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PROJECTIVE RING LINE ENCOMPASSING TWO-QUBITS

M. Saniga,∗ M. Planat,† and P. Pracna‡

We find that the projective line over the (noncommutative) ring of 2×2 matrices with coefficients in

GF (2) fully accommodates the algebra of 15 operators (generalized Pauli matrices) characterizing two-

qubit systems. The relevant subconfiguration consists of 15 points, each of which is either simultaneously

distant or simultaneously neighbor to (any) two given distant points of the line. The operators can be

identified one-to-one with the points such that their commutation relations are exactly reproduced by the

underlying geometry of the points with the ring geometric notions of neighbor and distant corresponding to

the respective operational notions of commuting and noncommuting. This remarkable configuration can be

viewed in two principally different ways accounting for the basic corresponding 9+6 and 10+5 factorizations

of the algebra of observables: first, as a disjoint union of the projective line over GF (2) × GF (2) (the

“Mermin” part) and two lines over GF (4) passing through the two selected points that are omitted; second,

as the generalized quadrangle of order two with its ovoids and/or spreads corresponding to (maximum)

sets of five mutually noncommuting operators and/or groups of five maximally commuting subsets of

three operators each. These findings open unexpected possibilities for an algebro-geometric modeling of

finite-dimensional quantum systems and completely new prospects for their numerous applications.
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Projective lines defined over finite associative rings with unity (identity transformation) [1]–[7] have
recently been recognized as an important new tool for obtaining a deeper insight into the underlying algebro-
geometric structure of finite-dimensional quantum systems [8]–[10]. In the two-qubit case, i.e., the set of 15
operators or generalized 4×4 Pauli spin matrices, we find that the lines defined over the direct product of
the simplest Galois fields, GF (2) × GF (2) × · · · × GF (2), are particularly important. In this case, the line
defined over GF (2) × GF (2) plays a prominent role in qualitatively understanding the basic structure of
the so-called Mermin’s squares [9], [10], i.e., three-by-three arrays in certain remarkable 9+6 factorizations
of the algebra of operators, while the line over GF (2) × GF (2) × GF (2) reflects some of the basic features
of a specific 8+7 (“cube and kernel”) factorization of the set [10]. Motivated by these partial findings, we
began to seek a ring line that would provide a complete picture of the algebra of all 15 operators (matrices).
Examining a sufficiently large number of lines defined over commutative rings [6], [7], we gradually realized
that a proper candidate is likely to be found in the noncommutative domain, and this indeed turned out
to be correct. As we demonstrate in sufficient detail, the sought line is the projective line defined over the
full (2×2)-matrix ring with entries in GF (2), the unique simple noncommutative ring of order 16 with six
units (invertible elements) and ten zero divisors [11]. Preferring the conceptual to the formal side of the
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task, we try to reduce the technicalities of the exposition to a minimum, instead referring the interested
reader to the relevant literature.

We first recall the concept of a projective ring line [1]–[7]. Given an associative ring R with unity [12]–
[14], we consider the group GL(2, R), the general linear group of invertible 2×2 matrices with entries in R.
A pair (a, b) ∈ R2 is said to be admissible over R if there exist c, d ∈ R such that(

a b

c d

)
∈ GL(2, R). (1)

The projective line over R, usually denoted by P1(R), is the set of equivalence classes of ordered pairs
(�a, �b), where � is a unit of R and (a, b) is admissible. Two points X := (�a, �b) and Y := (�c, �d) of the
line are said to be respectively distant or neighbor if(

a b

c d

)
∈ GL(2, R) or

(
a b

c d

)
/∈ GL(2, R). (2)

The group GL(2, R) has an important property of acting transitively on a set of three pairwise-distant
points, i.e., for any two triples of mutually distant points, there exists an element of GL(2, R) transforming
one triple into the other.

We here study only the projective line defined over the full (2×2)-matrix ring with GF (2)-valued
coefficients, i.e.,

R = M2

(
GF (2)

)
≡

{(
α β

γ δ

) ∣∣∣∣ α, β, γ, δ ∈ GF (2)

}
. (3)

Labeling these matrices as

1 ≡
(

1 0

0 1

)
, 2 ≡

(
0 1

1 0

)
, 3 ≡

(
1 1

1 1

)
, 4 ≡

(
0 0

1 1

)
,

5 ≡
(

1 0

1 0

)
, 6 ≡

(
0 1

0 1

)
, 7 ≡

(
1 1

0 0

)
, 8 ≡

(
0 1

0 0

)
,

9 ≡
(

1 1

0 1

)
, 10 ≡

(
0 0

1 0

)
, 11 ≡

(
1 0

1 1

)
, 12 ≡

(
0 1

1 1

)
,

13 ≡
(

1 1

1 0

)
, 14 ≡

(
0 0

0 1

)
, 15 ≡

(
1 0

0 0

)
, 0 ≡

(
0 0

0 0

)
,

(4)

we can explicitly verify that addition and multiplication in M2

(
GF (2)

)
is performed as shown in Table 1 (see

pp. 433, 531 in [15]). First checking admissibility (1) and then grouping the admissible pairs left-proportional
by a unit into equivalence classes (of cardinality six each), we find that the line1 P1

(
M2

(
GF (2)

))
has 35

points altogether, with the following representatives of each equivalence class (see [6]–[8] for more details
about this methodology and a number of illustrative examples of a projective ring line):

(1, 1), (1, 2), (1, 9), (1, 11), (1, 12), (1, 13),

(1, 0), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (1, 10), (1, 14), (1, 15),

(0, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (10, 1), (14, 1), (15, 1),

(3, 4), (3, 10), (3, 14), (5, 4), (5, 10), (5, 14), (6, 4), (6, 10), (6, 14).

(5)

1This line was found to be distinguished among noncommutative ring lines because it differs fundamentally from its two
commutative counterparts [11].
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It can be easily seen from the multiplication table that the representatives in the first row of (5) contain
two units (1 itself is obviously unity), the representations in the second and third rows contain one unit
and one zero divisor, and the representatives in the last row contain two zero divisors.

Table 1
+ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

2 2 3 0 1 6 7 4 5 10 11 8 9 14 15 12 13

3 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12

4 4 5 6 7 0 1 2 3 12 13 14 15 8 9 10 11

5 5 4 7 6 1 0 3 2 13 12 15 14 9 8 11 10

6 6 7 4 5 2 3 0 1 14 15 12 13 10 11 8 9

7 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8

8 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

9 9 8 11 10 13 12 15 14 1 0 3 2 5 4 7 6

10 10 11 8 9 14 15 12 13 2 3 0 1 6 7 4 5

11 11 10 9 8 15 14 13 12 3 2 1 0 7 6 5 4

12 12 13 14 15 8 9 10 11 4 5 6 7 0 1 2 3

13 13 12 15 14 9 8 11 10 5 4 7 6 1 0 3 2

14 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

× 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 0 2 1 3 7 5 6 4 14 12 15 13 9 11 8 10

3 0 3 3 0 3 0 0 3 6 5 5 6 5 6 6 5

4 0 4 4 0 4 0 0 4 14 10 10 14 10 14 14 10

5 0 5 6 3 0 5 6 3 6 3 0 5 6 3 0 5

6 0 6 5 3 3 5 6 0 0 6 5 3 3 5 6 0

7 0 7 7 0 7 0 0 7 8 15 15 8 15 8 8 15

8 0 8 15 7 7 15 8 0 0 8 15 7 7 15 8 0

9 0 9 13 4 3 10 14 7 8 1 5 12 11 2 6 15

10 0 10 14 4 0 10 14 4 14 4 0 10 14 4 0 10

11 0 11 12 7 4 15 8 3 6 13 10 1 2 9 14 5

12 0 12 11 7 3 15 8 4 14 2 5 9 13 1 6 10

13 0 13 9 4 7 10 14 3 6 11 15 2 1 12 8 5

14 0 14 10 4 4 10 14 0 0 14 10 4 4 10 14 0

15 0 15 8 7 0 15 8 7 8 7 0 15 8 7 0 15

Addition (top) and multiplication (bottom) in M2

(
GF (2)

)
.

Already at this stage, we can show which “portion” of P1

(
M2

(
GF (2)

))
is the proper algebro-geometric

setting for two-qubits. We consider two distant points on the line. Taking the abovementioned three-
distant-transitivity of GL(2, R) into account, we can choose the points U := (1, 0) and V := (0, 1) without
loss of generality. We next gather all those points on the line that are either simultaneously distant or
simultaneously neighbor to U and V . From the first condition in (2), we find that the six points

C1 = (1, 1), C2 = (1, 2), C3 = (1, 9),

C4 = (1, 11), C5 = (1, 12), C6 = (1, 13)
(6)
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belong to the first family, and from the second condition in (2), we find that the nine points

C7 = (3, 4), C8 = (3, 10), C9 = (3, 14),

C10 = (5, 4), C11 = (5, 10), C12 = (5, 14),

C13 = (6, 4), C14 = (6, 10), C15 = (6, 14)

(7)

belong to the second family. Again using (2), we find that the points of our special subset of P1

(
M2

(
GF (2)

))
are related to each other as shown in Table 2. It can easily seen from this table that each point of the
configuration has six neighbor and eight distant points and that the maximum number of pairwise-neighbor
points is three.

Table 2
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

C1 − − − − + + − + + + − + + + −
C2 − − + + − − − + + + + − + − +

C3 − + − + − − + − + − + + + + −
C4 − + + − − − + + − + − + − + +

C5 + − − − − + + − + + + − − + +

C6 + − − − + − + + − − + + + − +

C7 − − + + + + − − − − + + − + +

C8 + + − + − + − − − + − + + − +

C9 + + + − + − − − − + + − + + −
C10 + + − + + − − + + − − − − + +

C11 − + + − + + + − + − − − + − +

C12 + − + + − + + + − − − − + + −
C13 + + + − − + − + + − + + − − −
C14 + − + + + − + − + + − + − − −
C15 − + − + + + + + − + + − − − −

The distant and neighbor relations (respectively + and −) between the
points of the configuration. The points are arranged such that the last
nine of them (i.e., C7 to C15) form the projective line over GF (2)×GF (2)
(see [8]–[10]).

The final step is to identify these 15 points with the 15 generalized Pauli matrices (operators of two-
qubits; see, e.g., Eq. (1) in [10]) by

C1 = σz ⊗ σx, C2 = σy ⊗ σy , C3 = 12 ⊗ σx,

C4 = σy ⊗ σz, C5 = σy ⊗ 12, C6 = σx ⊗ σx,

C7 = σx ⊗ σz , C8 = σy ⊗ σx, C9 = σz ⊗ σy ,

C10 = σx ⊗ 12, C11 = σx ⊗ σy , C12 = 12 ⊗ σy,

C13 = 12 ⊗ σz , C14 = σz ⊗ σz , C15 = σz ⊗ 12,

(8)

where 12 is the 2×2 unit matrix, σx, σy, and σz are the classical Pauli matrices, and the symbol ⊗ denotes the
tensor product of matrices. We can now easily verify that Table 2 gives the correct commutation relations
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a b

c d

Fig. 1. The two basic factorizations of the algebra of the 15 observables (operators) of a two-qubit

system. A 9+6 factorization (a, c) corresponds geometrically to the disjunction of our subconfiguration

of P1

`

M2

`

GF (2)
´´

into (c) the projective line over GF (2)×GF (2) and (a) a couple of projective lines

over GF (4) with two points in common. A 10+5 factorization (b, d), as is also shown differently in

Fig. 2, corresponds to the partition of the generalized quadrangle into (b) one of its ovoids and (d)

the Petersen graph. In both the cases, two points (observables) are joined by a line segment only if

they are neighbor (commute); but to avoid crowding the figure, we omit the edges between the points

(observables) of two distinct factors. Color (see the on-line version) is used to illustrate how the two

factorizations relate to each other.

between these operators with the symbols + and − now having the respective meanings “noncommuting”
and “commuting.” In other words, the same “incidence matrix” (given in Table 2) pertains to two distinct
configurations of completely different origins: a set of points of the projective line over a particular finite
ring with the symbols + and − having the algebro-geometric meanings distant and neighbor and also a set
of operators in four-dimensional Hilbert space with the same symbols acquiring the respective operatorial
meanings “noncommuting” and “commuting.”

This remarkable configuration can be interpreted in two principally different ways, which respectively
account for the basic 9+6 and 10+5 factorizations of the algebra of observables (Figs. 1a, 1c and 1b, 1d).
The first factorization is simply a disjoint union of the projective line over GF (2) × GF (2) and two lines
over GF (4) passing through the two selected points U and V , which are omitted. As shown in detail
in [9], [10], the line over GF (2) × GF (2) underlies the qualitative structure of Mermin’s magic squares,
i.e., 3×3 arrays of nine observables commuting pairwise in each row and column and arranged such that
their product properties contradict those of the assigned eigenvalues. The two lines over GF (4) represent
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Fig. 2. The generalized quadrangle of order two (left) and its factorization into an ovoid (middle)

and the “Petersen” part (right). The lines of the quadrangle are illustrated by straight segments and

also arcs of circles. We note that not every intersection of two segments counts for a point of the

quadrangle.

the remaining, bipartite part of the disjunction, where three points (observables) on each of the lines are
mutually distant (noncommuting) and every point (observable) on one line is neighbor to (commutes with)
any point (observable) on the other line (see Fig. 1a).

The second interpretation involves a generalized quadrangle, a rank-two point–line incidence geometry
where two points share at most one line and where for any point X and a line L, X /∈ L, there exists exactly
one line through X that intersects L [16]–[20]. The generalized quadrangle associated with our observables
is of order two, i.e., the one where every line contains three points and every point is on three lines. Such a
quadrangle indeed has 15 points (and the same number of lines because of its self-duality), each of which is
joined by lines to six others (Fig. 2, left). If we remove one of the ovoids from this quadrangle, i.e., remove
a set of (five) points that has exactly one point in common with every line (Fig. 2, middle), then ten points
remain forming the famous Petersen graph (Fig. 2, right) [19], [20]. The five points of an ovoid correspond
to the five mutually distant points of P1

(
GF (4)

)
and correspondingly to the five (i.e., the maximum number

of) mutually noncommuting observables of two-qubits. If we remove a spread from the quadrangle, i.e.,
remove the dual set of (five) pairwise disjoint lines that partition the point set, then we obtain the dual of
the Petersen graph (Fig. 3). The five lines of a spread correspond to just the five maximum subsets of three
mutually commuting operators each. As we will show in a separate paper, the five lines of any such spread
carry maximally commuting subsets of operators whose associated bases are mutually unbiased [10], [21].
This means that the existence and cardinality of a spread in the generalized quadrangle is synonymous
with the existence and cardinality of the maximum set of mutually unbiased bases in the associated Hilbert
space.

Hence, this geometric approach, when it is properly generalized to higher-order qubits and qudits,
provides a unique new tool for addressing the question of the maximum number of mutually unbiased bases
in a finite-dimensional Hilbert space, which is still a difficult open problem in the case where this dimension
is not a power of a prime. It is a straightforward exercise to associate the points of the quadrangle with the
operators (observables) Ci (see (8)) such that Table 2 is recovered after substituting the − or + symbol for
any two points of the quadrangle that are or are not on a common line.

To complete this interesting algebro-geometric picture of two-qubits, one more important geometric
object remains to be introduced. The attentive reader might have noticed that we have already used
two different kinds of the projective lines defined over rings of order four and characteristic two, i.e., the
line defined over the field GF (4) and the line defined over the direct product ring GF (2) × GF (2). The
former was seen to correspond to an ovoid of the generalized quadrangle and also to a set of five mutually
noncommuting operators (Fig. 1b), while the latter corresponds to a grid of nine points on six lines2 and

2This is also known as the slim generalized quadrangle of order (2, 1) (see, e.g., [18] and [20]). In fact, both the configurations
depicted in Figs. 1a and 1c are slim generalized quadrangles, one being the dual of the other.
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Fig. 3. A dual view of the generalized quadrangle of order two (left) as a disjoint union of one of its

spreads (middle) and a dual of the Petersen graph or a two-spread (right).

also to a Mermin’s square of operators (Fig. 1c). But there is one more associative ring with unity of order
four and characteristic two, namely, the (local) factor ring of polynomials GF (2)[x]/〈x2〉 [12]–[14]. This
ring is also a subring of M2

(
GF (2)

)
, and the corresponding projective line is also expected to play a role in

our model. And this is indeed the case. As demonstrated, for example, in Table 3 in [6], the projective line
P1

(
GF (2)[x]/〈x2〉

)
has six points any of which is neighbor to one and distant to the remaining four points,

thus comprising three pairs of neighbors. In the set of Pauli operators, this configuration is present as the
sextuple of operators commuting with a given operator. If C13, for example, is taken as the given operator,
then the six operators in question, as can be easily seen from Table 2, are {C4, C5; C7, C10; C14, C15}, which
indeed form three pairs of commuting members (these pairs are separated by semicolons). In the generalized
quadrangle, any such configuration is a sextuple of points collinear with a given point.

A deeper understanding and a fuller appreciation of this observation is acquired after introducing
the concept of a geometric hyperplane. A geometric hyperplane H of a finite geometry is a set of points
such that every line of the geometry either contains exactly one point of H or is completely contained in
H [20], [22]. It is easy to verify that for the generalized quadrangle of order two, H is one of the following
three kinds [22]:

1. Hov, an ovoid (there are six such hyperplanes);

2. Hcl(X), a set of points collinear with a given point X including the point itself (there are 15 such
hyperplanes); and

3. Hgr, a grid as defined above (there are 10 such hyperplanes).

A superlative match is thus revealed between the three kinds of geometric hyperplanes of the generalized
quadrangle of order two and the three kinds of projective lines over the rings of four elements and charac-
teristic two embedded in our subconfiguration of P1

(
M2

(
GF (2)

))
, which yields three kinds of distinguished

subsets of the Pauli operators of two-qubits, as summarized in Table 3.

Table 3
GQ Hov Hcl(X) \ {X} Hgr

PL P1

`

GF (4)
´

P1

`

GF (2)[x]/〈x2〉
´

P1

`

GF (2) × GF (2)
´

TQ set of five mutually set of six operators nine operators of a

noncommuting operators commuting with a given one Mermin’s square

Three kinds of distinguished subsets of the generalized Pauli operators of two-qubits
(TQ) viewed as geometric hyperplanes in the generalized quadrangle of order two
(GQ) and as projective lines over the rings of order four and characteristic two in
the projective line P1

(
M2

(
GF (2)

))
(PL).
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In conclusion, we note that the generalized quadrangle of order two is also contained in P1

(
M2

(
GF (2)

))
as the projective line over the so-called Jordan system of symmetric 2×2 matrices over GF (2) [23] or,
equivalently, as a generic hyperplane section of the Klein quadric in the five-dimensional projective space
over GF (2) (see [22]).

We have demonstrated that the basic properties of a system of two interacting spin-1/2 particles are
uniquely embodied in the (sub)geometry of a particular projective line that, as we found, is equivalent to
the generalized quadrangle of order two. Because such systems are the simplest ones exhibiting phenomena
like quantum entanglement and quantum nonlocality, they have a leading place in numerous applications,
of which the most popular are quantum cryptography, quantum coding, quantum cloning (teleportation),
and quantum computing. Our discovery not only offers a principally new geometrically enriched insight
into the intrinsic nature of these phenomena but also opens completely new prospects for their applica-
tions and rather unexpected opportunities for an algebro-geometric modeling of their higher-dimensional
analogues [24], [25].
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