subgeometries
Two types of a geometric hyperplane, viz.

1) GQ(2,2)’s, the doilies; 36 of them;
2) Perp-Sets, sets of 11 points collinear with a 

given one; 27 of them;
and 

3) GQ(2,1)s, i.e. grids, 120 of them,   
forming 40 triples of pairwise disjoint members 
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GQ(2,4) – 3 Notable Splits of Points
1) Doily-Induced:    27 = 15 +  2 × 6
2) Perp-Induced:    27 =  11 +  16
3) 3-Grid-Induced:  27 =   9 +   9   +   9

These are essential for a deeper understanding 
E_{6(6)} symmetric entropy formula 

describing black holes and black strings in D = 5
and its different truncations with 

15, 11 and 9 charges.
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Extremal Black Holes
Consider, e.g., 

the Reissner-Nordstroem Solution
of the Einstein-Maxwell Theory

Extremality:
⇒ Mass = Charge
⇒ Outer and Inner Horizons Coincide
⇒ H-B Temperature Goes to Zero
⇒ Entropy is Finite; Function of Charges Only
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Embedding in String Theory
String theory compactified to D dimensions 
typically involves many more fields/charges
than those appearing in the Einstein-Maxwell
Lagrangian.

Here, we consider the D=5, N=8 supersymmetric
black holes/strings endowed with 
27 electric/magnetic charges.
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Cubic Jordan Algebra
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Entropy Formula
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Entropy Formula: 3-Grid Split
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Entropy Formula: 3-Grid Split
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Entropy Formula: 3-Grid Split
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Entropy Formula: Doily Split
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Entropy Formula: Perp-Set Split
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Entropy Formula: Perp-Set Split
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Entropy Formula: 3-Qubit Labels
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Entropy Formula: 3-Qubit Labels
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Entropy Formula: 3-Qubit Labels
Now we employ
the spread construction
of GQ(2,4) from
the hexagon…
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Entropy Formula: 3-Qubit Labels
…to get a set of 3-qubit
operators with a natural 
choice of signs as non-
commutative labels for 
the points of GQ(2,4)
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Entropy Formula: 2-Qutrit Labels
W(3), aka the symplectic GQ(3,3), having 40  

points/lines, with 4 points/lines on a line / 
through a point,  is geometry behind 

two-qutrit Pauli operators, which are the tensor 
products of the following single-qutrit ones:
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Entropy Formula: 2-Qutrit Labels
There are 9^2 – 1 = 80 
such operators, and their 
40 pairs of the type {O, O^2}
are in a bijection with 40 
points of W(3), where 
colinear means commuting
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Entropy Formula: 2-Qutrit Labels
GQ(2,4) as derived geometry at a point, say P,

of W(3):
⇒ the points of GQ(2,4) are all the points of W(3) not 

collinear with P (40 – 1 – 4 x 3 = 27), 
⇒ the lines of GQ(2,4) are, on the one hand, the lines of 

W(3) not containing P (40 – 4 = 36) and, on the other 
hand, the (9) hyperbolic lines of W(3) through P, with 
natural incidence. 

Taking P = WY, one gets:
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Entropy Formula: 2-Qutrit Labels
The 9 hyperbolic lines of 
W(3) (highlighted by 
different colours) form
a spread of GQ(2,4)
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Entropy Formula: 2-Qutrit Labels
Or, more 
explicitly



28.8.2009 56

Main Message
Different versions of 

I_3 
and, so, of the 

black hole entropy formula(s)
are obtained as different parametrizations of 
the underlying finite geometrical object, our 

GQ(2,4),
with their fine structure shaped by its closest 

allies,…
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…”the POLYGONS”
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