FROM PAUป GROUPS TO STRINGY BLACK HOLES

(Part II: Generalized Polygons, Geometric Hyperplanes and Some Distinguished Graphs)

```
Metod Saniga
Astronomical Institute
Slovak Academy of Sciences
SK-05960 Tatranská Lomnica
SLOVAK REPUBLIC
(msaniga@astro.sk)
Jointly with P. Lévay, =
Center for Interdisciplinary Research (ZiF), University of Bielefeld 28 August 2009
```


Point-Line Incidence Geometry

$\mathrm{GQ}(2,4)$, generalized quadrangle of order $(2,4)$, and
Split Cayley Hexagon of Order Two, the main characters of our story,
are examples of a
point-line incidence geometry.
What is a point-line incidence structure?

Point-Line Incidence Geometry

An incidence structure is a triple (P, B, I), where:
a) P is a set, the elements of which are called points;
b) B is a set, the elements of which are called lines (or blocks); and
c) I is an incidence relation between P and B (the elements of I are also called flags).

Usually, lines are regarded as subsets of P.

GQ(1,1) - Trivial

GQ(1,2) - Less Trivial

GQ(1,2), a dual grid; 6 points / 9 lines

GQ $(2,1)$ - Less Trivial

GQ(2,1), a grid; 9 points / 6 lines

GQ(2,2) - Non-Trivial

GQ(2,2), the doily

15 points/lines; self-dual
Contains both GQ(2,1) and GQ(1,2)

One of 245,342
15_3 configurations;
the only one
triangle-free!
(Also known as the Cremona-Richmond configuration)

GQ(2,2) - A Construction

GQ(2,2), a duad-syntheme construction
Duad: an unordered pair of elements (i, j) such that $i \neq j$ are from the set $\{1,2,3,4,5,6\}$; there are (6 choose 2) $=15$ of them
Syntheme: a set $\{(i, j),(k, l),(m, n)\}$ of three duads such that i, j, k, I, m and n are all distinct; there are (6 choose 2)(4 choose 2)(2 choose 2)/ $3!=15$ of them, too.

Duads \& Synthemes

The Entire Set of Duads:

$$
\begin{aligned}
& \{(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6), \\
& (3,4),(3,5),(3,6),(4,5),(4,6),(5,6)\} .
\end{aligned}
$$

The Entire Set of Synthemes:
$\{\{(1,2),(3,4),(5,6)\},\{(1,2),(3,5),(4,6)\},\{(1,2),(3,6),(4,5)\}$, $\{(1,3),(2,4),(5,6)\},\{(1,3),(2,5),(4,6)\},\{(1,3),(2,6),(4,5)\}$, $\{(1,4),(2,3),(5,6)\},\{(1,4),(2,5),(3,6)\},\{(1,4),(2,6),(3,5)\}$, $\{(1,5),(2,3),(4,6)\},\{(1,5),(2,4),(3,6)\},\{(1,5),(2,6),(3,4)\}$, $\{(1,6),(2,3),(4,5)\}, \quad\{(1,6),(2,4),(3,5)\},\{(1,6),(2,5),(3,4)\}\}$

GQ(2,2) and the Number 6

GQ(2,2): its points are the duads and
its lines are the synthemes, or vice versa

S_6, the automorphism group of the doily, is the only symmetric group having non-trivial outer automorphisms.

GQ(2,4)

GQ(2,4): 27 points on 45 lines, 3 points per line and 5 lines through a point
A Construction:
Given the syntheme-duad construction of $\mathrm{GQ}(2,2)$, one takes additional twelve points $1,2, \ldots, 6$ and $1^{\prime}, 2^{\prime}, \ldots, 6 '$ and lets $\{i, i j, j\}, 1 \leq i, j \leq 6, i \neq j$, denote thirty additional lines. It is easy to verify that the $(15+12=) 27$ points and $(15+30=) 45$ lines thus constructed yield a representation of $\mathrm{GQ}(2,4)$.

GQ(2,4) Visualised

GH(1,1) - Trivial

Triangle-, Quadrangle- and Pentagon-Free $\mathrm{GH}(1,1)$
\downarrow

GH(1,2)/GH(2,1) - Less Trivial

GH $(1,2)$
 \&
 GH(2,1)

14 points / 21 lines
21 points / 14 lines

(Heawood graph = incidence graph of the Fano plane)

GH(2,2) - Non-Trivial

$\mathrm{GH}(2,2)$: Split Cayley Hexagon of Order Two; 63 points/lines, not self-dual

Contains $\mathrm{GH}(1,2)$,
but not $\mathrm{GH}(2,1)$!

GQ vs GH - Remarkable Link

An intricate link between $\mathbf{G Q}(2,4)$ and $\mathbf{G H}(2,2)$
One starts with a (distance-3-)spread of GH(2,2), i. e., a set of 27 points located on 9 lines that are pairvise at maximum distance from each other, and constructs GQ(2,4) as follows:
\Rightarrow the points of GQ(2, 4) are the 27 points of the spread
\Rightarrow its lines are the 9 lines of the spread and
another 36 lines each of which comprises three points of the spread which are collinear with a particular offspread point of the hexagon.

GQ vs GH - Remarkable Link

The 9 lines of the (distance-3-)spread of $\mathrm{GH}(2,2)$ forma spread of GQ(2,4)

Geometric Hyperplanes

A geometric hyperplane H of a point-line geometry is a proper subset of points such that each line of the geometry meets H in one or all points.

Geometric Hyperplanes of GQ(2,2)

3 distinct types:
\Rightarrow Ovoid: a set 5 mutually non-collinear points; there are 6 of them
\Rightarrow Perp-set: all the points collinear with a given point, inclusive the point itself; there are 15 of them;
\Rightarrow Grid (i.e., $G Q(2,1)$); there are 10 of them
Altogether $31=2^{\wedge}\{5\}-1 ;=>V(G Q(2,2))$ isomorphic $\mathrm{PG}(4,2)$
(3 ${ }^{\text {rd }}$ Catalan number)

Geometric Hyperplanes of GQ(2,2)

Geometric Hyperplanes of $\mathbf{G H}(2,2)$

There are

$$
\begin{aligned}
& 2^{\wedge}\{14\}-1=16,383(!) \text { of them } \\
& \Uparrow \text { (4th Catalan number) }
\end{aligned}
$$

falling into

25 different types.

Geometric Hyperplanes of $\mathrm{CH}(2,2)$

Table 1: Types of geometric hyperplanes of the split Cayley hexagon of order two.

Type	Pts	Lns	DPts	Cps	StGr	Name	FJ Type
H_{1}	21	0	0	36	$P G L(2,7)$	distance-2-ovoid	$\mathcal{V}_{2}(21 ; 21,0,0,0)$
H_{2}	27	9	0	28	$X_{27}^{+}: Q D_{16}$	"Wootters"	$\mathcal{V}_{1}(27 ; 0,27,0,0)$
H_{3}	33	18	$3+1$	1008	D_{12}	"Besançon"	$\mathcal{V}_{20}(33 ; 2,12,15,4)$
H_{4}	31	15	$6+1$	63	$(4 \times 4): D_{12}$	"unexpected"	$\mathcal{V}_{6}(31 ; 0,24,0,7)$
H_{5}	37	24	8	756	D_{16}	"patrimoine"	$\mathcal{V}_{15}(37 ; 1,8,20,8)$
H_{6}	35	21	14	36	$P G L(2,7)$	"symmetric"	$\mathcal{V}_{3}(35 ; 0,21,0,14)$
H_{7}	29	12	0	1008	D_{12}	"gorgeous"	$\mathcal{V}_{18}(29 ; 5,12,12,0)$
H_{8}	49	42	28	36	$P G L(2,7)$	"fat"	$\mathcal{V}_{4}(49 ; 0,0,21,28)$
H_{9}	33	18	$2+2$	756	D_{16}	"Besanç""	$\mathcal{V}_{14}(33 ; 4,8,17,4)$
H_{10}	27	$8+1$	0	756	D_{16}	"Petr"	$\mathcal{V}_{13}(27 ; 8,11,8,0)$
H_{11}	39	27	$8+4+1$	378	$8: 2: 2$	"midnight"	$\mathcal{V}_{10}(39 ; 0,10,16,13)$
$H_{12 a}$	31	15	$2+1$	1512	D_{8}	"lake"	$\mathcal{V}_{24}(31 ; 4,12,12,3)$
$H_{12 b}$	31	15	3	2016	S_{3}	"noon"	$\mathcal{V}_{25}(31 ; 4,12,12,3)$
H_{13}	27	9	$3+1$	252	$2 \times S_{4}$	"desperate"	$\mathcal{V}_{8}(27 ; 8,15,0,4)$
H_{14}	35	21	$4+2$	756	D_{16}	"luminous"	$\mathcal{V}_{16}(35 ; 0,13,16,6)$
H_{15}	29	12	2 c	1512	D_{8}	"dusky"	$\mathcal{V}_{23}(29 ; 4,16,7,2)$
H_{16}	37	24	$6+3+1$	1008	D_{12}	"surprising"	$\mathcal{V}_{22}(37 ; 0,12,15,10)$
H_{17}	27	$6+3$	0	1008	D_{12}	"delicate"	$\mathcal{V}_{17}(27 ; 6,15,6,0)$
H_{18}	35	21	6	1008	D_{12}	"fine"	$\mathcal{V}_{21}(35 ; 2,9,18,6)$
H_{19}	29	12	2 nc	1008	D_{12}	"hidden"	$\mathcal{V}_{19}(29 ; 6,12,9,2)$
H_{20}	45	36	18	56	$X_{27}^{+}: D_{8}$	"queen"	$\mathcal{V}_{5}(45 ; 0,0,27,18)$
H_{21}	23	3	1	126	$(4 \times 4): S_{3}$	"high-rise"	$\mathcal{V}_{7}(23 ; 16,6,0,1)$
H_{22}	43	33	$12+3+1$	252	$2 \times S_{4}$	"late"	$\mathcal{V}_{9}(43 ; 0,3,24,16)$
H_{23}	25	6	0	504	S_{4}	"immediate"	$\mathcal{V}_{11}(25 ; 10,12,3,0)$
H_{24}	29	12	4	504	S_{4}	"crispy"	$\mathcal{V}_{12}(29 ; 7,12,6,4)$

Geometric Hyperplanes of GH(2,2)

Table 2: Classes of geometric hyperplanes of the split Cayley hexagon of order two.

Class	Types	Pts	Lns	DPts	Cps	StGr	Name	FJ Type
I	H_{1}	21	0	0	36	$P G L(2,7)$	distance-2-ovoid	$\mathcal{V}_{2}(21 ; 21,0,0,0)$
II	H_{21}	23	3	1	126	$(4 \times 4): S_{3}$	"high-rise"	$\mathcal{V}_{7}(23 ; 16,6,0,1)$
III	H_{23}	25	6	0	504	S_{4}	"immediate"	$\mathcal{V}_{11}(25 ; 10,12,3,0)$
IV	H_{2}	27	9	0	28	$X_{27}^{+}: Q D_{16}$	"Wootters"	$\mathcal{V}_{1}(27 ; 0,27,0,0)$
	H_{10}	27	$8+1$	0	756	D_{16}	"Petr"	$\mathcal{V}_{13}(27 ; 8,11,8,0)$
	H_{13}	27	9	$3+1$	252	$2 \times S_{4}$	"desperate"	$\mathcal{V}_{8}(27 ; 8,15,0,4)$
	H_{17}	27	$6+3$	0	1008	D_{12}	"delicate"	$\mathcal{V}_{17}(27 ; 6,15,6,0)$
V	H_{7}	29	12	0	1008	D_{12}	"gorgeous"	$\mathcal{V}_{18}(29 ; 5,12,12,0)$
	H_{15}	29	12	2 c	1512	D_{8}	"dusky"	$\mathcal{V}_{23}(29 ; 4,16,7,2)$
	H_{19}	29	12	2 nc	1008	D_{12}	"hidden"	$\mathcal{V}_{19}(29 ; 6,12,9,2)$
	H_{24}	29	12	4	504	S_{4}	"crispy"	$\mathcal{V}_{12}(29 ; 7,12,6,4)$
VI	H_{4}	31	15	$6+1$	63	$(4 \times 4): D_{12}$	"unexpected"	$\mathcal{V}_{6}(31 ; 0,24,0,7)$
	$H_{12 a}$	31	15	$2+1$	1512	D_{8}	"lake"	$\mathcal{V}_{24}(31 ; 4,12,12,3)$
	$H_{12 b}$	31	15	3	2016	S_{3}	"noon"	$\mathcal{V}_{25}(31 ; 4,12,12,3)$
VII	H_{3}	33	18	$3+1$	1008	D_{12}	"Besançon"	$\mathcal{V}_{20}(33 ; 2,12,15,4)$
	H_{9}	33	18	$2+2$	756	D_{16}	"Besançon*"	$\mathcal{V}_{14}(33 ; 4,8,17,4)$
VIII	H_{6}	35	21	14	36	$P G L(2,7)$	"symmetric"	$\mathcal{V}_{3}(35 ; 0,21,0,14)$
	H_{14}	35	21	$4+2$	756	D_{16}	"luminous"	$\mathcal{V}_{16}(35 ; 0,13,16,6)$
	H_{18}	35	21	6	1008	D_{12}	"fine"	$\mathcal{V}_{21}(35 ; 2,9,18,6)$
IX	H_{5}	37	24	8	756	D_{16}	"patrimoine"	$\mathcal{V}_{15}(37 ; 1,8,20,8)$
	H_{16}	37	24	$6+3+1$	1008	D_{12}	"surprising"	$\mathcal{V}_{22}(37 ; 0,12,15,10)$
X	H_{11}	39	27	$8+4+1$	378	$8: 2: 2$	"midnight"	$\mathcal{V}_{10}(39 ; 0,10,16,13)$
XI	H_{22}	43	33	$12+3+1$	252	$2 \times S_{4}$	"late"	$\mathcal{V}_{9}(43 ; 0,3,24,16)$
XII	H_{20}	45	36	18	56	$X_{27}^{+}: D_{8}$	"queen"	$\mathcal{V}_{5}(45 ; 0,0,27,18)$
XIII	H_{8}	49	42	28	36	$P G L(2,7)$	"fat"	$\mathcal{V}_{4}(49 ; 0,0,21,28)$

Geom Hypl. of GH $(2,2)$ - Examples

The complement of H_1
is a disjoint union of the Heawood graph and
the Coxeter graph

Coxeter Graph

Geom Hypl. of GH(2,2) - Examples

Distance-3-spread; its complement is a disjoint union of two

Pappus graphs

Pappus Graph

Pappus Configuration

Geom Hypl. of GH(2,2) - Examples

All the points
whose distance
from a given point (biggest bullet)
is less than or equal to 2

Geom Hypl. of GH(2,2) - Examples

The complement of $\mathrm{H} _6$ is the Coxeter graph

Geom Hypl. of GH $(2,2)$ - Examples

The complement of
H_8 is the Heawood graph

Geom Hypl. of GH(2,2) - Examples

Geom Hypl. of GH(2,2) - Examples

H_16

Geom Hypl. of GH(2,2) - Examples

The complement of H_\{20\} is the Pappus graph

H_20

GQ(2,4) - 3 Notable Subgeometries

Two types of a geometric hyperplane, viz.

1) $G Q(2,2)$'s, the doilies; 36 of them;
2) Perp-Sets, sets of 11 points collinear with a given one; 27 of them;
and
3) $\mathrm{GQ}(2,1) \mathrm{s}$, i.e. grids, 120 of them, forming 40 triples of pairwise disjoint members

GQ(2,4) - 3 Notable Splits of Points

1) Doily-Induced: $27=15+2 \times 6$
2) Perp-Induced: $27=11+16$
3) 3 -Grid-Induced: $27=9+9+9$

These are essential for a deeper understanding
E_\{6(6)\} symmetric entropy formula describing black holes and black strings in $D=5$ and its different truncations with

15, 11 and 9 charges.

Extremal Black Holes

Consider, e.g.,
the Reissner-Nordstroem Solution of the Einstein-Maxwell Theory

Extremality:

\Rightarrow Mass = Charge
\Rightarrow Outer and Inner Horizons Coincide
\Rightarrow H-B Temperature Goes to Zero
\Rightarrow Entropy is Finite; Function of Charges Only

Embedding in String Theory

String theory compactified to D dimensions typically involves many more fields/charges than those appearing in the Einstein-Maxwell Lagrangian.

Here, we consider the $D=5, N=8$ supersymmetric black holes/strings endowed with 27 electric/magnetic charges.

Cubic Jordan Algelbra

the charge configurations of $D=5$ black holes/strings are related to the structure of cubic Jordan algebras. An element of a cubic Jordan algebra can be represented as a 3×3 Hermitian matrix with entries taken from a division algebra \mathbf{A}, i.e. \mathbf{R}, \mathbf{C}, \mathbf{H} or \mathbf{O}. (The real and complex numbers, the quaternions and the octonions.) Explicitly, we have

$$
J_{3}(Q)=\left(\begin{array}{ccc}
q_{1} & Q^{v} & \bar{Q}^{s} \tag{1}\\
\bar{Q}^{v} & q_{2} & Q^{c} \\
Q^{s} & \bar{Q}^{c} & q_{3}
\end{array}\right) \quad q_{i} \in \mathbf{R}, \quad Q^{v, s, c} \in \mathbf{A},
$$

where an overbar refers to conjugation in \mathbf{A}. These charge configurations describe electric black holes of the $N=2$, $D=5$ magic supergravities

Entropy Formula

The magnetic analogue of $J_{3}(Q)$ is

$$
J_{3}(P)=\left(\begin{array}{ccc}
p^{1} & P^{v} & \bar{p}^{s} \tag{2}\\
\bar{p}^{v} & p^{2} & P^{c} \\
p^{v} & \bar{p}^{c} & p^{3}
\end{array}\right) \quad p^{i} \in \mathbf{R}, \quad P^{v, s, c} \in \mathbf{A}
$$

describing black strings related to the previous case by the electric-magnetic duality. The black hole entropy is given by the cubic invariant

$$
\begin{align*}
I_{3}(Q)= & q_{1} q_{2} q_{3}-\left(q_{1} Q^{c} \overline{Q^{c}}+q_{2} Q^{s} \overline{Q^{s}}+q_{3} Q^{v} \overline{Q^{v}}\right) \\
& +2 \operatorname{Re}\left(Q^{c} Q^{v} Q^{v}\right) \tag{3}
\end{align*}
$$

as

$$
\begin{equation*}
S=\pi \sqrt{I_{3}(Q)} \tag{4}
\end{equation*}
$$

and for the black string we get a similar formula with $I_{3}(Q)$ replaced by $I_{3}(P)$.

Entropy Formula: 3-Grid Split

Since except for the octonionic magic all the $N=2$ magic supergravities can be obtained as consistent truncations of the $N=8$ split-octonionic case, let us consider the cubic invariant I_{3} of Eq. (3) with the U-duality group $E_{6(6)}$. Let us consider the decomposition of the 27-dimensional fundamental representation of $E_{6(6)}$ with respect to its $S L(3, \mathbf{R})^{\otimes 3}$ subgroup. We have the decomposition

$$
\begin{equation*}
E_{6(6)} \supset S L(3, \mathbf{R})_{A} \times S L(3, \mathbf{R})_{B} \times S L(3, \mathbf{R})_{C} \tag{6}
\end{equation*}
$$

under which

$$
\begin{equation*}
27 \rightarrow\left(3^{\prime}, 3,1\right) \otimes\left(1,3^{\prime}, 3^{\prime}\right) \otimes(3,1,3) \tag{7}
\end{equation*}
$$

As it is known [7,10], the above-given decomposition is related to the "bipartite entanglement of three-qutrits" interpretation of the 27 of $E_{6}(\mathbf{C})$. Neglecting the details, all we need is three 3×3 real matrices a, b and c with the index structure

$$
\begin{equation*}
a_{B}^{A}, \quad b^{B C}, \quad c_{C A}, \quad A, B, C=0,1,2 \tag{8}
\end{equation*}
$$

where the upper indices are transformed according to the (contragredient) 3^{\prime} and the lower ones by 3 .

Entropy Formula: 3-Grid Split

We can express I_{3} of Eq. (3) in the alternative form as

$$
\begin{equation*}
I_{3}={\operatorname{Det} J_{3}}(P)=a^{3}+b^{3}+c^{3}+6 a b c \tag{13}
\end{equation*}
$$

Here

$$
\begin{gather*}
a^{3}=\frac{1}{6} \varepsilon_{A_{1} A_{2} A_{3}} \varepsilon^{B_{1} B_{2} B_{3}} a_{B_{B_{1}} A_{1}} a_{A_{2}} a_{B_{3}}^{A_{3}}, \tag{14}\\
b^{3}=\frac{1}{6} \varepsilon_{B_{1} B_{2} B_{3}} \varepsilon_{C_{1} C_{2} C_{3}} b^{B_{1} C_{1}} b^{B_{2} C_{2}} b^{B_{3} C_{3}}, \tag{15}\\
c^{3}=\frac{1}{6} \varepsilon^{C_{1} C_{2} C_{3}} \varepsilon_{1}^{A_{1} A_{2} A_{3}} c_{C_{1} A_{1}} c_{C_{2} A_{2}} c_{C_{3} A_{3}}, \tag{16}\\
a b c=\frac{1}{6} a^{A}{ }_{B} b^{B C_{C A}} c_{C A} . \tag{17}
\end{gather*}
$$

Notice that the terms like c^{3} produce just the determinant of the corresponding 3×3 matrix. Since each determinant contributes six terms, altogether we have 18 terms from the first three terms in Eq. (13). Moreover, since it is easy to see that the fourth term contains 27 terms, altogether I_{3} contains precisely 45 terms, i.e. the number which is equal

Entropy Formula: 3-Grid Split

Entropy Formula: Doily Split

It is easy to find a physical interpretation of the hyperplanes of $\mathrm{GQ}(2,4)$. The doily has 15 lines, hence we should have a truncation of our cubic invariant which has 15 charges. Of course, we can interpret this truncation in many different ways corresponding to the 36 different doilies residing in our GQ(2,4). One possibility is a truncation related to the one which employs instead of the split octonions, the split quaternions in our $J_{3}(P)$. The other is to use ordinary quaternions inside our split octonions, yielding the Jordan algebras corresponding to the quaternionic magic. In all these cases the relevant entropy formula is related to the Pfaffian of an antisymmetric 6×6 matrix $\mathcal{A}^{j k}, i, j=1,2, \ldots, 6$, defined as

$$
\begin{equation*}
\operatorname{Pf}(A)=\frac{1}{3!2^{3}} \varepsilon_{i j k l m n} A^{i j} A^{k l} A^{m n} . \tag{22}
\end{equation*}
$$

The simplest way of finding a decomposition of $E_{6(6)}$ directly related to a doily sitting inside $\operatorname{GQ}(2,4)$ is the following one $[10,36,37]$:

$$
\begin{equation*}
E_{6(6)} \supset S L(2) \times S L(6) \tag{23}
\end{equation*}
$$

under which

$$
\begin{equation*}
27 \rightarrow(2,6) \oplus(1,15) \tag{24}
\end{equation*}
$$

Entropy Formula: Perp-Set Split

As we already know, perp sets are obtained by selecting an arbitrary point and considering all the points collinear with it. Since we have five lines through a point, any perp set has $1+10=11$ points. A decomposition which corresponds to perp sets is thus of the form [10]

$$
\begin{equation*}
E_{6(6)} \supset S O(5,5) \times S O(1,1) \tag{26}
\end{equation*}
$$

under which

$$
\begin{equation*}
27 \rightarrow 16_{1} \oplus 10_{-2} \oplus 1_{4} . \tag{27}
\end{equation*}
$$

This is the usual decomposition of the U-duality group into the T-duality and S-duality [10]. It is interesting to see that the last term (i.e. the one corresponding to the fixed/central point in a perp set) describes the $N S$ five-brane charge. Notice that we have five lines going through this fixed point of a perp set. These correspond to the T^{5} of the corresponding compactification. The two remaining points on each of these five lines correspond to $2 \times 5=10$ charges. They correspond to the five directions of $K K$ momentum and the five directions of fundamental string winding. In this picture the 16 charges not belonging to the perp set correspond to the 16 D -brane charges.

Entropy Formula: Perp-Set Split

(2)

Entropy Formula: 3-Qubit Labels

let us define the real 3 -qubit Pauli operators by introducing the notation [12] $X \equiv \sigma_{1}, Y=i \sigma_{2}$ and $Z \equiv \sigma_{3}$; here, $\sigma_{j}, j=1,2,3$ are the usual 2×2 Pauli matrices. Then we can define the real operators of the 3 -qubit Pauli group by forming the tensor products of the form $A B C \equiv$ $A \otimes B \otimes C$ that are 8×8 matrices. For example, we have

$$
\begin{align*}
Z Y X & \equiv Z \otimes Y \otimes X=\left(\begin{array}{cc}
Y \otimes X & 0 \\
0 & -Y \otimes X
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & X & 0 & 0 \\
-X & 0 & 0 & 0 \\
0 & 0 & 0 & -X \\
0 & 0 & X & 0
\end{array}\right) \tag{28}
\end{align*}
$$

Notice that operators containing an even number of Y s are symmetric and the ones containing an odd number of Y 's are antisymmetric. Disregarding the identity, $I I I$, (I is the 2×2 identity matrix) we have 63 of such operators. We have shown [12] that they can be mapped bijectively to the 63 points of the split Cayley hexagon of order 2 in such a way that its 63 lines are formed by three pairwise commuting operators. These 63 triples of operators have the property that their product equals III up to a sign.

Entropy Formula: 3-Qubit Labels

Entropy Formula: 3-Qubit Labels

Now we employ

the spread construction of GQ(2,4) from the hexagon...

Entropy Formula: 3-Qubit Labels

.. .to get a set of 3-qubit operators with a natural choice of signs as noncommutative labels for the points of $\operatorname{GQ}(2,4)$

Entropy Formula: 2-Qutrit Labels

 W(3), aka the symplectic GQ(3,3), having 40 points/lines, with 4 points/lines on a line / through a point, is geometry behind two-qutrit Pauli operators, which are the tensor products of the following single-qutrit ones:$$
X=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad Z=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega & 0 \\
0 & 0 & \omega^{2}
\end{array}\right] \quad Y=X Z \quad W=X^{2} Z
$$

I	X	\bar{X}	Y	\bar{Y}	Z	\bar{Z}	W	\bar{W}
	\bar{X}	I	W	\bar{Z}	Y	\bar{W}	Z	\bar{Y}
\bar{X}	I	X	Z	\bar{W}	W	\bar{Y}	Y	\bar{Z}
Y	W	Z	\bar{Y}	I	\bar{W}	X	\bar{Z}	\bar{X}
\bar{Y}	\bar{Z}	\bar{W}	I	Y	\bar{X}	W	X	Z
Z	Y	W	\bar{W}	\bar{X}	\bar{Z}	I	\bar{Y}	X
\bar{Z}	\bar{W}	\bar{Y}	X	W	I	Z	\bar{X}	Y
W	Z	Y	\bar{Z}	X	\bar{Y}	\bar{X}	\bar{W}	I
\bar{W}	\bar{Y}	\bar{Z}	\bar{X}	Z	X	Y	I	W

Entropy Formula: 2-Qutrit Labels

There are $9^{\wedge} 2-1=80$
such operators, and their 40 pairs of the type $\left\{\mathrm{O}, \mathrm{O}^{\wedge} 2\right\}$ are in a bijection with 40 points of W(3), where colinear means commuting

Entropy Formula: 2-Qutrit Labels

$G Q(2,4)$ as derived geometry at a point, say P,

of $\boldsymbol{W}(3)$:

\Rightarrow the points of $G Q(2,4)$ are all the points of $W(3)$ not collinear with $P(40-1-4 \times 3=27)$,
\Rightarrow the lines of $G Q(2,4)$ are, on the one hand, the lines of W(3) not containing $P(40-4=36)$ and, on the other hand, the (9) hyperbolic lines of $W(3)$ through P, with natural incidence.

Taking $P=W Y$, one gets:

Entropy Formula: 2-Qutrit Labels

The 9 hyperbolic lines of W(3) (highlighted by
different colours) form a spread of GQ(2,4)

Entropy Formula: 2-Qutrit Labels

Or, more explicitly

Main Message

Different versions of
I_3
and, so, of the
black hole entropy formula(s)
are obtained as different parametrizations of the underlying finite geometrical object, our

$$
G Q(2,4),
$$

with their fine structure shaped by its closest allies,...

"the POLYGONS"

The POLYGONS

References

PHYSICS:

Lévay, P., Saniga, M., and Vrana, P.: 2008, Three-Qubit Operators, the Split Cayley Hexagon of Order Two and Black Holes, Physical Review D78, 124022 (16 pages); paper was selected for the January 2009 issue of "Virtual Journal of Quantum Information" covering a focused area of frontier research (arXiv:0808.3849).
Lévay, P., Saniga, M, Vrana, P., and Pracna, P.: 2009, Black Hole Entropy and Finite Geometry, Physical Review D79, 084036 (12 pages); paper was selected for the May 2009 issue of "Virtual Journal of Quantum Information" covering a focused area of frontier research (arXiv:0903.0541).
Saniga, M. Lévay, P., Pracna, P., and Vrana, P.: 2009, The Veldkamp Space of GQ(2,4), Communications in Mathematical Physics, submitted (arXiv:0903.0715).

MATHEMATICS:

Payne. S. E, and Thas, J. A., Finite Generalized Quadrangles, Research Notes in Mathematics, 110, Pitman, Boston, MA, (1984).
Polster, B., Schroth, A. E, and Van Maldeghem, H., Generalized flatland, Math. Intelligencer 23, 33-47 (2001).
Frohardt, D., and Johnson P. M., Geometric hyperplanes in generalized hexagons of order (2, 2), Comm. Algebra, 22:773-797, 1994.

