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Abstract
Following the spirit of a recent work of one of the authors (2011 J. Phys. A:
Math. Theor. 44 045301), the essential structure of the generalized Pauli
group of a qubit–qudit, where d = 2k and an integer k � 2, is recast in
the language of a finite geometry. A point of such geometry is represented
by the maximum set of mutually commuting elements of the group and two
distinct points are regarded as collinear if the corresponding sets have exactly
2k − 1 elements in common. The geometry comprises 2k − 1 copies of the
generalized quadrangle of order 2 (‘the doily’) that form 2k−1 − 1 pencils
arranged into a remarkable nested configuration. This nested structure reflects
the fact that maximum sets of mutually commuting elements are of two different
kinds (ordinary and exceptional) and exhibits an intriguing alternating pattern:
the subgeometry of the exceptional points of the (k + 2) case is found to be
isomorphic to the full geometry of the k-case. It should be stressed, however,
that these generic properties of the qubit–qudit geometry were inferred from
purely computer-handled cases of k = 2, 3, 4 and 5 only and, therefore, their
rigorous, computer-free proof for k � 6 still remains a mathematical challenge.

PACS numbers: 03.65.Aa, 03.65.Fd, 02.10.Ox

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Although finite geometries/point-line incidence structures behind the generalized Pauli groups
of single qudits have essentially all been discovered and thoroughly explored [1–4], only a
little is known about those underlying the groups of multi-qudits and/or tensor products of
qudits of different ranks. A number of particular cases have been analyzed by computer [5–9],
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and certain ‘easy-to-handle’ configurations have also been studied and completely described
in a computer-free fashion [4, 7, 10–16]. Based on the recent work of one of us [9], we
shall address below a particular case of the tensor product of a qubit and a single qudit, where
d = 2k and an integer k � 2. Analyzing the first four cases in the sequence, namely k = 2, 3, 4
and 5, by computer was already sufficient for us to infer the generic pattern of geometries
behind the corresponding Pauli groups for any k � 2. This sequence of finite geometries
is characterized by a remarkable nesting of fundamental building blocks that are nothing but
generalized quadrangles of order 2, GQ(2, 2)s. This seems to be the most crucial finding
given the facts that this generalized quadrangle (1) is the geometry behind the generalized
Pauli group of two-qubits [7, 11] and (2) also plays, together with other prominent point-line
incidence structures, an essential role in finite geometrical aspects of the still mysterious
black-hole/qubit correspondence [17, 18].

2. Qudits, generalized Pauli groups and the doily

Given an integer d > 1 and Zd := {0, 1, . . . , d − 1}, where addition and multiplication of
elements from Zd is understood modulo d, we consider the d-dimensional complex Hilbert
space C

d and denote by

{|s〉 : s ∈ Zd}
a computational basis of C

d . A qudit in C
d is a vector

|ψ〉 =
d−1∑
s=0

αs |s〉, where αs ∈ C and
d−1∑
s=0

|αs |2 = 1.

Taking ω(d) to be a fixed primitive dth root of unity (e.g., ω(d) = exp(2π i/d)), we define unitary
X(d) (‘shift’) and Z(d) (‘clock’) operators on C

d via X(d)|s〉 = |s + 1〉 and Z(d)|s〉 = ωs
(d)|s〉

for all s ∈ Zd . In the computational basis,

X(d) =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

and Z(d) =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωd−1

⎞
⎟⎟⎟⎟⎟⎠

. (1)

The (generalized) Pauli group generated by X(d) and Z(d) will be denoted as G(d). For all
s ∈ Zd , we have X(d)Z(d)|s〉 = ωs

(d)|s + 1〉 and Z(d)X(d)|s〉 = ωs+1
(d) |s + 1〉. This gives the basic

relation

ω(d)X(d)Z(d) = Z(d)X(d),

which implies that each element of G(d) can be written in the unique normal form

ωa
(d)X

b
(d)Z

c
(d) for some integers a, b, c ∈ Zd . (2)

The uniqueness of this normal form implies that G(d) is a group of order d3. From (2) it is also
readily seen that(

ωa
(d)X

b
(d)Z

c
(d)

)(
ωa′

(d)X
b′
(d)Z

c′
(d)

) = ωb′c+a+a′
(d) Xb+b′

(d) Zc+c′
(d) ,

which implies that the commutator of the two operators W and W ′,

[W,W ′] := WW ′W−1W ′−1
,
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Figure 1. A picture of the generalized quadrangle of order 2, the doily. The circles stand for its
points, while its lines are given by triples of points lying on the same segments (10) and/or arcs of
circles (5). (Note that this point-line incidence geometry does not contain any triangles.)

acquires in our case the form[
ωa

(d)X
b
(d)Z

c
(d), ω

a′
(d)X

b′
(d)Z

c′
(d)

] = ωcb′−c′b
(d) I(d). (3)

Let us recall that two operators commute if, and only if, their commutator (taken in any order)
is equal to I(d) (the identity matrix); hence, G(d) is a non-commutative group. We also mention
in passing that there are two important normal subgroups of G(d): its center Z(G(d)) and its
commutator subgroup G′

(d), the two being identical:

G′
(d) = Z(G(d)) = {

ωa
(d)I(d) : a ∈ Zd

}
.

It is important to observe that a and a′ do not occur on the right-hand side of equation (3). So,
in order to study the commutation relations between the elements of G(d), one can disregard
the complex phase factors ωa

(d) and work solely with d2 matrix products Xb
(d)Z

c
(d).

The final notion we shall need for the following is that of a finite generalized quadrangle
of order (s, t), usually denoted GQ(s, t). This is an incidence structure S = (P, B, I), where
P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and
where I is a symmetric point-line incidence relation satisfying the following axioms [19]:
(i) each point is incident with 1 + t lines (t � 1) and two distinct points are incident with at
most one line; (ii) each line is incident with 1 + s points (s � 1) and two distinct lines are
incident with at most one point; and (iii) if x is a point and L is a line not incident with x, then
there exists a unique pair (y,M) ∈ P × B for which xIMIyIL; from these axioms it readily
follows that |P | = (s + 1)(st + 1) and |B| = (t + 1)(st + 1). If s = t , S is said to have order
s. A generalized quadrangle with both s > 1 and t > 1 is called thick. The smallest thick
generalized quadrangle is obviously the (unique) GQ(2, 2), often dubbed the ‘doily’. This
quadrangle is endowed with 15 points/lines, with each line containing three points and, dually,
each point being on three lines. Moreover, it is a self-dual object, i.e. isomorphic to its dual.
In the older literature, this geometry is also known as the Cremona–Richmond configuration
(see, e.g., [20]) and essential features of its structure are depicted in figure 1.

3. The Qubit–Qu2kit Pauli group and its geometry

As already mentioned, we shall focus on the generalized Pauli group associated with the
Hilbert space of the form C

2 ⊗ C
2k

, where an integer k � 2.

3
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We first handle the k = 2 case. Disregarding the phase factors, from equations (1) and
(2) one sees that the elements of the group associated with C

2 (qubit) are

{I(2), X(2), Z(2), X(2)Z(2)},
and those for C

4 read{
I(4), X(4), X

2
(4), X

3
(4), Z(4), X(4)Z(4), X

2
(4)Z(4), X

3
(4)Z(4), Z

2
(4),

X(4)Z
2
(4), X

2
(4)Z

2
(4), X

3
(4)Z

2
(4), Z

3
(4), X(4)Z

3
(4), X

2
(4)Z

3
(4), X

3
(4)Z

3
(4)

}
.

From the last two equations, it follows that the generalized Pauli group of C
2 ⊗C

4 will feature
the following elements (again disregarding the phase factors):{

I(2) ⊗ I(4), I(2) ⊗ X(4), I(2) ⊗ X2
(4), . . . , I(2) ⊗ X2

(4)Z
3
(4), I(2) ⊗ X3

(4)Z
3
(4),

X(2) ⊗ I(4), X(2) ⊗ X(4), X(2) ⊗ X2
(4), . . . , X(2) ⊗ X2

(4)Z
3
(4), X(2) ⊗ X3

(4)Z
3
(4),

Z(2) ⊗ I(4), Z(2) ⊗ X(4), Z(2) ⊗ X2
(4), . . . , Z(2) ⊗ X2

(4)Z
3
(4), Z(2) ⊗ X3

(4)Z
3
(4),

X(2)Z(2) ⊗ I(4), X(2)Z(2) ⊗ X(4), X(2)Z(2) ⊗ X2
(4), . . . , X(2)Z(2) ⊗ X3

(4)Z
3
(4)

}
.

Since I(2) ⊗ I(4) commutes with every other element, we consider only the remaining
63 elements/operators and, for convenience, number them from 1 to 63 in the order as
they appear in the last equation.

To find the geometry behind this Pauli group, we first look for maximum sets of mutually
commuting elements. We find that each such set features seven elements and their total number
is 39. Three of them, namely

a ≡ {2, 8, 10, 16, 18, 24, 26},
b ≡ {2, 8, 10, 32, 34, 40, 42},
c ≡ {2, 8, 10, 48, 50, 56, 58},

are special (and henceforth referred to as exceptional) in the sense that each of them shares with
any other set at least one element. The remaining 36 sets split into three distinct, equally-sized
families, in particular, family I:

1� ≡ {1, 2, 3, 16, 17, 18, 19},
2� ≡ {1, 2, 3, 32, 33, 34, 35},
3� ≡ {1, 2, 3, 48, 49, 50, 51},
4� ≡ {2, 9, 11, 16, 18, 25, 27},
5� ≡ {2, 9, 11, 32, 34, 41, 43},
6� ≡ {2, 9, 11, 48, 50, 57, 59},
7� ≡ {2, 24, 26, 33, 35, 57, 59},
8� ≡ {2, 24, 26, 41, 43, 49, 51},
9� ≡ {2, 25, 27, 33, 35, 56, 58},

10� ≡ {2, 25, 27, 40, 42, 49, 51},
11� ≡ {2, 17, 19, 40, 42, 57, 59},
12� ≡ {2, 17, 19, 41, 43, 56, 58};

family II:

1• ≡ {4, 8, 12, 16, 20, 24, 28},
2• ≡ {4, 8, 12, 32, 36, 40, 44},
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3• ≡ {4, 8, 12, 48, 52, 56, 60},
4• ≡ {6, 8, 14, 16, 22, 24, 30},
5• ≡ {6, 8, 14, 32, 38, 40, 46},
6• ≡ {6, 8, 14, 48, 54, 56, 62},
7• ≡ {8, 20, 28, 34, 42, 54, 62},
8• ≡ {8, 20, 28, 38, 46, 50, 58},
9• ≡ {8, 22, 30, 34, 42, 52, 60},

10• ≡ {8, 22, 30, 36, 44, 50, 58},
11• ≡ {8, 18, 26, 36, 44, 54, 62},
12• ≡ {8, 18, 26, 38, 46, 52, 60};

and family III:

1′ ≡ {5, 10, 15, 16, 21, 26, 31},
2′ ≡ {5, 10, 15, 32, 37, 42, 47},
3′ ≡ {5, 10, 15, 48, 53, 58, 63},
4′ ≡ {7, 10, 13, 16, 23, 26, 29},
5′ ≡ {7, 10, 13, 32, 39, 42, 45},
6′ ≡ {7, 10, 13, 48, 55, 58, 61},
7′ ≡ {10, 21, 31, 34, 40, 55, 61},
8′ ≡ {10, 21, 31, 39, 45, 50, 56},
9′ ≡ {10, 23, 29, 34, 40, 53, 63},

10′ ≡ {10, 23, 29, 37, 47, 50, 56},
11′ ≡ {10, 18, 24, 37, 47, 55, 61},
12′ ≡ {10, 18, 24, 39, 45, 53, 63}.

It is easy to verify that this split into three above-given families is unique as the 12 sets
in each family have a single element in common (2 = I(2) ⊗ X2

(4), 8 = I(2) ⊗ Z2
(4) and

10 = I(2) ⊗ X2
(4)Z

2
(4), respectively).

Next, we define the point-line incidence geometry whose points are these 39 maximum
sets of mutually commuting elements and where two points are collinear if the corresponding
sets have exactly three (22 − 1) elements in common. The three exceptional sets then form a
distinguished line in this geometry and each family generates a copy of the doily from which
one line is deleted; this line being nothing but the distinguished line! Hence, this point-line
incidence structure comprises three doilies on a common line, a pencil of doilies—as illustrated
in figure 2.

In a completely analogous way, we shall analyze the k = 3 case. Here, the ‘relevant’
elements of the Pauli group related to the Hilbert space C

8 are (after dropping the subscript
‘8’ for better readability of the formulas)

{I,X,X2, X3, X4, X5, X6, X7, Z,ZX,ZX2, ZX3, ZX4, ZX5, ZX6, ZX7, Z2, Z2X,

Z2X2, Z2X3, Z2X4, Z2X5, Z2X6, Z2X7, Z3, Z3X,Z3X2, Z3X3, Z3X4, Z3X5,

Z3X6, Z3X7, Z4, Z4X,Z4X2, Z4X3, Z4X4, Z4X5, Z4X6, Z4X7, Z5, Z5X,Z5X2,

Z5X3, Z5X4, Z5X5, Z5X6, Z5X7, Z6, Z6X,Z6X2, Z6X3, Z6X4, Z6X5, Z6X6, Z6X7,

Z7, Z7X,Z7X2, Z7X3, Z7X4, Z7X5, Z7X6, Z7X7},
5
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Figure 2. A diagrammatical illustration of the finite geometry behind the qubit–ququartit Pauli
group: a set of three generalized quadrangles of order 2 sharing a line.

which yield the following 255 (disregarding the identity) distinct matrices of the group
associated with C

2 ⊗ C
8:

{I(2) ⊗ X, I(2) ⊗ X2, . . . , I(2) ⊗ Z7X7, X(2) ⊗ I,X(2) ⊗ X, . . . , X(2) ⊗ Z7X7,

Z(2) ⊗ I, Z(2) ⊗ X, . . . , Z(2) ⊗ Z7X7, X(2)Z(2) ⊗ I, . . . , X(2)Z(2) ⊗ Z7X7}.
Again, to facilitate our reasoning, we number these elements from 1 to 255 consecutively as
they are listed in the last expression. Using a computer, we find out that they form 87 maximum
sets of mutually commuting elements, each of cardinality 15. Fifteen of them are exceptional
and they explicitly read

a ≡ {2, 4, 6, 32, 34, 36, 38, 64, 66, 68, 70, 96, 98, 100, 102},
b ≡ {2, 4, 6, 32, 34, 36, 38, 128, 130, 132, 134, 160, 162, 164, 166},
c ≡ {2, 4, 6, 32, 34, 36, 38, 192, 194, 196, 198, 224, 226, 228, 230},
d ≡ {4, 16, 20, 32, 36, 48, 52, 64, 68, 80, 84, 96, 100, 112, 116},
e ≡ {4, 16, 20, 32, 36, 48, 52, 128, 132, 144, 148, 160, 164, 176, 180},
f ≡ {4, 16, 20, 32, 36, 48, 52, 192, 196, 208, 212, 224, 228, 240, 244},
g ≡ {4, 18, 22, 32, 36, 50, 54, 64, 68, 82, 86, 96, 100, 114, 118},
h ≡ {4, 18, 22, 32, 36, 50, 54, 128, 132, 146, 150, 160, 164, 178, 182},
i ≡ {4, 18, 22, 32, 36, 50, 54, 192, 196, 210, 214, 224, 228, 242, 246},
j ≡ {4, 32, 36, 80, 84, 112, 116, 130, 134, 162, 166, 210, 214, 242, 246},
k ≡ {4, 32, 36, 80, 84, 112, 116, 146, 150, 178, 182, 194, 198, 226, 230},
l ≡ {4, 32, 36, 82, 86, 114, 118, 130, 134, 162, 166, 208, 212, 240, 244},
m ≡ {4, 32, 36, 82, 86, 114, 118, 144, 148, 176, 180, 194, 198, 226, 230},
n ≡ {4, 32, 36, 66, 70, 98, 102, 144, 148, 176, 180, 210, 214, 242, 246},
o ≡ {4, 32, 36, 66, 70, 98, 102, 146, 150, 178, 182, 208, 212, 240, 244}.

The remaining 72 ‘ordinary’ sets split, as expected, into six sets of cardinality 12 each. These
six sets are found to form three pairs, namely pair A:

1 ≡ {1, 2, 3, 4, 5, 6, 7, 64, 65, 66, 67, 68, 69, 70, 71},
2 ≡ {1, 2, 3, 4, 5, 6, 7, 128, 129, 130, 131, 132, 133, 134, 135},
3 ≡ {1, 2, 3, 4, 5, 6, 7, 192, 193, 194, 195, 196, 197, 198, 199},
4 ≡ {2, 4, 6, 33, 35, 37, 39, 64, 66, 68, 70, 97, 99, 101, 103},
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5 ≡ {2, 4, 6, 33, 35, 37, 39, 128, 130, 132, 134, 161, 163, 165, 167},
6 ≡ {2, 4, 6, 33, 35, 37, 39, 192, 194, 196, 198, 225, 227, 229, 231},
7 ≡ {2, 4, 6, 96, 98, 100, 102, 129, 131, 133, 135, 225, 227, 229, 231},
8 ≡ {2, 4, 6, 96, 98, 100, 102, 161, 163, 165, 167, 193, 195, 197, 199},
9 ≡ {2, 4, 6, 97, 99, 101, 103, 129, 131, 133, 135, 224, 226, 228, 230},

10 ≡ {2, 4, 6, 97, 99, 101, 103, 160, 162, 164, 166, 193, 195, 197, 199},
11 ≡ {2, 4, 6, 65, 67, 69, 71, 160, 162, 164, 166, 225, 227, 229, 231},
12 ≡ {2, 4, 6, 65, 67, 69, 71, 161, 163, 165, 167, 224, 226, 228, 230},

1′ ≡ {4, 17, 21, 34, 38, 51, 55, 64, 68, 81, 85, 98, 102, 115, 119},
2′ ≡ {4, 17, 21, 34, 38, 51, 55, 128, 132, 145, 149, 162, 166, 179, 183},
3′ ≡ {4, 17, 21, 34, 38, 51, 55, 192, 196, 209, 213, 226, 230, 243, 247},
4′ ≡ {4, 19, 23, 34, 38, 49, 53, 64, 68, 83, 87, 98, 102, 113, 117},
5′ ≡ {4, 19, 23, 34, 38, 49, 53, 128, 132, 147, 151, 162, 166, 177, 181},
6′ ≡ {4, 19, 23, 34, 38, 49, 53, 192, 196, 211, 215, 226, 230, 241, 245},
7′ ≡ {4, 34, 38, 81, 85, 115, 119, 130, 134, 160, 164, 211, 215, 241, 245},
8′ ≡ {4, 34, 38, 81, 85, 115, 119, 147, 151, 177, 181, 194, 198, 224, 228},
9′ ≡ {4, 34, 38, 83, 87, 113, 117, 130, 134, 160, 164, 209, 213, 243, 247},

10′ ≡ {4, 34, 38, 83, 87, 113, 117, 145, 149, 179, 183, 194, 198, 224, 228},
11′ ≡ {4, 34, 38, 66, 70, 96, 100, 145, 149, 179, 183, 211, 215, 241, 245},
12′ ≡ {4, 34, 38, 66, 70, 96, 100, 147, 151, 177, 181, 209, 213, 243, 247};

pair B:

1• ≡ {8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120},
2• ≡ {8, 16, 24, 32, 40, 48, 56, 128, 136, 144, 152, 160, 168, 176, 184},
3• ≡ {8, 16, 24, 32, 40, 48, 56, 192, 200, 208, 216, 224, 232, 240, 248},
4• ≡ {12, 16, 28, 32, 44, 48, 60, 128, 140, 144, 156, 160, 172, 176, 188},
5• ≡ {12, 16, 28, 32, 44, 48, 60, 192, 204, 208, 220, 224, 236, 240, 252},
6• ≡ {12, 16, 28, 32, 44, 48, 60, 64, 76, 80, 92, 96, 108, 112, 124},
7• ≡ {16, 32, 48, 72, 88, 104, 120, 132, 148, 164, 180, 204, 220, 236, 252},
8• ≡ {16, 32, 48, 72, 88, 104, 120, 140, 156, 172, 188, 196, 212, 228, 244},
9• ≡ {16, 32, 48, 76, 92, 108, 124, 132, 148, 164, 180, 200, 216, 232, 248},

10• ≡ {16, 32, 48, 76, 92, 108, 124, 136, 152, 168, 184, 196, 212, 228, 244},
11• ≡ {16, 32, 48, 68, 84, 100, 116, 140, 156, 172, 188, 200, 216, 232, 248},
12• ≡ {16, 32, 48, 68, 84, 100, 116, 136, 152, 168, 184, 204, 220, 236, 252},

1 ≡ {10, 20, 30, 32, 42, 52, 62, 128, 138, 148, 158, 160, 170, 180, 190},
2 ≡ {10, 20, 30, 32, 42, 52, 62, 192, 202, 212, 222, 224, 234, 244, 254},
3 ≡ {14, 20, 26, 32, 46, 52, 58, 64, 78, 84, 90, 96, 110, 116, 122},
4 ≡ {14, 20, 26, 32, 46, 52, 58, 128, 142, 148, 154, 160, 174, 180, 186},

7
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5 ≡ {14, 20, 26, 32, 46, 52, 58, 192, 206, 212, 218, 224, 238, 244, 250},
6 ≡ {10, 20, 30, 32, 42, 52, 62, 64, 74, 84, 94, 96, 106, 116, 126},
7 ≡ {20, 32, 52, 74, 94, 106, 126, 132, 144, 164, 176, 206, 218, 238, 250},
8 ≡ {20, 32, 52, 74, 94, 106, 126, 142, 154, 174, 186, 196, 208, 228, 240},
9 ≡ {20, 32, 52, 78, 90, 110, 122, 132, 144, 164, 176, 202, 222, 234, 254},

10 ≡ {20, 32, 52, 78, 90, 110, 122, 138, 158, 170, 190, 196, 208, 228, 240},
11 ≡ {20, 32, 52, 68, 80, 100, 112, 138, 158, 170, 190, 206, 218, 238, 250},
12 ≡ {20, 32, 52, 68, 80, 100, 112, 142, 154, 174, 186, 202, 222, 234, 254};

and pair C:

1� ≡ {9, 18, 27, 36, 45, 54, 63, 64, 73, 82, 91, 100, 109, 118, 127},
2� ≡ {9, 18, 27, 36, 45, 54, 63, 128, 137, 146, 155, 164, 173, 182, 191},
3� ≡ {9, 18, 27, 36, 45, 54, 63, 192, 201, 210, 219, 228, 237, 246, 255},
4� ≡ {18, 36, 54, 73, 91, 109, 127, 132, 150, 160, 178, 205, 223, 233, 251},
5� ≡ {18, 36, 54, 73, 91, 109, 127, 141, 159, 169, 187, 196, 214, 224, 242},
6� ≡ {18, 36, 54, 77, 95, 105, 123, 132, 150, 160, 178, 201, 219, 237, 255},
7� ≡ {18, 36, 54, 77, 95, 105, 123, 137, 155, 173, 191, 196, 214, 224, 242},
8� ≡ {18, 36, 54, 68, 86, 96, 114, 137, 155, 173, 191, 205, 223, 233, 251},
9� ≡ {13, 18, 31, 36, 41, 54, 59, 64, 77, 82, 95, 100, 105, 118, 123},

10� ≡ {13, 18, 31, 36, 41, 54, 59, 128, 141, 146, 159, 164, 169, 182, 187},
11� ≡ {13, 18, 31, 36, 41, 54, 59, 192, 205, 210, 223, 228, 233, 246, 251},
12� ≡ {18, 36, 54, 68, 86, 96, 114, 141, 159, 169, 187, 201, 219, 237, 255},

1̃ ≡ {11, 22, 25, 36, 47, 50, 61, 64, 75, 86, 89, 100, 111, 114, 125},
2̃ ≡ {11, 22, 25, 36, 47, 50, 61, 128, 139, 150, 153, 164, 175, 178, 189},
3̃ ≡ {11, 22, 25, 36, 47, 50, 61, 192, 203, 214, 217, 228, 239, 242, 253},
4̃ ≡ {22, 36, 50, 75, 89, 111, 125, 132, 146, 160, 182, 207, 221, 235, 249},
5̃ ≡ {22, 36, 50, 75, 89, 111, 125, 143, 157, 171, 185, 196, 210, 224, 246},
6̃ ≡ {22, 36, 50, 79, 93, 107, 121, 132, 146, 160, 182, 203, 217, 239, 253},
7̃ ≡ {22, 36, 50, 79, 93, 107, 121, 139, 153, 175, 189, 196, 210, 224, 246},
8̃ ≡ {15, 22, 29, 36, 43, 50, 57, 64, 79, 86, 93, 100, 107, 114, 121},
9̃ ≡ {15, 22, 29, 36, 43, 50, 57, 128, 143, 150, 157, 164, 171, 178, 185},

1̃0 ≡ {15, 22, 29, 36, 43, 50, 57, 192, 207, 214, 221, 228, 235, 242, 249},
1̃1 ≡ {22, 36, 50, 68, 82, 96, 118, 139, 153, 175, 189, 207, 221, 235, 249},
1̃2 ≡ {22, 36, 50, 68, 82, 96, 118, 143, 157, 171, 185, 203, 217, 239, 253}.

One observes that each 12-element set features three common elements and the two sets
in a pair share a single element, this being the element 4 = I(2) ⊗ X4

(8), 32 = I(2) ⊗ Z4
(8)

and 36 = I(2) ⊗ Z4
(8)X

4
(8), respectively. In parallel to the preceding case, we again form the

point-line incidence geometry where points are the 87 maximum sets, but where two points
are now collinear if the corresponding sets have exactly seven (=23 −1) elements in common.
This geometry, depicted in figure 3, consists of seven doilies. These form three pencils, each
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Figure 3. A schematic sketch of the geometry behind the qubit–quoctic generalized Pauli group.
The seven doilies lie in three pencils on the distinguished doily (middle); the carrier lines of these
pencils are shown in boldface.

comprising the doily generated by the 15 exceptional sets and two doilies coming from pair A

if the missing line {a, b, c} is added, from pair B if the missing line {d, e, f } is added and from
pair C if the missing line {g, h, i} is added. The three lines in questions are pairwise skew; for
the reader well acquainted with the structure of the doily, it may be interesting to learn that in
the dual of the distinguished doily these lines answer to a tricentric triad of points.

For the next case in the hierarchy, k = 4 (qubit–quhexadecit), our computer calculations
showed that 1023 elements of the corresponding Pauli group form 183 maximum sets of
31 elements each, out of which 39 are exceptional. We shall not go into much detail here but
mention only the outcome of our analysis, illustrated in line three of figure 4. The geometry
is defined as in the previous two cases, save for the fact that collinearity is now synonymous

9
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Figure 4. A compact illustration of the properties of the above-described finite geometries for (top
to bottom) k = 2, 3, 4 and 5. Each circle represents a doily and each triangle stands for a pencil of
doilies; the filled circle means that the corresponding doily contains solely exceptional points.

with sharing 15 (=24 − 1) elements. The three ‘central’ doilies in a pencil answer to the
39 elements of the exceptional set, with the carrier line accounting for the finer, 36+3 split;
hence, this subgeometry is isomorphic to the full k = 2 case (see figure 4). The 12 doilies at
sides, underlying 144 ordinary points, form three quadruples, each being a ‘satellite’ to one
central doily. A quadruple further splits into two pairs, and the two doilies in each pair form a
pencil with the corresponding ‘central’ doily. So we have altogether seven pencils of doilies.

10
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In the k = 5 case, we find 4095 elements of the associated Pauli group forming 375
maximum sets of 63 elements each. The 87 of them are exceptional, and their geometry
is fully isomorphic to the k = 3 one (see figure 4). The 24 satellite doilies account for the
remaining 288 ordinary points. They form 12 pairs and with ‘six “central”’ doilies define
12 pencils; taking into account three ‘central’ pencils, this case is thus seen to be altogether
endowed with 15 pencils.

These four cases obviously suffice to infer the geometry for an arbitrary k � 2.
This geometry, which features 2k−236 ordinary points, will comprise 2k − 1 copies of the
generalized quadrangle of order 2 that form 2k−1 − 1 pencils arranged into a remarkable
nested configuration. The core of this configuration consists of exceptional points and is
isomorphic to the full k − 2 geometry. From figure 4 it can readily be discerned how to
construct generically the k + 2 geometry around the k one. One simply takes a ‘peripheral’
doily, i.e. any doily that does not consist of exceptional points only, and associate with it two
pairs of doilies in such a manner that they form two pencils. Obviously, we shall obtain two
distinct sequence patterns based on the fact that the initial geometry is that of the k = 2 or
k = 3 case.

4. Conclusion

Following and extending the strategy adopted in [9], a finite geometrical treatment of the
generalized Pauli groups associated with the Hilbert spaces of type C

2 ⊗C
2k

, where an integer
k � 2, has been performed. A point-line incidence structure was defined as follows: its
points are maximum sets of pairwise commuting group elements and two distinct points are
collinear if the corresponding sets share 2k − 1 elements. The points were found to be of
two distinct kinds, referred to as ordinary and exceptional, a point of the latter kind being
represented by such a maximum set that shares with any other maximum set at least one
element. A computer-based analysis of the first four cases in the sequence implies that, in
general, this geometry features 2k − 1 copies of the doily that form 2k−1 − 1 pencils arranged
into a remarkable nested configuration reminding a fractal-like behavior with growing k.
The core of this geometry, being generated by exceptional points, is isomorphic to the full
geometry of the k − 2 case. Finding the doily, the smallest triangle-free v3-configuration,
to be the fundamental building block of these geometries is pleasing in itself, all the more
that—as already stressed in the introduction—this generalized quadrangle is the geometry
behind the generalized Pauli group of two-qubits and it also plays an essential role in finite
geometrical aspects of the still mysterious black-hole/qubit correspondence. We hope that all
the above-discussed properties will soon be given a rigorous, computer-free proof.
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