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PROJECTIVE LINE OVER THE FINITE QUOTIENT RING

GF (2)[x]/〈x3 − x〉 AND QUANTUM ENTANGLEMENT:

THEORETICAL BACKGROUND

M. Saniga∗ and M. Planat†

We consider the projective line over the finite quotient ring R♦ ≡ GF(2)[x]/〈x3 − x〉. The line is endowed

with 18 points, spanning the neighborhoods of three pairwise distant points. Because R♦ is not a local

ring, the neighbor (or parallel) relation is not an equivalence relation, and the sets of neighbors for two

distant points hence overlap. There are nine neighbors of any point on the line, forming three disjoint

families under the reduction modulo either of the two maximal ideals of the ring. Two of the families

contain four points each, and they swap their roles when switching from one ideal to the other, the points

in one family merging with (the image of ) the point in question and the points in the other family passing

in pairs into the remaining two points of the associated ordinary projective line of order two. The single

point in the remaining family passes to the reference point under both maps, and its existence stems

from a nontrivial character of the Jacobson radical J♦ of the ring. The quotient ring eR♦ ≡ R♦/J♦ is

isomorphic to GF(2)⊗GF(2). The projective line over eR♦ features nine points, each of them surrounded

by four neighbors and four distant points, and any two distant points share two neighbors. We surmise

that these remarkable ring geometries are relevant for modeling entangled qubit states, which we will

discuss in detail in Part II of this paper.
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1. Introduction

Geometries over rings instead of fields have long been investigated by numerous authors [1], but they
have only recently been used in physics [2] and have also found potential applications in other natural
sciences [3]. The most prominent, and at first sight rather counterintuitive, feature of ring geometries (of
dimension two and higher) is that two distinct points or lines need not have a respective unique connecting
line or intersection [4], [5]. Perhaps the most elementary, best-known, and most thoroughly studied ring
geometry is the finite projective Hjelmslev plane [2], [6].

Various ring geometries differ essentially in the properties imposed on the underlying coordinate
ring. In this paper, we study the structure of the projective line defined over the finite quotient ring
R♦ ≡ GF (2)[x]/〈x3 − x〉. Such a ring, like those used in [2] and [3], is sufficiently close to a field to be
handled effectively but sufficiently rich in its structure of zero divisors for the corresponding geometry to
have a nontrivial structure compared with that of field geometries and to yield interesting and important
applications in quantum physics, dovetailing nicely with those discussed in [2] and [3].
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2. Basics of ring theory

In this section, we recall some basic definitions and properties of rings that are used in what follows;
consequently, even the reader not well versed in ring theory should be able to follow the discussion without
an urgent need to consult additional relevant literature (e.g., [7]).

A ring is a set R and two binary operations on it (more precisely, (R, +, ∗)), usually called addition
(+) and multiplication (∗), such that R is an Abelian group under addition and a semigroup under mul-
tiplication, with multiplication being both left and right distributive over addition.1 A ring in which the
multiplication is commutative is a commutative ring. A ring R with a multiplicative identity 1 such that
1r = r1 = r for all r ∈ R is a ring with unity. A ring containing a finite number of elements is a finite ring.
In what follows, the word ring always means a commutative ring with unity.

An element r of the ring R is a unit (or an invertible element) if there exists an element r−1 such that
rr−1 = r−1r = 1. This element, uniquely determined by r, is called the multiplicative inverse of r. The set
of units forms a group under multiplication. A (nonzero) element r of R is said to be a (nontrivial) zero

divisor if there exists s �= 0 such that sr = rs = 0. An element of a finite ring is either a unit or a zero
divisor. A ring in which every nonzero element is a unit is a field; finite (or Galois) fields, often denoted
by GF (q), have q elements and exist only for q = pn, where p is a prime and n a positive integer. The
smallest positive integer s such that s1 = 0, where s1 denotes 1 + 1 + 1 + · · · + 1 (s terms), is called the
characteristic of R; if s1 is never zero, then R is said to have the characteristic zero.

An ideal I of R is a subgroup of (R, +) such that aI = Ia ⊆ I for all a ∈ R. An ideal of the ring R

that is not contained in any other ideal except R itself is called a maximal ideal. If an ideal has the form
Ra for some element a in R, then it is called a principal ideal, usually denoted by 〈a〉. A ring with a unique
maximal ideal is a local ring. Let R be a ring and I be one of its ideals. Then R ≡ R/I = {a + I | a ∈ R}
together with addition (a+I)+(b+I) = a+b+I and multiplication (a+I)(b+I) = ab+I is a ring, called
the quotient (or factor) ring of R with respect to I; if I is maximal, then R is a field. A very important
ideal of a ring is that represented by the intersection of all maximal ideals; this ideal is called the Jacobson

radical.

A map π: R �→ S between two rings (R, +, ∗) and (S,⊕,⊗) is a ring homomorphism if it satisfies the
following conditions: π(a + b) = π(a) ⊕ π(b), π(a ∗ b) = π(a) ⊗ π(b), and π(1) = 1 for any two elements a

and b in R. From this definition, it can be easily seen that π(0) = 0, π(−a) = −π(a), a unit of R is sent
into a unit of S, and the set of elements {a ∈ R | π(a) = 0}, called the kernel of π, is an ideal of R. A
canonical (or natural) map π: R → R ≡ R/I defined by π(r) = r + I is clearly a ring homomorphism with
the kernel I. A bijective ring homomorphism is called a ring isomorphism; two rings R and S are said to
be isomorphic, denoted by R ∼= S, if there exists a ring isomorphism between them.

Finally, we mention two relevant examples of rings: the polynomial ring R[x], i.e., the set of all
polynomials in one variable x with coefficients in a ring R, and the ring R⊗, i.e., the (finite) direct product
of rings R⊗ ≡ R1 ⊗ R2 ⊗ · · · ⊗ Rn, where both addition and multiplication are performed componentwise
and where the component rings need not be the same.

3. The ring R♦ and its canonical homomorphisms

The ring R♦ ≡ GF (2)[x]/〈x3 − x〉, like GF (2) itself, has the characteristic two and contains the #t=8
elements

R♦ = {0, 1, x, x + 1, x2, x2 + 1 = (x + 1)2, x2 + x, x2 + x + 1}, (1)

1It is customary to denote multiplication in a ring simply by juxtaposition, using ab instead of a ∗ b, and we use this
convention.
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which include the #u=2 units
R∗

♦ = {1, x2 + x + 1} (2)

and the #z=#t−#u=6 zero divisors

R♦ \ R∗
♦ = {0, x, x + 1, x2, x2 + 1, x2 + x}. (3)

The latter form two principal (and also maximal) ideals,

I〈x〉 ≡ 〈x〉 = {0, x, x2, x2 + x},

I〈x+1〉 ≡ 〈x + 1〉 = {0, x + 1, x2 + 1, x2 + x}.
(4)

Because these two ideals are the only maximal ideals of the ring, its Jacobson radical J♦ is

J♦ = 〈x〉 ∩ 〈x + 1〉 = {0, x2 + x}. (5)

Recalling that 2 ≡ 0 and hence +1 = −1 in GF (2) and also taking into account that x3 = x, the
multiplication between the elements of R♦ is easily found to be subject to the rules in Table 1.

Table 1
⊗ 0 1 x x2 x + 1 x2 + 1 x2 + x x2 + x + 1

0 0 0 0 0 0 0 0 0

1 0 1 x x2 x + 1 x2 + 1 x2 + x x2 + x + 1

x 0 x x2 x x2 + x 0 x2 + x x2

x2 0 x2 x x2 x2 + x 0 x2 + x x

x + 1 0 x + 1 x2 + x x2 + x x2 + 1 x2 + 1 0 x + 1

x2 + 1 0 x2 + 1 0 0 x2 + 1 x2 + 1 0 x2 + 1

x2 + x 0 x2 + x x2 + x x2 + x 0 0 0 x2 + x

x2 + x + 1 0 x2 + x + 1 x2 x x + 1 x2 + 1 x2 + x 1

The three ideals yield three fundamental quotient rings, all of characteristic two, namely, R̂♦ ≡
R♦/I〈x〉 = {0, 1}, R♦ ≡ R♦/I〈x+1〉 = {0, 1}, and

R̃♦ ≡ R♦/J♦ = {0, 1, x, x + 1}. (6)

The first two rings are obviously isomorphic to GF (2), and the last one is isomorphic to GF (2)[x]/〈x2 −
x〉 ∼= GF (2) ⊗ GF (2) with componentwise addition and multiplication (see, e.g., [3]), as follows from its
multiplication rules in Table 2.

Table 2
⊗ 0 1 x x + 1

0 0 0 0 0

1 0 1 x x + 1

x 0 x x 0

x + 1 0 x + 1 0 x + 1
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These quotient rings lead to the three canonical homomorphisms π̂: R♦ → R̂♦, π: R♦ → R♦, and
π̃: R♦ → R̃♦ with the explicit forms

π̂: {0, x, x2, x2 + x} → {0}, {1, x + 1, x2 + 1, x2 + x + 1} → {1},

π: {0, x + 1, x2 + 1, x2 + x} → {0}, {1, x, x2, x2 + x + 1} → {1},

π̃: {0, x2 + x} → {0}, {x, x2} → {x}, {x + 1, x2 + 1} → {x + 1}, {1, x2 + x + 1} → {1}.

(7)

4. The projective line over R♦ and the associated ring-induced
homomorphisms

Given a ring R and GL2(R), the general linear group of invertible 2×2 matrices with entries in R, a
pair (a, b) ∈ R2 is said to be admissible over R if there exist c, d ∈ R such that [8]

(
a b

c d

)

∈ GL2(R). (8)

The projective line over R, hereafter denoted by PR(1), is defined as the set of classes of ordered pairs
(�a, �b), where � is a unit and (a, b) is admissible [8]–[11]. In the case of R♦, admissibility condition (8)
can be rewritten in simpler terms as

∆ ≡ det

(
a b

c d

)

= ad − bc ∈ R∗
♦, (9)

whence it follows that PR♦(1) contains two algebraically distinct kinds of points: (1) the points represented
by pairs where at least one entry is a unit and (2) those where both the entries are zero divisors, not of the
same ideal. It is then straightforward to see that there are altogether

#(I) =
#2

t − #2
z

#u
= #t + #z = 8 + 6 = 14 (10)

points of the first type, namely,

(1, 0), (1, x), (1, x2), (1, x + 1), (1, x2 + 1), (1, x2 + x), (1, 1), (1, x2 + x + 1),

(0, 1), (x, 1), (x2, 1), (x + 1, 1), (x2 + 1, 1), (x2 + x, 1),

and

#(II) =
#2

z − #s

#u
=

62 − (2 × 42 − 22)
2

= 4 (11)

points of the second type, namely,

(x, x + 1) ∼ (x2, x + 1), (x, x2 + 1) ∼ (x2, x2 + 1),

(x + 1, x) ∼ (x + 1, x2), (x2 + 1, x) ∼ (x2 + 1, x2),

where #s denotes the number of distinct pairs of zero divisors with both entries in the same ideal. Hence,
PR♦(1) contains #(I) + #(II) = 14 + 4 = 18 points in total.
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The points of PR♦(1) are characterized by two crucial relations, neighbor and distant. In particular,
two distinct points X : (�a, �b) and Y : (�c, �d) are called neighbors (or parallel) if ∆ is a zero divisor and
distant otherwise, i.e., if ∆ is a unit. The neighbor relation is reflexive (every point is obviously a neighbor
to itself) and symmetric (i.e., if X is neighbor to Y , then also Y is a neighbor to X) but, as is seen below,
not transitive (i.e., X being a neighbor to Y and Y being a neighbor to Z does not necessarily mean that
X is a neighbor to Z), because R♦ is not a local ring (see, e.g., [5], [11]). Given a point of PR♦(1), the set
of all its neighbor points is called its neighborhood.2 We find the cardinality and “intersection” properties
of this remarkable set. For this, we pick three distinguished pairwise distant points of the line, U : (1, 0),
V : (0, 1), and W : (1, 1), for which we can easily find the neighborhoods:

U : U1: (1, x), U2: (1, x2), U3: (1, x + 1), U4: (1, x2 + 1), U0: (1, x2 + x),

U5: (x, x + 1), U6: (x, x2 + 1), U7: (x + 1, x), U8: (x2 + 1, x), (12)

V : V1: (x, 1), V2: (x2, 1), V3: (x + 1, 1), V4: (x2 + 1, 1), V0: (x2 + x, 1),

V5: (x, x + 1), V6: (x, x2 + 1), V7: (x + 1, x), V8: (x2 + 1, x), (13)

W : W1: (1, x), W2: (1, x2), W3: (1, x + 1), W4: (1, x2 + 1), W0: (1, x2 + x + 1),

W5: (x, 1), W6: (x2, 1), W7: (x + 1, 1), W8: (x2 + 1, 1). (14)

We can easily see that Ui ≡ Wi for i = 1, 2, 3, 4, Uj ≡ Vj for j = 5, 6, 7, 8, and Vk ≡ Wk+4 for k = 1, 2, 3, 4.
Now, because the coordinate system on this line can always be chosen such that the coordinates of any

three pairwise distant points are identical to those of U , V , and W , we see from the last three expressions
that the neighborhood of any point on the line contains nine distinct points, the neighborhoods of any
two distant points have four points in common (this property implies the previously stated nontransitivity
of the neighbor relation), and the neighborhoods of any three pairwise distant points have no element in
common, as illustrated in Fig. 1.

A deeper insight into the structure and properties of neighborhoods is obtained if we consider the three
canonical homomorphisms given by Eqs. (7). The first two induce the homomorphisms from PR♦(1) to
PG(1, 2), the ordinary projective line of order two, and the third induces PR♦(1) → PR̃♦(1). Because
PG(1, 2) contains three points, namely, U : (1, 0), V : (0, 1), and W : (1, 1), we find that the first homo-
morphism, PR♦(1) → PR̂♦(1), acts on a neighborhood, taken to be that of U without loss of generality,
as

U1, U2, U7, U8, U0 → Û , U5, U6 → V̂ , U3, U4 → Ŵ , (15)

while the second, PR♦(1) → PR♦(1), shows an almost complementary behavior,

U3, U4, U5, U6, U0 → U, U7, U8 → V , U1, U2 → W. (16)

But the third homomorphism, PR♦(1) → PR̃♦(1), is more intricate. To fully grasp its meaning, we must
first understand the structure of the line PR̃♦(1). For this, we follow the same chain of reasoning as for
PR♦(1). Using Eq. (6) and Table 2, we find that PR̃♦(1) has nine points: there are seven of the first
kind ((1, 0), (1, x), (1, x + 1), (1, 1), (0, 1), (x, 1), and (x + 1, 1)) and two of the second kind ((x, x + 1) and
(x + 1, x)).

2To avoid any confusion, we here warn that some authors (see, e.g., [10], [11]) use this term for the set of distant points
instead.
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Fig. 1. A schematic sketch of the structure of the projective line PR♦(1). Given any three pairwise

distant points (represented by the three circled dots), the remaining points of the line are all located in

the neighborhoods of the three points (three sets of points located on three different ellipses centered

on the points in question). Two neighborhoods share four points, and because the three neighborhoods

have no common intersection, we thus obtain twelve points; the existence of the remaining three points

(open circles) is intimately connected with the ring R♦ having a nontrivial Jacobson radical.

The neighborhoods of the three distinguished pairwise distant points Ũ : (1, 0), Ṽ : (0, 1), and W̃ : (1, 1)
here are

Ũ : Ũ1: (1, x), Ũ2: (1, x + 1), Ũ3: (x, x + 1), Ũ4: (x + 1, x),

Ṽ : Ṽ1: (x, 1), Ṽ2: (x + 1, 1), Ṽ3: (x, x + 1), Ṽ4: (x + 1, x),

W̃ : W̃1: (1, x), W̃2: (1, x + 1), W̃3: (x, 1), W̃4: (x + 1, 1).

(17)

From these expressions, because the coordinates of any three pairwise distant points can again be made
identical to those of Ũ , Ṽ , and W̃ , we find that the neighborhood of any point on this line contains four
distinct points, the neighborhoods of any two distant points have two points in common (which again
implies the nontransitivity of the neighbor relation), and the neighborhoods of any three pairwise distant
points are disjoint, as illustrated in Fig. 2. We note that in this case, there are no “Jacobson” points, i.e.,
points belonging solely to a single neighborhood, because the Jacobson radical is trivial, J̃♦ = {0}. At this
point, we can write an explicit expression for PR♦(1) → PR̃♦(1):

U1/W1, U2/W2 → Ũ1/W̃1, U3/W3, U4/W4 → Ũ2/W̃2,

U5/V5, U6/V6 → Ũ3/Ṽ3, U7/V7, U8/V8 → Ũ4/Ṽ4,

V1/W5, V2/W6 → Ṽ1/W̃3, V3/W7, V4/W8 → Ṽ2/W̃4,

U, U0 → Ũ , V, V0 → Ṽ , W, W0 → W̃ .

(18)

This map plays an especially important role in the physical applications of the theory.

5. Envisioned applications of the two geometries

We assume that PR̃♦(1) and PR♦(1) provide a suitable algebraic geometric setting for properly
understanding two- and three-qubit states as embodied in the respective structures of the so-called Peres–
Mermin magic square and pentagram [12]. The Peres–Mermin square is a 3×3 “lattice” of nine four-
dimensional operators (or matrices) with the degenerate eigenvalues ±1. The three operators in each line
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Fig. 2. A schematic sketch of the structure of the projective line P eR♦(1). As in the previous case,

given any three pairwise distant points (represented by the three circled dots), the remaining points

of the line (solid circles) are all located in the neighborhoods of the three points (three sets of points

located on three different ellipses centered on the points in question).

or column are mutually commuting, and each operator is the product of the two others in the same line
or column except the last column, where a minus sign appears. The algebraic rule for the eigenvalues
contradicts that for the operators, which is the heart of the Kochen–Specker theorem [13] for this particular
case. The explanation of this puzzling behavior is that three lines and two columns have joint orthogonal
bases of nonentangled eigenstates, while the operators in the third column share a base of maximally

entangled states. We can establish a one-to-one correspondence between the observables in the Peres–
Mermin square and the points of the projective line PR̃♦(1). A closely related phenomenon occurs in the
three-qubit case with the square replaced with a pentagram involving ten operators, and the geometric
explanation here can be based on the properties of the neighborhood of a point of the projective line
PR♦(1). These and some other closely related quantum mechanical issues will be examined in detail in
Part II of this paper [14].
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