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Regarding a Dynkin diagram as a specific point-line incidence structure (where each line
has just two points), one can associate with it a Veldkamp space. Focusing on extended
Dynkin diagrams of type ﬁn, 4 < n <8, it is shown that the corresponding Veldkamp
space always contains a distinguished copy of the projective space PG(3,2). Proper
labeling of the vertices of the diagram (for 4 < n < 7) by particular elements of the
two-qubit Pauli group establishes a bijection between the 15 elements of the group and
the 15 points of the PG(3,2). The bijection is such that the product of three elements
lying on the same line is the identity and one also readily singles out that particular
copy of the symplectic polar space W(3,2) of the PG(3,2) whose lines correspond to
triples of mutually commuting elements of the group; in the latter case, in addition, we
arrive at a unique copy of the Mermin—Peres magic square. In the case of n = 8, a more
natural labeling is that in terms of elements of the three-qubit Pauli group, furnishing
a bijection between the 63 elements of the group and the 63 points of PG(5,2), the
latter being the maximum projective subspace of the corresponding Veldkamp space;
here, the points of the distinguished PG(3,2) are in a bijection with the elements of a
two-qubit subgroup of the three-qubit Pauli group, yielding a three-qubit version of the
Mermin—Peres square. Moreover, save for n = 4, each Veldkamp space is also endowed
with some exceptional point(s). Interestingly, two such points in the n = 8 case define a
unique Fano plane whose inherited three-qubit labels feature solely the Pauli matrix Y.

Keywords: Veldkamp spaces; Dynkin diagrams; generalized Pauli groups.

Mathematics Subject Classification 2010: 51Exx, 51Pxx, 81Rxx

1750080-1


http://dx.doi.org/10.1142/S0219887817500803

M. Saniga, F. Holweck € P. Pracna

1. Introduction

Although the fact that the properties of certain finite groups and the structure of
certain finite geometries/point-line incidence structures are tied very closely to each
other has been known in the mathematics community for a relatively long time, it
was only some 10 years ago when this fact was also recognized by physicists. There
exists, in particular, a large family of groups relevant for quantum information
theory where (non)commutativity of two distinct elements can be expressed in the
language of finite symplectic polar spaces and/or finite projective ring lines. More
recently, this link has also been employed to get deeper insights into the so-called
black-hole-qubit correspondence — a still puzzling relation between the entropy
of certain stringy black-holes and the entanglement properties of some small-level
quantum systems. A concept that played a particular, yet rather implicit, role in the
latter context turned out to be that of the Veldkamp space of a point-line incidence
structure [1].

The relevance of the concept of Veldkamp space for (quantum) physics was
first recognized in the context of the geometry of the generalized two-qubit Pauli
group [2]. It was demonstrated in detail that the corresponding Veldkamp space
features three distinct types of points, each having a distinguished physical meaning,
namely: a maximum set of pairwise non-commuting group elements, a set of six
elements commuting with the given one, and a set of nine elements forming the
so-called Mermin—Peres ‘magic’ square. An intriguing novelty, stemming from the
structure of Veldkamp lines, was the recognition of (uni- and tri-centric) triads and
specific pentads of elements in addition to the above-mentioned ‘classical’ subsets.
Based on these findings, Vrana and Lévay [3] were able to ascertain the structure
of the Veldkamp space of the N-qubit Pauli group for an arbitrary N, singling out
appropriate point-line incidence structures within the associated symplectic polar
spaces of rank N and order two.

Quantum contextuality is another important aspect of quantum information
theory where the notion of Veldkamp space entered the game in an essential way.
Employing the structure of the split Cayley hexagon of order two, the smallest
nontrivial generalized hexagon and a distinguished subgeometry of the symplectic
polar space W(5,2) of the three-qubit Pauli group, two of the authors and their
colleagues [4] got an intriguing finite-geometric insight into the nature of a cou-
ple of ‘magic’ three-qubit configurations proposed by Waegell and Aravind [5], as
either of the two was found to be uniquely extendible into a geometric hyperplane
(i.e. a Veldkamp point) of the hexagon, this being of a very special type. Moreover,
an automorphism of order seven of the hexagon gave birth, for either of the two,
to six more replicas, each having the same magical nature as the parent one. As
one of the most symmetric three-qubit ‘magic configurations is the so-called Mer-
min pentagram, these observations prompted Planat and two of the authors [6] to
have a closer look at automorphisms of the split Cayley hexagon of order two and
find out that W(5,2) contains altogether 12,096 copies of such a pentagram, this
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number being — surprisingly — equal to the order of the automorphism group
of the hexagon. In addition, the authors succeeded in singling out those types of
points of the Veldkamp space of the hexagon that contain pentagrams and observed
that the number of Veldkamp points of a given type times the number of penta-
grams the particular Veldkamp point contains is almost always a multiple of 12,096.
Recently, Lévay and Szabé [7] furnished an elegant computer-free proof of the fact
that there are 12,096 distinct copies of Mermin pentagrams in W (5, 2), employing
the properties of a particular Veldkamp line of this polar space.

In light of the above-given observations, it is not surprising that the split Cay-
ley hexagon and its Veldkamp space also occur in the context of the already men-
tioned black-hole-qubit correspondence. In particular, the P.SLs(7) subgroup of the
automorphism group of the hexagon and its associated Coxeter subgeometry were
found to be intricately related to the Er-symmetric black-hole entropy formula in
string theory, given a prominent role played by Veldkamp points that answer to
Klein quadrics in the ambient projective space PG(5,2) [8]. On the other hand,
the Eg-symmetric entropy formula describing black-holes and black strings in five
dimensions is underlaid by the geometry of generalized quadrangle GQ(2,4) and its
Veldkamp space [9]; here, the two pronounced truncations of the entropy formula
with 15 and 11 charges correspond exactly to two distinct types of Veldkamp points
of GQ(2,4) [10].

Apart from these interesting physical applications, the notion of Veldkamp space
has also been successfully used in a couple of purely mathematical contexts. On the
one hand [11], it helped us to ascertain finer traits of the nested structure of Segre
varieties that are N-fold direct product of projective lines of size three, S(y) =
PG(1,2)x PG(1,2) x --- x PG(1,2), for the cases 2 < N < 4. In particular, given
the fact that Sy = PG(1,2) x Sn_1), a powerful diagrammatical recipe was
found that shows how to fully recover the properties of Veldkamp points (i.e. geo-
metric hyperplanes) of S(y) once we know the types (and cardinalities thereof) of
Veldkamp lines of S(y_1) [12]. On the other hand [13], it led to a better understand-
ing of an intriguing finite-geometrical underpinning of the multiplication tables of
real Cayley—Dickson algebras Ay, for 3 < N < 6, that admits generalization to
any higher-dimensional Ay. The multiplication properties of imaginary units of
the algebra Ay are encoded in the structure of the projective space PG(N — 1,2)
that is endowed with a refined structure stemming from particular properties of
triples of imaginary units forming its lines. The concept of Veldkamp space was

here invoked to account for this refinement, with the relevant point-line incidence

N+1)N_17 (N+1

structure being a binomial (( 5 3

)3>—conﬁguration, or, equivalently, a

combinatorial Grassmannian of type Ga(N + 1).

The present paper offers another interesting set of examples illustrating the use-
fulness of the notion of Veldkamp space in a broader context. Namely, we shall start
with a sequence of extended Dynkin diagrams of type l~)n, 4 < n <8, then consider
each diagram as a point-line incidence structure, next look at this structure through
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projective subspaces of its Veldkamp space in order, after appropriate labeling of
the vertices of the diagrams by elements of two- (or three-)qubit Pauli groups, to
recapture the well-known geometrical representations of these groups.

2. Basic Concepts and Notation

In this section, we shall give a brief summary of basic concepts, symbols and nota-
tion employed in the sequel.

We start with a point-line incidence structure C = (P, L, I), where P and L are,
respectively, sets of points and lines and where incidence I C P x L is a binary
relation indicating which point-line pairs are incident (see, e.g. [14]). The dual of
a point-line incidence structure is the structure with points and lines exchanged,
and with the reversed incidence relation. In what follows, we shall encounter only
specific point-line incidence structures where every line has just two points and any
two distinct points are joined by at most one line. The order of a point of C is
the number of lines passing through it. A geometric hyperplane of C = (P, L, 1)
is a proper subset of P such that a line from C either lies fully in the subset, or
shares with it only one point. If C possesses geometric hyperplanes, then one can
define the Veldkamp space of C as follows [1]: (i) a point of the Veldkamp space
(also called a Veldkamp point of C) is a geometric hyperplane H of C and (ii) a line
of the Veldkamp space (also called a Veldkamp line of C) is the collection H'H”
of all geometric hyperplanes H of C such that H* "N H” = H N H = H" N H or
H = H',H"”, where H" and H" are distinct geometric hyperplanes. As Veldkamp
lines of a C with all lines of size two are found to be of different cardinalities, we
shall focus only on those subgeometries of the corresponding Veldkamp space whose
lines are all of size three, being of the form {H’, H”, H' AH"}; here, the symbol A
stands for the symmetric difference of the two geometric hyperplanes and an overbar
denotes the complement of the object indicated.

Further, let V(d + 1,q), d > 1, denote a rank-(d + 1) vector space over
the Galois field GF(q), ¢ being a power of a prime. Associated with this vec-
tor space is a d-dimensional projective space over GF(q), PG(d, ¢), whose points,
lines, planes, ..., hyperplanes are rank-one, rank-two, rank-three, ..., rank-d sub-
spaces of V(d + 1,q); for ¢ = 2, this projective space features 29+ — 1 points and
(241 — 1)(2% — 1)/3 lines (see, e.g. [15]). Given a PG(2N — 1,¢q) that is endowed
with a non-degenerate symplectic form, the symplectic polar space W (2N — 1,q)
in PG(2N — 1, ¢) is the space of all totally isotropic subspaces with respect to the
non-degenerate symplectic form [16], with its maximal totally isotropic subspaces,
also called generators, having dimension N — 1. For ¢ = 2, this polar space contains
[PG(2N —1,2)| = 22N —1 = 4N —1 points and (2+1)(22+1) - - - (2V +1) generators.

Next, we need to mention generalized (complex) N-qubit Pauli groups (see, e.g.
[17]), Pn, generated by N-fold tensor products of the matrices

10 0 1 0 —i 1 0
I = , X = , Y= and Z = .
o) =) =) ()
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Explicitly,
Py ={i®41® A0 @Ay : A, {l,X,Y,Z},
k=1,2,...,N, a €{0,1,2,3}}.
Here, we are only interested in their factor versions Py = Py/Z(Pn), where

Z(Pn) = {xI1) ® L2y ® --- @ Iy, £il(1) ® I(9) @ --- @ I(n)}. For a particular
value of N, the 4" — 1 elements of Py \{I(1) ® I(2) ® - -+ ® I(xy} can bijectively be
identified with the same number of points of W (2N — 1,2) in such a way that two
commuting elements of the group will lie on the same totally isotropic line and a
maximum set of mutually commuting elements corresponds to a generator of this
symplectic space (see, e.g. [18-22]).

Finally, we give a brief description of Dynkin diagrams (see, e.g. [23]). These
were introduced in the theory of Lie groups/algebras to describe particular sets of
elements in lattices possessing integer quadratic forms — so-called root systems.
A Dynkin diagram is a graphical representation of the matrix of inner products of
these roots. Given a root systems and its basis S, the vertices/nodes of its Dynkin
diagram are the roots of S and two nodes are not connected if the correspond-
ing roots are orthogonal. If two nodes are not orthogonal, they are connected by
one, two or three edges according as the angle between the corresponding roots is
27 /3, 3w /4 or 57 /6, respectively. In addition, a Dynkin diagram also encodes the
lengths of roots. That is done by marking the edge connecting two vertices whose
corresponding roots are of different length with an arrow pointing to the shorter
root. Given a simple Lie algebra with its highest root v, an extended root system
is obtained by adding —v to the set of simple roots, which leads to the notion the
extended Dynkin diagram of the algebra in question. In what follows, we will not use
much of the properties of Dynkin diagrams as we will only be dealing with a par-
ticularly simple type of extended Dynkin diagrams, namely D,, (4 < n), depicted
in Fig. 1.

() ()
(D—C0) +eeee BD—@
O O

Fig. 1. An illustration of the extended Dynkin diagram of type l~7n, 4 < n, with its vertices labeled
by integers from 0 to n.
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3. Veldkamp Spaces of ﬁn and Two-Qubit Pauli Group

l~)n, like any other graph, can be viewed/interpreted as a particular point-line inci-
dence structure, C (ﬁn), whose points and lines are, respectively, vertices and edges
of l~)n; it thus features n + 1 points and n lines, where, for 5 < n, four points are of
order one, two of order three and the remaining n — 5 points being of order two. Let
us adopt this view and have a detailed look at properties of the Veldkamp space of
C (ﬁn) We shall carry out this task step by step for 4 < n < 8 in order to see how
naturally the two-qubit (and, at the end, also three-qubit) Pauli group enters the
stage.

3.1. Casen =4

As readily discerned from Fig. 1 restricted to n = 4, C(Dy) consists of five points
(0,1,...,4) and four lines, namely {0,2}, {1,2}, {2,3} and {2,4}, and features
altogether 16 different geometric hyperplanes as listed in Table 1 and portrayed
in Fig. 2. We see that each hyperplane except for the last one contains point 2;
moreover, His consists solely of this particular point and is thus contained in all
preceding 14 hyperplanes. We further note that any other point of C (ﬁ4) is located
in eight hyperplanes.

From Table 1 (or Fig. 2), one infers that the Veldkamp space of C(Dy) is endowed
with 35 lines of size three, as given in Table 2. One sees that no such Veldkamp
line contains Hjg, the latter being thus regarded as an exceptional Veldkamp point
of the geometry. It can readily be verified that the remaining 15 hyperplanes and
all 35 Veldkamp lines form the projective space PG(3,2). This is also illustrated in
Fig. 3, left, employing, after Polster [24], a pictorial representation of PG(3,2) built
around the pentagonal model (frequently called the ‘doily’) of the symplectic polar
space W (3,2) whose 15 lines are illustrated by straight-line-segments (10 of them)
and/or arcs of circles (5). The remaining 20 lines of PG(3,2) fall into four distinct
orbits under the displayed automorphism of order five; from each orbit only one
representative line is shown, namely {Hy, Hy, H14}, {H2, Hs, Ho}, {Hs, Hs, H14}
and {Hg, Hr, Hg}, since the remaining ones can be readily obtained by rotating the
figure through 72 degrees around the center of the pentagon.

Table 1. The composition of 16 geometric hyperplanes H;, 1 <14 < 16, of C(54). The ‘+’ symbol
indicates which point of C(D4) (i.e. which vertex of Dy4) lies in a given hyperplane; for example,
hyperplane H1g consists of points 0, 2 and 4.

Hy Hy Hs Hy Hs Hs H7 Hs Hy9 Hyo Hiin Hia Hiz Hiy His His
0]+ ¥ + + + + + ¥
1 + + + o+ + + o+ +
2+ + + + + + + + + + + + o+ o+ o+
3 + o+ o+ o+ + + o+ +
4 + + + + + + + +
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Fig. 2. A diagrammatical representation of geometric hyperplanes of C(54). Here, and in the
sequel, a point of a hyperplane is represented by a filled circle and a line is drawn heavy if both
of its points lie in a hyperplane.

Let us now return back to our ﬁ4 and label its five vertices by five distinct
elements of the two-qubit Pauli group, P5. One can take any five elements requiring
only that their product equals IT; this constraint is necessary to ensure that the
induced labeling of the points the associated Veldkamp space has the property that
the product of any three collinear elements is also equal to IT. Given the symmetry
of Dy, one of the most natural choices is (A ® B is short-handed to AB in the
sequel)

0> XI, 1>IX, 2-YY, 3—-2ZI, 4—1IZ

Assume further that each hyperplane acquires the label that is the product of
the group elements attached to the points it consists of; thus, for example, Hy,
comprising points 0 and 2, will bear the label (XT)- (YY) = ZY. Hence, we arrive
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Table 2. The 35 three-point Veldkamp lines of C(54). As in Table 1, the ‘+’ symbol indicates
which geometric hyperplane of C(D4) belongs to a given Veldkamp line.

Hy Hs Hy Hs He H7 Hs Hy Hio Hyn Hi2 Hiz Hiy His His
¥ ¥
+ +
+ +

e S S

© 00 O Uk W=

EEEEERENBEEEERE8ErnERERREE
Attt
+ A+t
+ 4+
+ 4+
++ +
+ o+ o+
+ +
+ 4+ -
++ +
+ +
+ o+ o+
- - -
- -
-

w
ot
+
Jr
_l’_

at a one-to-one correspondence between the 15 Veldkamp points of C (54) and the
15 elements of P as shown in Table 3. Even more interestingly, employing Table 2,
one can check that not only is the product of three elements on each Veldkamp line
equal to the identity element of the group, but — as handy rendered by Fig. 3,
right — the three elements that lie on a line of the selected copy® of W (3,2) our
PG(3,2) was built around pairwise commute.

aThere are altogether 28 distinct copies of W (3,2) contained in PG(3, 2).
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Fig. 3. A diagrammatical illustration of the fact that the point-line incidence structure encoded
in Table 2 is isomorphic to PG(3,2) (left) and labeling the points of this space by the elements of
the two-qubit Pauli group (right).

Table 3. The 15 hyperplanes of C(54) are in a one-to-one correspondence with the 15 elements of
P2; note that the ‘exceptional’ hyperplane Hig corresponds to the same group element as His,
because the two hyperplanes are complementary.

C(D4)| Hi H» Hs Hys Hs He Hr Hs Ho Hio Hui Hi2» Hiz His His|His

Po |ZY YZ YX XY XI IX Iz ZI 1Y ZX ZZ XX XZ YI YY |YY

3.2. Casen =5

C(Ds) contains six points (0,1,...,5) and five lines ({0,2}, {1,2}, {2,3}, {3,4},
and {3,5}). Its 23 geometric hyperplanes, shown in Fig. 4, can be split into two dis-
joint families, namely {H1, Ha, ..., Hs} and {Hy, Hyg, ..., Ha3} according as they
do not or do contain the line {2, 3}, respectively. The former family can further be
divided into two subfamilies, {Hy, Ho, H3, H4} and {Hj, Hg, H7, Hs}, depending
on whether a hyperplane misses, respectively, point 2 or point 3. These splittings
have a deep geometrical meaning once we see all 47 three-point Veldkamp lines
C(ﬁg)) is found to possess. Twelve of them are generated by hyperplanes of the
first family and they are given in Table 4; the remaining 35 are defined by hyper-
planes of the second family and their properties are summarized in Table 5. As it
is obvious from Table 4, the four hyperplanes of either subfamily define PG(2,2),
the Fano plane, with one line omitted; the latter being line {Hy4, Hig, Hoo} for
the first and {Hi3, Hy5, H21} for the second subfamily. Comparing Table 4 with
Fig. 4, we see that the Veldkamp points of the first/second Fano plane are those
seven hyperplanes that contain H; /Hs, and the two ‘missing’ lines consist of those
three hyperplanes that contain Hag/Hz;. The 15 Veldkamp points (that are all geo-
metric hyperplanes incorporating Hi7, see Fig. 4) and 35 Veldkamp lines of Table 5
define a projective space isomorphic to PG(3,2); this space also contains two ‘miss-
ing’ lines (marked in italics) of the above-described Fano planes. Summing up, the
subgeometry of the Veldkamp space of C(Ds) with lines of size three comprises the
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Fig. 4. Geometric hyperplanes of C(Ds).

Table 4. A ‘double-six’ of Veldkamp lines generated by hyperplanes of the first family.

Hy Hy; Hs Hy4 | Hs Hs Hy Hg | Hi3 Hiy His Hie Hzo Hx
[+ - +
2 | + + +
3| + + +
4 + o+ +
5 + + +
6 + o+ +
7 T +
8 + + +
9 + + +
10 + o+ +
11 + + +
12 + + |+

projective space PG(3,2) and a couple of disjoint Fano planes, each sharing a line
with this PG(3,2) — as depicted in Fig. 5. (It is also worth adding that in this case,
we have no exceptional Veldkamp point(s) since there is no geometric hyperplane
lacking line {2, 3}.)

Next, pursuing the strategy of the preceding case, one labels six vertices of 55
by elements of the two-qubit Pauli group as

0-2ZI, 1—XI, 2—YI, 31V, 4—1Z 5—1IX

and, making use of Fig. 4, gets a bijection between the elements of the group and
the points of the PG(3,2) in the form shown in Table 6; this table also shows which
elements of the two-qubit Pauli group are ascribed to the remaining eight points of
the two Fano planes. Figure 6 renders a pictorial representation of the information
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Table 5. The 35 Veldkamp lines generated by 15 hyperplanes of the second family.

Hyo Hun Hi2 Hiz Hyy His Hie Hir Hig Hig Hyo Hai Haa Hag
T ¥
+ +

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

++4+++++|T
+4+++++
+
_|_
+
+

+ Attt
+
+

+ 4+

37
38 + o+ +
39 + + +

40 + o+ +

41

43
44 + + +
45 + + +
46 + o+ +
47 + +  +

gathered in Table 6. The bijection is of similar nature as the one of the n = 4
case: that is, a line of the PG(3,2) entails three group elements whose product
is II, and a line of the distinguished copy of W (3,2) gathers a triple of mutually
commuting elements. Yet, it also features an interesting novelty due to the fact that
our PG(3,2) has two distinguished lines that it shares with the two Fano planes. If
we forget about the six group elements located on these two lines (highlighted by
light shading in Fig. 6), we shall find that the remaining nine elements form within
the W (3,2) nothing but a 3 x 3 grid (or, what amounts to the same, a copy of the
generalized quadrangle GQ(2,1)). Physical importance of this observation lies with
the fact [19] that any such grid with the labeling inherited from that of its parent
W (3,2) represents the so-called Mermin-Peres magic square — one of the simplest

1750080-11
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Fig. 5. A diagrammatic illustration of all projective subgeometries of the Veldkamp space of C(ﬁs).
The central inset depicts those geometric hyperplanes each of which fully encodes all Veldkamp
points of a particular subgeometry, namely of the PG(3,2) (H17, top), the two Fano planes (H;
and Hs, middle) as well as of the two shared lines (H2o and Ha1, bottom).

Table 6. Labeling the Veldkamp points of C(55) by the elements of the two-qubit Pauli group.

Py XY YX ZzZY Yz ZI 1Z XI IX YY XX ZzZ 1Y YI XZ ZX
PG(3,2) | Ho Hio Hu1 Hi2 Hi3 Hiys His Hig Hiv His Hig Hzo H21 Hze Hos
1st Fano H> Hs Hy Hy

2nd Fano | Hg Hy Hp Hg

proofs of the (Bell-)Kochen—Specker theorem first proposed by Mermin [25] and
Peres [26].

3.3. Casen =26

C(Dg), comprising seven points (0,1,...,6) and six lines ({0,2}, {1,2}, {2,3},
{3,4}, {4,5}, and {4,6}), is found to possess 40 geometric hyperplanes — all
depicted in Fig. 7 — and as many as 168 Veldkamp lines of size three. We shall not
give an explicit list of the latter here, since Fig. 7 contains all the information, we
need to find all projective subgeometries of the corresponding Veldkamp space. A
detailed inspection of this figure leads to the following observations. The smallest
hyperplane, Hsg, is contained in other 30 hyperplanes, which together yield 155
three-point Veldkamp lines and form the projective space isomorphic to PG(4,2)
(see Sec. 2); this projective space also contains a distinguished copy of PG(3,2)
that is defined by Hsg and the other 14 hyperplanes containing it. Then we have

1750080-12
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Fig. 6. A general view of the projective subgeometries of the Veldkamp space of C(ﬁs) in terms
of the elements of the two-qubit Pauli group.

a pair of complementary Fano planes, one defined by seven hyperplanes containing
Hy7, the other by seven hyperplanes comprising Ho;. Either of the two Fano planes
shares a line with the distinguished copy of PG(3,2) (and, hence, also with the
parent PG(4,2)); it is the line defined by three hyperplanes containing Hsg in the
former and Hs; in the latter case. This already accounts for 155 4+ (2 x 6) = 167
Veldkamp lines. The remaining Veldkamp line is { Hag, Ha4, H37}, the joint of the
two Fano planes, which is the only size-three Veldkamp line passing through the
exceptional Veldkamp point Hs7. This hierarchy of projective spaces living within
our Veldkamp space can be expressed in a succinct form as displayed in Fig. 8, with
its ‘simpler’ parts being shown in full in Fig. 9, left, and Fig. 10.

An interesting thing here happens when it comes to the relation with the two-
qubit Pauli group, as we have now at our disposal two natural labelings of the
vertices of 56, both featuring, unlike the previous two cases, also the identity ele-
ment; in particular,

0—-Z7I, 1—-XI, 2-YI, 3—-1, 4—-1Y, 5—17Z, 6—1IX
and
0—-Z7ZI, 1—-XI, 2—-1, 3-YY 41, 5—-17Z, 6—IX.

Although these two labelings give one and the same labeling of the points of the
distinguished PG(3,2), that portrayed in Fig. 9, right, there is a substantial dif-
ference between them when the two interconnected Fano planes are concerned, as
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Fig. 7. Geometric hyperplanes of C (56); an ellipse marks the (single) exceptional hyperplane.

readily discerned from Fig. 11; this difference is most pronounced for the excep-
tional Veldkamp line, as in the second case its three points acquire the same label,
this being the identity element at that.

3.4. Casen =17

Our description of this case will be rather brief, as there are no conceptual novelties
when compared with the cases, we have already addressed. Eight points (0, 1,...,7)
and seven lines ({0,2}, {1,2}, {2,3}, {3,4}, {4,5}, {5,6} and {5,7}) of C(D7)
are found to accommodate 64 geometric hyperplanes and 332 Veldkamp lines of
size three, whose hierarchical projective structure is shown in Fig. 12. As in the
preceding subsection (see Fig. 8) each hyperplane of Fig. 12 represents a PG(d, 2)
whose dimension d is one less than is the number of points that are not contained
in the hyperplane (i.e. the number of empty circles). Thus, from the 1st row of
the figure, one reads off that maximum projective (sub)spaces of the Veldkamp
space of C(Dg) are two PG(4,2)s, referred simply as the left PG(4,2) and the right
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>

Fig. 8. A symbolic structure of the Veldkamp space of C(56)‘ Each projective space (starting with
the PG(4, 2) at the top and ending with the ‘exceptional’ PG(1,2) at the bottom) is represented
by a single hyperplane, viz. the one that fully determines the remaining hyperplanes defining the
space in question. Marked by ellipses are those spaces that are not properly contained in any other
space.

Fig. 9. Left: The structure of the distinguished PG(3,2); the two lines shown in bold are those
shared with the two Fano planes, one in each. Right: The two different two-qubit labelings of the
vertices of f)(, lead to the identical labelings of the points of this space. As the labeling is the
same as that of the n = 5 case (see Fig. 6), removal of the highlighted elements leads to the same
Mermin—Peres magic square as in the preceding case.

PG(4,2), which intersect in the distinguished PG(3,2) (the 2nd row, the middle
hyperplane). There are other two PG(3,2)s (let us also call them left and right)
present here (the 2nd row, left and right hyperplanes). They are disjoint, but either
of them shares a Fano plane with its PG(4,2) counterpart (namely the Fano plane
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Fig. 10. The two Fano planes and the exceptional Veldkamp line interconnecting them. The lines

that also belong to the distinguished PG(3, 2) are drawn in boldface. (As in Fig. 5, the inset shows
the representative hyperplanes for these projective geometries).

Fig. 11. The pair of interconnected Fano planes in light of the two distinct two-qubit labelings.
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Fig. 12. Stratification of the Veldkamp space of C(57) in terms of projective spaces it contains.

Fig. 13. The left and right PG(3,2)s connected by the exceptional Veldkamp line. The seven
points in either of these spaces that are numbered in boldface represent the Fano plane lying also
in the corresponding PG(4, 2); the line of this Fano plane that also belongs to the distinguished
PG(3,2) is drawn thick. (As before, the inset depicts the representative hyperplane for each of the
projective spaces mentioned.)

represented by the respective hyperplane shown in the 3rd row), and a line with the
distinguished PG(3,2) (the lines represented by the respective hyperplane shown
in the 4th row). Finally, there is an ‘exceptional’ projective line that is, similarly
to the n = 6 case, the only Veldkamp line passing through the sole exceptional
hyperplane (shown at the bottom of the figure). The analogy with the previous
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case is even deeper, since this exceptional Veldkamp line also joins the left PG(3,2)
with the right one — as shown in Fig. 13 (compare with Fig. 10). To decipher the
content of the last figure, one has to say a few words on how the numbering of
hyperplanes was done. A hyperplane with a smaller number of points precedes a
hyperplane with a larger number of points. If two hyperplanes have the same number
of points, first goes that which contains a point labeled by the smallest integer. If
also this point is the same in both hyperplanes, then first goes that featuring a
point labeled by the second smallest integer, and so on. Here are shown a few
hyperplanes®

Hy ={2,3,5},
H, ={2,4,5},
H, ={0,1,3,5},
Hs ={0,2,3,5},
H, ={0,2,4,5},

H43 = {07 1a 374a 67 7}a

H62 = {072a374a576’ 7}7
Hes = {1,2,3,4,5,6,7}.

Regarding a relation with the two-qubit Pauli group, we again see close parallels
with the n = 6 case. For not only do we have again two natural labelings of the
vertices of D,

0—-27I, 1—-XI, 2—-YI, 3—1I,

4—1II, 5—=1Y, 6—1Z, 7T—1IX
and

0—-272I1, 1-XI, 2—1I, 3—-YI,

4—-1Y, 5—=1, 6—-1Z 7—-1IX

but these also give identical labelings of the distinguished PG(3,2), furnishing the
same prominent copy of the Mermin—Peres magic square; in addition, as illustrated
in Fig. 14, the two labelings of the exceptional Veldkamp line are the same as those
of its n = 6 counterpart.

bNote that unlike the previous cases, our numbering starts here with 0.
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Fig. 14. The interconnected left and right PG(3,2)s in terms of the two two-qubit labelings.

3.5. Casen =8

This is the last case to be dealt with in some detail. Using a computer, we have
found that the Veldkamp space of C (ﬁg) has 105 points and 876 size-three lines,
exhibiting projective layering as shown in Fig. 15. From the figure, we find out that
this Veldkamp space includes one PG(5,2) (1st row) and one PG(4,2) (2nd row),
the two having the distinguished PG(3,2) in common (3rd row, middle). Next,
we have here other four PG(3,2)s (3rd row, left- and right-hand side), forming
two complementary pairs. As before, there are two special, disjoint lines in the
distinguished PG(3,2), which the latter shares with either of PG(3,2)s in both
complementary pairs. However, the most interesting object for us is here the Fano
plane represented by the hyperplane depicted in the middle of the 4th row of Fig. 15.
This hyperplane, as well as the one whose only additional point is point 4, are two
exceptional hyperplanes. The corresponding Fano plane, together with all the seven

1750080-19



M. Saniga, F. Holweck € P. Pracna

Fig. 15. Projective layering of the Veldkamp space of C(ﬁg).

hyperplanes® that represent its points, are illustrated in Fig. 16, left. Here, the two
exceptional hyperplanes are Hy; and Hgy. They lie on the common Veldkamp line
whose third point is Higg. Disregarding this point and all the three Veldkamp
lines passing through it, we are left with a natural copy of the so-called Pasch
configuration (thick lines) — the unique point-line incidence geometry of six points
and four lines, with two lines through a point and three points on a line [27].

This case is remarkable in that the most natural labeling of the (nine) vertices
of Eg employs elements of the three-qubit Pauli group, in particular

0— XII, 1—ZII, 2— YII, 3—IXI, 4— IYI,
5171, 6—IY, 7—IIX, 8— IIZ.

It represents no difficulty to verify that this labeling yields a one-to-one corre-
spondence between 63 elements of the three-qubit Pauli group and 63 points of
the PG(5,2). Under this correspondence, our distinguished PG(3,2), whose com-
position is depicted in Fig. 17, left, acquires the three-qubit lettering as shown in
Fig. 17, right. One explicitly sees a bijection between 15 points of this PG(3,2) and
15 elements of a two-qubit subgroup of the three-qubit Pauli group, the geometry
of the subgroup encoded in the selected copy of W(3,2) and a three-qubit version of
the Mermin—Peres magic square. An intriguing feature is also absence of the Pauli
matrices X and Z in the three-qubit labels of the points of the ‘exceptional’ Fano
plane, as demonstrated by Fig. 16, right.

¢The numbering of hyperplanes follows here the same scheme/procedure as adopted in the n =7
case.
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Fig. 16. The explicit structure of the unique Fano plane whose two points are represented by the

two exceptional hyperplanes of C (58) and the associated three-qubit labeling of its points. The
four heavy lines and the six points on them form a Pasch configuration.

Fig. 17. The hyperplane composition (left) and its three-qubit counterpart (right) of the distin-
guished PG(3, 2); points of the two special lines are highlighted in boldface and their corresponding
group elements are shaded.
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4. Conclusion

The aim of the paper was to provide both a finite geometer and a mathematical
physicist with new examples of the relevance of the concept of Veldkamp space for
their respective fields of research. In the former case, to show how some well-known
diagrams, namely extended Dynkin diagrams ﬁn (4 < n), are through Veldkamp
spaces intricately related to interesting hierarchies of binary projective spaces. In
the latter case, to illustrate how the structure of the two-qubit (or three-qubit) Pauli
group can naturally be invoked to fill up such ‘Veldkamp’ relations with interesting
physical contents.

There are at least two promising ways for further explorations along the lines
outlined in the preceding section. One way is to keep going to higher n and focus, for
example, on gradually increasing complexity of the hierarchy of projective spaces
generated by exceptional geometric hyperplanes and how this complexity can be
expressed in the language of multi-qubit Pauli groups. In this respect the next inter-
esting cases are n = 10 and n = 11. In the former case, the ‘exceptional’ PG(3,2)
occurs for the first time and it will be interesting to see how this space differs from
the always-present distinguished one in terms of three-qubit labeling(s). In the lat-
ter case, the most natural labeling of the vertices of the Dynkin diagram seems
to be furnished by elements of the four-qubit Pauli group, whose symplectic polar
space W (7,2) features a number of physically relevant finite-geometrical structures
(see, e.g. [28]). The other way is to go back to the already addressed cases and,
following the pioneering work of one of the authors [29], look at properties of those
parts of Veldkamp spaces that are composed of lines having more than three points.
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