Black Hole Entropy, Finite Geometry and Mermin Squares

Péter Lévay

May 21, 2009

QUANTUM INFORMATION THEORY \leftrightarrow STRING THEORY

Multipartite Entanglement \leftrightarrow Black Hole solutions

The main correspondence is between certain multipartite entanglement measures and the black hole entropy.
M. J. Duff, Phys. Rev. D76, 025017 (2007)
R. Kallosh and A. Linde, Phys. Rev. D73, 104033 (2006)

Péter Lévay ${ }^{1}$, Metod Saniga ${ }^{2}$, Péter Vrana ${ }^{1}$ and Petr Pracna ${ }^{3}$ Physical Review D79, 084036 (2009)
${ }^{1}$ Department of Theoretical Physics, Institute of Physics, Budapest University of Technology, Budapest, Hungary
${ }^{2}$ Astronomical Institute, Slovak Academy of Sciences Tatranská Lomnica, Slovak Republic
${ }^{3}$ J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.
(3) The finite geometry of the $D=5$ black hole entropy.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.
(3) The finite geometry of the $D=5$ black hole entropy.
(9) Mermin squares and the $D=5$ entropy formula.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.
(3) The finite geometry of the $D=5$ black hole entropy.
(9) Mermin squares and the $D=5$ entropy formula.
(5) The finite geometry of the $4 D-5 D$ lift.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.
(3) The finite geometry of the $D=5$ black hole entropy.
(9) Mermin squares and the $D=5$ entropy formula.
(5) The finite geometry of the $4 D-5 D$ lift.
(6) Finite subgroups of the U-duality group.

Plan of the talk

(1) Black hole entropy in $D=5$ and $D=4$.
(2) Finite Geometry. Generalized Quadrangles.
(3) The finite geometry of the $D=5$ black hole entropy.
(9) Mermin squares and the $D=5$ entropy formula.
(5) The finite geometry of the $4 D-5 D$ lift.
(0) Finite subgroups of the U-duality group.
(Conclusions.

Black Hole Entropy in $D=4$ and $D=5$

The Bekenstein-Hawking entropy formula

$$
S=k \frac{A}{4 l_{D}^{2}}, \quad l_{D}^{2}=\frac{\hbar G_{D}}{c^{3}}
$$

for Reissner-Nordström type solutions arising from M-theory/String theory compactifications are described by cubic $(D=5)$ and quartic $(D=4)$ invariants as

$$
S=\pi \sqrt{\left|I_{3}\right|}, \quad S=\pi \sqrt{\left|I_{4}\right|}
$$

Here

$$
\begin{gathered}
48 I_{3}=\operatorname{Tr}(\Omega \mathcal{Z} \Omega \mathcal{Z} \Omega \mathcal{Z}) \\
64 I_{4}=\operatorname{Tr}(\mathcal{Z} \overline{\mathcal{Z}})^{2}-\frac{1}{4}(\operatorname{Tr} \mathcal{Z} \overline{\mathcal{Z}})^{2}+4(\operatorname{Pf} \mathcal{Z}+\operatorname{Pf} \overline{\mathcal{Z}}) \\
\mathcal{Z}_{A B}=-\left(x^{\prime J}+i y_{I J}\right)\left(\Gamma^{I J}\right)_{A B}, \quad \mathcal{Z}_{A B}=-\mathcal{Z}_{B A}, \quad A, B, I, J=1, \ldots 8
\end{gathered}
$$

Charges and U-duality groups

(1) $\ln D=5$ we have 27 charges transforming as the 27 of $E_{6(6)}$.

The groups $E_{6(6)}$ and $E_{7(7)}$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued the U-duality groups are in this case broken to $E_{6(6)}(\mathbf{Z})$ and $E_{7(7)}(\mathbf{Z})$ accordingly.

Charges and U-duality groups

(1) In $D=5$ we have 27 charges transforming as the 27 of $E_{6(6)}$.
(2) In $D=4$ we have 56 charges transforming as the 56 of $E_{7(7)}$.

The groups $E_{6(6)}$ and $E_{7(7)}$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued the U-duality groups are in this case broken to $E_{6(6)}(\mathbf{Z})$ and $E_{7(7)}(\mathbf{Z})$ accordingly.

Cubic Jordan algebras and entropy formulas in $D=5$

The charge configurations describing electric black holes and magnetic black strings of the $N=2, D=5(N=8, D=5)$ magic supergravities are described by cubic Jordan algebras over a division algebra \mathbf{A} (or its split cousin \mathbf{A}_{s}).

$$
J_{3}(Q)=\left(\begin{array}{ccc}
q_{1} & Q^{v} & \overline{Q^{s}} \\
Q^{v} & q_{2} & Q^{c} \\
Q^{s} & \overline{Q^{c}} & q_{3}
\end{array}\right) \quad q_{i} \in \mathbf{R}, \quad Q^{v, s, c} \in \mathbf{A}
$$

The black hole entropy is given by the cubic invariant
$I_{3}(Q)=q_{1} q_{2} q_{3}-\left(q_{1} Q^{s} \overline{Q^{s}}+q_{2} Q^{c} \overline{Q^{c}}+q_{3} Q^{v} \overline{Q^{v}}\right)+2 \operatorname{Re}\left(Q^{c} Q^{s} Q^{v}\right)$
as

$$
S=\pi \sqrt{\left|I_{3}(Q)\right|}
$$

U-duality groups

The groups preserving I_{3} are the ones $S L(3, \mathbf{R}), S L(3, \mathbf{C}), S U^{*}(6)$ and $E_{6(-26)}$.
For the split octonions we have

$$
Q \bar{Q}=\left(Q_{0}\right)^{2}+\left(Q_{1}\right)^{2}+\left(Q_{2}\right)^{2}+\left(Q_{3}\right)^{2}-\left(Q_{4}\right)^{2}-\left(Q_{5}\right)^{2}-\left(Q_{6}\right)^{2}-\left(Q_{7}\right)^{2}
$$

and the group preserving I_{3} is $E_{6(6)}$.
The groups $E_{6(-26)}$ and $E_{6(6)}$ are the symmetry groups of the corresponding classical supergravities. In the quantum theory the black hole/string charges become integer-valued and the relevant 3×3 matrices are defined over the integral octonions and integral split octonions, respectively. Hence, the U-duality groups are in this case broken to $E_{6(-26)}(\mathbf{Z})$ and $E_{6(6)}(\mathbf{Z})$ accordingly.

Finite generalized quadrangles $G Q(s, t)$

A finite generalized quadrangle of order (s, t), is an incidence structure $S=(P, B, \mathrm{I})$, where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms:
(1) each point is incident with $1+t$ lines $(t \geq 1)$ and two distinct points are incident with at most one line

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size three, $\mathrm{GQ}(2, t)$. From a theorem of Feit and Higman it follows that we have the unique possibilities $t=1,2,4$.

Finite generalized quadrangles $G Q(s, t)$

A finite generalized quadrangle of order (s, t), is an incidence structure $S=(P, B, \mathrm{I})$, where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms:
(1) each point is incident with $1+t$ lines $(t \geq 1)$ and two distinct points are incident with at most one line
(2) each line is incident with $1+s$ points $(s \geq 1)$ and two distinct lines are incident with at most one point

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size three, $\mathrm{GQ}(2, t)$. From a theorem of Feit and Higman it follows that we have the unique possibilities $t=1,2,4$.

Finite generalized quadrangles $G Q(s, t)$

A finite generalized quadrangle of order (s, t), is an incidence structure $S=(P, B, \mathrm{I})$, where P and B are disjoint (non-empty) sets of objects, called respectively points and lines, and where I is a symmetric point-line incidence relation satisfying the following axioms:
(1) each point is incident with $1+t$ lines $(t \geq 1)$ and two distinct points are incident with at most one line
(2) each line is incident with $1+s$ points $(s \geq 1)$ and two distinct lines are incident with at most one point
(3) if x is a point and L is a line not incident with x, then there exists a unique pair $(y, M) \in P \times B$ for which $x \mathrm{IMIyI} L$

In what follows, we shall be uniquely concerned with generalized quadrangles having lines of size three, $\mathrm{GQ}(2, t)$. From a theorem of Feit and Higman it follows that we have the unique possibilities $t=1,2,4$.

A Grid, $G Q(2,1)$

The Doily, $G Q(2,2)$

The Duad construction of $G Q(2,4)$

Summary of patterns found for $D=5$

Generalized quadrangles
(1) $G Q(2,1)$ (grid) 9 points and 6 lines.

Jordan algebras (Charge configurations)
(1) $J_{3}(\mathbf{C})$ Number of real numbers: $\mathbf{3}+\mathbf{3} \cdot \mathbf{2}=\mathbf{9}$.

Cubic invariants (Black Hole entropy)
(1) $I_{3}(\mathbf{C})$ Number of terms: 6. (Determinant)

Summary of patterns found for $D=5$

Generalized quadrangles
(1) $G Q(2,1)$ (grid) 9 points and 6 lines.
(2) $G Q(2,2)$ (doily) $\mathbf{1 5}$ points and $\mathbf{1 5}$ lines.

Jordan algebras (Charge configurations)
(1) $J_{3}(\mathrm{C})$ Number of real numbers: $3+3 \cdot 2=9$.
(2) $J_{3}(\mathbf{H})$ Number of real numbers: $3+3 \cdot 4=15$.

Cubic invariants (Black Hole entropy)
(1) $I_{3}(\mathbf{C})$ Number of terms: 6. (Determinant)
(2) $I_{3}(\mathbf{H})$ Number of terms: 15. (Pfaffian)

Summary of patterns found for $D=5$

Generalized quadrangles
(1) $G Q(2,1)$ (grid) 9 points and 6 lines.
(2) $G Q(2,2)$ (doily) 15 points and 15 lines.
(3) $G Q(2,4) 27$ points and 45 lines.

Jordan algebras (Charge configurations)
(1) $J_{3}(\mathbf{C})$ Number of real numbers: $3+3 \cdot \mathbf{2}=\mathbf{9}$.
(2) $J_{3}(\mathbf{H})$ Number of real numbers: $3+3 \cdot 4=15$.
(3) $J_{3}(\mathbf{O})$ Number of real numbers: $3+3 \cdot 8=27$.

Cubic invariants (Black Hole entropy)
(1) $I_{3}(\mathbf{C})$ Number of terms: 6. (Determinant)
(2) $I_{3}(\mathbf{H})$ Number of terms: 15. (Pfaffian)
(3) $I_{3}(\mathrm{O})$ Number of terms: 45.

The cubic invariant and the duad construction

$$
E_{6(6)} \supset S L(2) \times S L(6)
$$

under which

$$
27 \rightarrow\left(2,6^{\prime}\right) \oplus(1,15)
$$

This decomposition is displaying nicely its connection with the duad construction of $\mathrm{GQ}(2,4)$. Under this decomposition I_{3} factors as

$$
I_{3}=\operatorname{Pf}(A)+u^{T} A v,
$$

where u and v are two six-component vectors and for the 6×6 antisymmetric matrix A we have

$$
\operatorname{Pf}(A) \equiv \frac{1}{3!2^{3}} \varepsilon_{i j k l m n} A^{i j} A^{k l} A^{m n}
$$

The cubic invariant and qutrits

We also have the decomposition

$$
E_{6(6)} \supset S L(3, \mathbf{R})_{A} \times S L(3, \mathbf{R})_{B} \times S L(3, \mathbf{R})_{C}
$$

under which

$$
27 \rightarrow\left(3^{\prime}, \mathbf{3}, \mathbf{1}\right) \otimes\left(\mathbf{1}, \mathbf{3}^{\prime}, \mathbf{3}^{\prime}\right) \otimes(\mathbf{3}, \mathbf{1}, \mathbf{3}) .
$$

The above-given decomposition is related to the "bipartite entanglement of three-qutrits" interpretation of the 27 of $E_{6}(\mathbf{C})$. (S. Ferrara and M. J. Duff, Phys. Rev. D76, 124023 (2007)) In this case we have

$$
I_{3}=\operatorname{Det} a+\operatorname{Det} b+\operatorname{Det} c-\operatorname{Tr}(a b c),
$$

where a, b, c are 3×3 matrices transforming accordingly.

The qutrit labelling of $G Q(2,4)$

(1) Truncations to 36 possible doilies (" quaternionic magic" with 15 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

$$
E_{6(6)} \supset S O(5,5) \times S O(1,1)
$$

under which

$$
27 \rightarrow 16_{1} \oplus 10_{-2} \oplus 1_{4}
$$

This is the usual decomposition of the U-duality group into T duality and S duality.

Truncations

(1) Truncations to 36 possible doilies (" quaternionic magic" with 15 charges).
(2) Truncations to 120 possible grids ("complex magic" with 9 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

$$
E_{6(6)} \supset S O(5,5) \times S O(1,1)
$$

under which

$$
27 \rightarrow \mathbf{1 6}_{1} \oplus 1_{-2} \oplus 1_{4}
$$

This is the usual decomposition of the U-duality group into T duality and S duality.

Truncations

(1) Truncations to 36 possible doilies (" quaternionic magic" with 15 charges).
(2) Truncations to 120 possible grids ("complex magic" with 9 charges).
(3) Truncations to 27 possible perp sets (with 11 charges).

Perp-sets are obtained by selecting an arbitrary point and considering all the points collinear with it. A decomposition which corresponds to perp-sets is of the form

$$
E_{6(6)} \supset S O(5,5) \times S O(1,1)
$$

under which

$$
27 \rightarrow 16_{1} \oplus 10_{-2} \oplus 1_{4}
$$

This is the usual decomposition of the U-duality group into T duality and S duality.

Sign problems

What happened to the signs of the terms in the cubic invariant? Indeed, our labelling only produces the terms of the cubic invariant I_{3} up to a sign. One could immediately suggest that we should also include a special distribution of signs to the points of $\mathrm{GQ}(2,4)$. However, it is easy to see that no such distribution of signs exists. We have a triple of grids inside our quadrangle corresponding to the three different two-qutrit states. Truncation to any of such states yields the cubic invariant $I_{3}(a)=\operatorname{Det}(a)$. The structure of this determinant is encapsulated in the structure of the corresponding grid. We can try to arrange the 9 amplitudes in a way that the 3 plus signs for the determinant should occur along the rows and the 3 minus signs along the columns. But this is impossible since multiplying all of the nine signs "row-wise" yields a plus sign, but "column-wise" yields a minus one. \mapsto MERMIN SQUARES?!

The Pauli group

The real matrices of the Pauli group

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Three-qubit operations acting on $\mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}$ e.g.
$Z Y X \equiv Z \otimes Y \otimes X=\left(\begin{array}{cc}Y \otimes X & 0 \\ 0 & -Y \otimes X\end{array}\right)=\left(\begin{array}{cccc}0 & X & 0 & 0 \\ -X & 0 & 0 & 0 \\ 0 & 0 & 0 & -X \\ 0 & 0 & X & 0\end{array}\right)$.
(1) Operators containing an even number of $Y \mathrm{~s}$ are symmetric e.g. $Z Y Y$.

The Pauli group

The real matrices of the Pauli group

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad Y=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Three-qubit operations acting on $\mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}$ e.g.
$Z Y X \equiv Z \otimes Y \otimes X=\left(\begin{array}{cc}Y \otimes X & 0 \\ 0 & -Y \otimes X\end{array}\right)=\left(\begin{array}{cccc}0 & X & 0 & 0 \\ -X & 0 & 0 & 0 \\ 0 & 0 & 0 & -X \\ 0 & 0 & X & 0\end{array}\right)$.
(1) Operators containing an even number of $Y \mathrm{~s}$ are symmetric e.g. $Z Y Y$.
(2) Operators containing an odd number of Y s are antisymmetric e.g. $Z Y X$.

A Mermin square for two qubits

The Doily with the Mermin square inside

A labelling of $G Q(2,4)$ with three qubit Pauli operators

The origin of the noncommutative labelling for $G Q(2,4)$

Interestingly the labelling taking care of the 120 Mermin squares living inside $G Q(2,4)$ and describing the structure of the 5D Black Hole Entropy can be understood by using results on the structure of the 4D Black Hole Entropy $S=\pi \sqrt{\left|I_{4}\right|}$ with

$$
\begin{aligned}
& \qquad 64 I_{4}=\operatorname{Tr}(\mathcal{Z} \overline{\mathcal{Z}})^{2}-\frac{1}{4}(\operatorname{Tr} \mathcal{Z} \overline{\mathcal{Z}})^{2}+4(\operatorname{Pf} \mathcal{Z}+\operatorname{Pf} \overline{\mathcal{Z}}) \\
& \mathcal{Z}_{A B}=-\left(x^{\prime J}+i y_{I J}\right)\left(\Gamma^{I J}\right)_{A B}, \quad \mathcal{Z}_{A B}=-\mathcal{Z}_{B A}, \quad A, B, I, J=0, \ldots 7 \\
& \text { Here } \Gamma^{0 k}=\Gamma_{k}, \text { and } \Gamma^{k l}=\frac{1}{2}\left[\Gamma_{k}, \Gamma_{l}\right] \text { with }
\end{aligned}
$$

$$
\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}, \Gamma_{6}, \Gamma_{7}\right\}=\{I I Y, Z Y X, Y I X, Y Z Z, X Y X, I Y Z, Y X Z\}
$$

$$
\Gamma_{j} \Gamma_{k}+\Gamma_{k} \Gamma_{j}=-2 \delta_{j k} \mathbf{1}, \quad \mathbf{1} \equiv I I I, \quad j, k=1,2, \ldots, 7
$$

These $7 \oplus 21$ antisymmetric three-qubit operators are living within the Split Cayley Hexagon of order two. See: P. Lévay et.al. Phys. Rev. D78, 124022 (2008).

The split Cayley hexagon of order two

A subgeometry of the Hexagon. The Coxeter graph

Klein's group $P S L_{2}(7)$

A presentation of this group of order 168 related to the automorphism group of the Coxeter graph and its complement is
$P^{2} L_{2}(7) \equiv\left\{\alpha, \beta, \gamma \mid \alpha^{7}=\beta^{3}=\gamma^{2}=\alpha^{-2} \beta \alpha \beta^{-1}=(\gamma \beta)^{2}=(\gamma \alpha)^{3}=1\right\}$.
Let us define

$$
P=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad Q=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) .
$$

Then we can define an 8×8 representation acting on the three-qubit Pauli group by conjugation as follows:

An 8×8 representation of Klein's group

$$
\begin{gathered}
\mathcal{D}(\alpha)=\left(C_{12} C_{21}\right)\left(C_{12} C_{31}\right) C_{23}\left(C_{12} C_{31}\right) \equiv\left(\begin{array}{cccc}
P & Q & 0 & 0 \\
0 & 0 & Q & P \\
0 & 0 & Q X & P X \\
P X & Q X & 0 & 0
\end{array}\right) \\
\mathcal{D}(\beta)=C_{12} C_{21}=\left(\begin{array}{llll}
I & 0 & 0 & 0 \\
0 & 0 & 0 & I \\
0 & I & 0 & 0 \\
0 & 0 & I & 0
\end{array}\right) \\
\mathcal{D}(\gamma)=C_{21}(I \otimes I \otimes Z)=\left(\begin{array}{llll}
Z & 0 & 0 & 0 \\
0 & 0 & 0 & Z \\
0 & 0 & Z & 0 \\
0 & Z & 0 & 0
\end{array}\right)
\end{gathered}
$$

The $N=2, D=4$ STU truncation

By virtue of the $\operatorname{PSL}(2,7)$ symmetry of the Coxeter graph we can identify seven subsectors with 8 charges each. These correspond to seven three-qubit states $a_{\mu}, b_{\mu} \ldots g_{\mu}, \quad \mu=0,1, \ldots 7$ with integer amplitudes. This gives rise to the tripartite entanglement of seven qubits interpretation of the 56 of E_{7}.
S. Ferrara and M. J. Duff, Phys. Rev. D76, 025018 (2007)
P. Lévay, Phys. Rev. D75, 024024 (2007)

The correspondence is based on the rotation of the pattern:
$-a_{7}-i a_{0} \leftrightarrow I I Y, \quad a_{4}+i a_{4} \leftrightarrow Z Z Y, \quad a_{2}+i a_{5} \leftrightarrow Z I Y, \quad a_{1}+i a_{6} \leftrightarrow I Z Y$.
related to

$$
E_{7} \supset S L(2)_{a} \times S L(2)_{b} \times \ldots S L(2)_{g}
$$

under which

$$
\mathbf{5 6} \rightarrow \mathbf{2 2 1 2 1 1 1} \oplus 1221211 \oplus \cdots \oplus 2121112
$$

Cayley's hyperdeterminant, and the three qubit state of

 one of the seven $N=2$ truncations$$
\begin{aligned}
|\mathbf{a}\rangle & =a_{0}|0\rangle+a_{1}|1\rangle+\ldots a_{7}|7\rangle \\
& =a_{000}|000\rangle+a_{001}|001\rangle+\ldots a_{111}|111\rangle \\
|i j k\rangle & \equiv|i\rangle_{A} \otimes|j\rangle_{B} \otimes|k\rangle_{C} \in \mathbf{C}^{2} \otimes \mathbf{C}^{2} \otimes \mathbf{C}^{2}
\end{aligned}
$$

$$
\begin{aligned}
D(\mathbf{a})= & \left(a_{0} a_{7}\right)^{2}+\left(a_{1} a_{6}\right)^{2}+\left(a_{2} a_{5}\right)^{2}+\left(a_{3} a_{4}\right)^{2} \\
& -2\left(a_{0} a_{7}\right)\left[\left(a_{1} a_{6}\right)+\left(a_{2} a_{5}\right)+\left(a_{3} a_{4}\right)\right] \\
- & 2\left[\left(a_{1} a_{6}\right)\left(a_{2} a_{5}\right)+\left(a_{2} a_{5}\right)\left(a_{3} a_{4}\right)+\left(a_{3} a_{4}\right)\left(a_{1} a_{6}\right)\right] \\
& +4 a_{0} a_{3} a_{5} a_{6}+4 a_{1} a_{2} a_{4} a_{7} \\
& \quad S=\pi \sqrt{|D(\mathbf{a})|}
\end{aligned}
$$

Geometric hyperplanes and the Wootters spin flip operation

A geometric hyperplane H of a point-line incidence geometry $\Gamma(P, L)$ is a proper subset of P such that each line of Γ meets H in one or all points.

The complement of the Coxeter graph is a geometric hyperplane of the hexagon with automorphism group $\operatorname{PSL}(2,7)$. Are there other interesting ones?
For an 8×8 matrix we define the Wootters spin-flip operation as

$$
\tilde{M} \equiv-(Y \otimes Y \otimes Y) M^{T}(Y \otimes Y \otimes Y)
$$

If $M \in \mathcal{P}_{3}$ then we can consider from the 63 operators the Wootters self-dual ones for which $\tilde{M}=M$. It turns out that we have $\mathbf{2 7}$ self dual ones consisting of 12 antisymmetric and 15 symmetric operators. One can then prove that these 27 operators form a geometric hyperplane of the hexagon. $Y Y Y \mapsto I / Y$ gives another hyperplane e.t.c. altogether 28 ones!

The hyperplane of the Hexagon with 27 points

A $D=4$ interpretation

Note that the decomposition

$$
\begin{equation*}
E_{7(7)} \supset E_{6(6)} \times S O(1,1) \tag{1}
\end{equation*}
$$

under which

$$
\begin{equation*}
\mathbf{5 6} \rightarrow \mathbf{1} \oplus \mathbf{2 7} \oplus \mathbf{2 7} \mathbf{7}^{\prime} \oplus \mathbf{1}^{\prime} \tag{2}
\end{equation*}
$$

describes the relation between the $D=4$ and $D=5$ duality groups.
Notice that Wootters self-duality in the $N=8$ language means that

$$
\operatorname{Tr}(\Omega \mathcal{Z})=0, \quad \overline{\mathcal{Z}}=\Omega \mathcal{Z} \Omega^{T} \quad \Omega=Y Y Y
$$

The usual choice for $N=8$ supergravity is $\Omega=\| Y=\Gamma_{1}$. With this choice one can prove that

$$
\begin{equation*}
\Omega \mathcal{Z}=\mathcal{S}+i \mathcal{A} \equiv \frac{1}{2} x^{j k} \Gamma_{1 j k}+i\left(y_{0 j} \Gamma_{1 j}-y_{1 j} \Gamma_{j}\right) \tag{3}
\end{equation*}
$$

(summation for $j, k=2,3, \ldots, 7$).

Connecting different forms of the cubic invariant.

Hence, with the notation
$A^{j k} \equiv x^{j+1 k+1}, \quad u_{j} \equiv y_{0 j+1}, \quad v_{j} \equiv y_{1 j+1}, \quad j, k=1,2, \ldots, 6$,
we get

$$
I_{3}=\frac{1}{48} \operatorname{Tr}(\Omega \mathcal{Z} \Omega \mathcal{Z} \Omega \mathcal{Z})=\operatorname{Pf}(A)+u^{T} A v
$$

Notice that the operators

$$
\Gamma_{j}, \quad \Gamma_{1 j}, \quad \Gamma_{1 j k} j, k=2,3 \ldots 7
$$

give rise to our noncommutative labelling, where
$\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \Gamma_{4}, \Gamma_{5}, \Gamma_{6}, \Gamma_{7}\right\}=\{I I Y, Z Y X, Y I X, Y Z Z, X Y X, I Y Z, Y X Z\}$.
Hence the connection between the $D=4$ and $D=5$ is related to a one between the structures of $\mathrm{GQ}(2,4)$ and one of the geometric hyperplanes of the hexagon.

The action of $W\left(E_{6}\right)$ of order 51840 on $G Q(2,4)$

Let us consider the correspondence

$$
I \mapsto(00), \quad X \mapsto(01), \quad Y \mapsto(11), \quad Z \mapsto(10)
$$

For example, $X Z I$ is taken to the 6-component vector (011000). Knowing that $W\left(E_{6}\right) \cong O^{-}(6,2)$,

$$
O^{-}(6,2)=\left\langle c, d \mid c^{2}=d^{9}=\left(c d^{2}\right)^{8}=\left[c, d^{2}\right]^{2}=\left[c, d^{3} c d^{3}\right]=1\right\rangle .
$$

For the action of c

$$
\begin{array}{ccc}
I X I \leftrightarrow X Z I, & Z Y X \leftrightarrow Y I X, & I Z I \leftrightarrow X X I \\
Z Y Z \leftrightarrow Y I Z, & Z I I \leftrightarrow Y Y I, & Z Y Y \leftrightarrow Y I Y,
\end{array}
$$

the remaining 15 operators are left invariant. For the action of d we get
$I X I \mapsto Y X Z \mapsto Y Z X \mapsto Y I X \mapsto X Y Z \mapsto I Y Z \mapsto Y X X \mapsto Z Z I \mapsto Y X Y \mapsto$
$I Z I \mapsto Z Y Y \mapsto X I I \mapsto Y Z Y \mapsto X Y X \mapsto X Y Y \mapsto Y I Y \mapsto Y I Z \mapsto I Y Y \mapsto$
$I Y X \mapsto Z X I \mapsto Z Y Z \mapsto Z Y X \mapsto Y Y I \mapsto Y Z Z \mapsto Z I I \mapsto X Z I \mapsto X X I \mapsto$

The Weyl group as a finite subgroup of the U-duality group

It has been known for a long time that the maximal supergravity in D dimensions obtained by Kaluza-Klein dimensional reduction from $D=11$ has a $E_{n(n)}(\mathbf{R})$ symmetry where $n=11-D$. It is conjectured that the infinite discrete subgroup $E_{n(n)}(\mathbf{Z})$ is an exact symmetry of the corresponding string theory, known as U-duality group. It is useful to identify a finite subgroup of the U-duality group that maps the fundamental quantum states of string theory among themselves. (See e.g. H. Lü, C. N. Pope and K. S. Stelle: Nucl. Phys. B476,89 1996). This group is $W\left(E_{n(n)}\right)$. Here motivated by some of the techniques of quantum information theory and finite geometry we have obtained an explicit realization of $W\left(E_{6}\right)$ acting on the charges $(U(1)$ gauge fields. (A similar construction holds also for $W\left(E_{7}\right)$.) Notice that

$$
\mathcal{C}_{3}^{\prime}=\mathbf{Z}_{2}^{6} \rtimes W^{\prime}\left(E_{7}\right), \quad \mathcal{B}_{3}^{\prime}=\mathbf{Z}_{2}^{6} \rtimes W^{\prime}\left(E_{6}\right) .
$$

Where \mathcal{C}^{\prime} and \mathcal{B}^{\prime} are the central quotients of the three-qubit Clifford and Bell groups.

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.
(2) Truncations in string theory are related to restriction to hyperplanes.

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.
(2) Truncations in string theory are related to restriction to hyperplanes.
(3) A noncommutative labelling based on three-qubit Pauli operators was given.

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.
(2) Truncations in string theory are related to restriction to hyperplanes.
(3) A noncommutative labelling based on three-qubit Pauli operators was given.
(1) A connection to Mermin squares was established,

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.
(2) Truncations in string theory are related to restriction to hyperplanes.
(3) A noncommutative labelling based on three-qubit Pauli operators was given.
(9) A connection to Mermin squares was established,
(5) An interesting role of finite discrete subgroups $\left(W\left(E_{n}\right)\right.$, $\operatorname{PSL}(2,7))$ of the U-duality group within the context of the Black Hole Analogy was established.

Conclusions

(1) The finite geometric structure $G Q(2,4)$ of the $D=5$ black hole entropy is revealed.
(2) Truncations in string theory are related to restriction to hyperplanes.
(3) A noncommutative labelling based on three-qubit Pauli operators was given.
(9) A connection to Mermin squares was established,
(3) An interesting role of finite discrete subgroups ($W\left(E_{n}\right)$, $\operatorname{PSL}(2,7))$ of the U-duality group within the context of the Black Hole Analogy was established.
(0) Partial success in identifying the underlying finite geometric structures of the $4 D-5 D$ lift.

