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The Black Hole Analogy

QUANTUM INFORMATION THEORY↔ STRING THEORY

Multipartite Entanglement↔Black Hole solutions

The main correspondence is between certain multipartite
entanglement measures and the black hole entropy.

M. J. Duff, Phys. Rev. D76, 025017 (2007)
R. Kallosh and A. Linde, Phys. Rev. D73, 104033 (2006)
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Plan of the talk

1 Black hole entropy in D = 5 and D = 4.

2 Finite Geometry. Generalized Quadrangles.

3 The finite geometry of the D = 5 black hole entropy.

4 Mermin squares and the D = 5 entropy formula.

5 The finite geometry of the 4D − 5D lift.

6 Finite subgroups of the U-duality group.

7 Conclusions.
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Black Hole Entropy in D = 4 and D = 5

The Bekenstein-Hawking entropy formula

S = k
A

4l2D
, l2D =

~GD

c3

for Reissner-Nordström type solutions arising from M-theory/String
theory compactifications are described by cubic (D = 5) and
quartic (D = 4) invariants as

S = π
√
|I3|, S = π

√
|I4|.

Here
48I3 = Tr(ΩZΩZΩZ)

64I4 = Tr(ZZ)2 − 1

4
(TrZZ)2 + 4(PfZ + PfZ).

ZAB = −(x IJ+iyIJ)(Γ
IJ)AB , ZAB = −ZBA, A,B, I , J = 1, . . . 8.
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Charges and U-duality groups

1 In D = 5 we have 27 charges transforming as the 27 of E6(6).

2 In D = 4 we have 56 charges transforming as the 56 of E7(7).

The groups E6(6) and E7(7) are the symmetry groups of the
corresponding classical supergravities. In the quantum theory the
black hole/string charges become integer-valued the U-duality
groups are in this case broken to E6(6)(Z) and E7(7)(Z) accordingly.
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Cubic Jordan algebras and entropy formulas in D = 5

The charge configurations describing electric black holes and
magnetic black strings of the N = 2, D = 5 (N = 8, D = 5) magic
supergravities are described by cubic Jordan algebras over a
division algebra A (or its split cousin As).

J3(Q) =

 q1 Qv Qs

Qv q2 Qc

Qs Qc q3

 qi ∈ R, Qv ,s,c ∈ A

The black hole entropy is given by the cubic invariant

I3(Q) = q1q2q3− (q1Q
sQs +q2Q

cQc +q3Q
vQv )+2Re(QcQsQv )

as
S = π

√
|I3(Q)|.
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U-duality groups

The groups preserving I3 are the ones SL(3,R), SL(3,C), SU∗(6)
and E6(−26).
For the split octonions we have

QQ = (Q0)
2+(Q1)

2+(Q2)
2+(Q3)

2−(Q4)
2−(Q5)

2−(Q6)
2−(Q7)

2,

and the group preserving I3 is E6(6).
The groups E6(−26) and E6(6) are the symmetry groups of the
corresponding classical supergravities. In the quantum theory the
black hole/string charges become integer-valued and the relevant
3× 3 matrices are defined over the integral octonions and integral
split octonions, respectively. Hence, the U-duality groups are in
this case broken to E6(−26)(Z) and E6(6)(Z) accordingly.
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Finite generalized quadrangles GQ(s, t)

A finite generalized quadrangle of order (s, t), is an incidence
structure S = (P,B, I), where P and B are disjoint (non-empty)
sets of objects, called respectively points and lines, and where I is a
symmetric point-line incidence relation satisfying the following
axioms:

1 each point is incident with 1 + t lines (t ≥ 1) and two distinct
points are incident with at most one line

2 each line is incident with 1 + s points (s ≥ 1) and two distinct
lines are incident with at most one point

3 if x is a point and L is a line not incident with x , then there
exists a unique pair (y ,M) ∈ P × B for which xIMIy IL

In what follows, we shall be uniquely concerned with generalized
quadrangles having lines of size three, GQ(2, t). From a theorem
of Feit and Higman it follows that we have the unique possibilities
t = 1, 2, 4.
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A Grid, GQ(2, 1)
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The Doily, GQ(2, 2)
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The Duad construction of GQ(2, 4)
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Péter Lévay Black Hole Entropy, Finite Geometry and Mermin Squares



Summary of patterns found for D = 5

Generalized quadrangles

1 GQ(2, 1) (grid) 9 points and 6 lines.

2 GQ(2, 2) (doily) 15 points and 15 lines.

3 GQ(2, 4) 27 points and 45 lines.

Jordan algebras (Charge configurations)

1 J3(C) Number of real numbers: 3 + 3 · 2 = 9.

2 J3(H) Number of real numbers: 3 + 3 · 4 = 15.

3 J3(O) Number of real numbers: 3 + 3 · 8 = 27.

Cubic invariants (Black Hole entropy)

1 I3(C) Number of terms: 6. (Determinant)

2 I3(H) Number of terms: 15. (Pfaffian)

3 I3(O) Number of terms: 45.
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The cubic invariant and the duad construction

E6(6) ⊃ SL(2)× SL(6)

under which
27 → (2, 6′)⊕ (1, 15).

This decomposition is displaying nicely its connection with the
duad construction of GQ(2, 4). Under this decomposition I3 factors
as

I3 = Pf(A) + uTAv ,

where u and v are two six-component vectors and for the 6× 6
antisymmetric matrix A we have

Pf(A) ≡ 1

3!23
εijklmnA

ijAklAmn.

Péter Lévay Black Hole Entropy, Finite Geometry and Mermin Squares



The cubic invariant and qutrits

We also have the decomposition

E6(6) ⊃ SL(3,R)A × SL(3,R)B × SL(3,R)C

under which

27 → (3′, 3, 1)⊗ (1, 3′, 3′)⊗ (3, 1, 3).

The above-given decomposition is related to the ”bipartite
entanglement of three-qutrits” interpretation of the 27 of E6(C).
(S. Ferrara and M. J. Duff, Phys. Rev. D76, 124023 (2007))
In this case we have

I3 = Deta + Detb + Detc − Tr(abc),

where a, b, c are 3× 3 matrices transforming accordingly.
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The qutrit labelling of GQ(2, 4)
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Truncations

1 Truncations to 36 possible doilies (”quaternionic magic” with
15 charges).

2 Truncations to 120 possible grids (”complex magic” with 9
charges).

3 Truncations to 27 possible perp sets (with 11 charges).

Perp-sets are obtained by selecting an arbitrary point and
considering all the points collinear with it. A decomposition which
corresponds to perp-sets is of the form

E6(6) ⊃ SO(5, 5)× SO(1, 1)

under which
27 → 161 ⊕ 10−2 ⊕ 14.

This is the usual decomposition of the U-duality group into T
duality and S duality.
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Sign problems

What happened to the signs of the terms in the cubic invariant?
Indeed, our labelling only produces the terms of the cubic invariant
I3 up to a sign. One could immediately suggest that we should also
include a special distribution of signs to the points of GQ(2, 4).
However, it is easy to see that no such distribution of signs exists.
We have a triple of grids inside our quadrangle corresponding to
the three different two-qutrit states. Truncation to any of such
states yields the cubic invariant I3(a) = Det(a). The structure of
this determinant is encapsulated in the structure of the
corresponding grid. We can try to arrange the 9 amplitudes in a
way that the 3 plus signs for the determinant should occur along
the rows and the 3 minus signs along the columns. But this is
impossible since multiplying all of the nine signs “row-wise” yields
a plus sign, but “column-wise” yields a minus one. 7→MERMIN
SQUARES?!
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The Pauli group

The real matrices of the Pauli group

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
Y =

(
0 1
−1 0

)
, Z =

(
1 0
0 −1

)
.

Three-qubit operations acting on C2 ⊗ C2 ⊗ C2 e .g.

ZYX ≡ Z⊗Y⊗X =

(
Y ⊗ X 0

0 −Y ⊗ X

)
=


0 X 0 0
−X 0 0 0
0 0 0 −X
0 0 X 0

 .

1 Operators containing an even number of Y s are symmetric
e.g. ZYY .

2 Operators containing an odd number of Y s are
antisymmetric e.g. ZYX .
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A Mermin square for two qubits

I ⊗ Z Z ⊗ I Z ⊗ Z

X ⊗ I I ⊗X X ⊗X

X ⊗ Z Z ⊗X Y ⊗ Y
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The Doily with the Mermin square inside

Y I

IY

Y Y

ZZ

XXY ZZY

XZ

Y X

IX

ZI

XY

IZ

ZX

XI
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A labelling of GQ(2, 4) with three qubit Pauli operators
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The origin of the noncommutative labelling for GQ(2, 4)

Interestingly the labelling taking care of the 120 Mermin squares
living inside GQ(2, 4) and describing the structure of the 5D Black
Hole Entropy can be understood by using results on the structure
of the 4D Black Hole Entropy S = π

√
|I4| with

64I4 = Tr(ZZ)2 − 1

4
(TrZZ)2 + 4(PfZ + PfZ).

ZAB = −(x IJ+iyIJ)(Γ
IJ)AB , ZAB = −ZBA, A,B, I , J = 0, . . . 7.

Here Γ0k = Γk , and Γkl = 1
2 [Γk , Γl ] with

{Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7} = {IIY ,ZYX ,YIX ,YZZ ,XYX , IYZ ,YXZ}

ΓjΓk + ΓkΓj = −2δjk1, 1 ≡ III , j , k = 1, 2, . . . , 7.

These 7⊕ 21 antisymmetric three-qubit operators are living within
the Split Cayley Hexagon of order two. See: P. Lévay et.al.
Phys. Rev. D78, 124022 (2008).
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The split Cayley hexagon of order two
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A subgeometry of the Hexagon. The Coxeter graph

YII

YZX

IXY ZIY

XYZ

IYI

YYY

YXZ

IYZ
XYX

YZZ

YIX

ZYX

IIY

IZY

XYI

ZYZ YXX

YZI

XIY

ZXY

IYX

ZZY

YXI

ZYI

XXY

YIZ
XZY

Figure: The Coxeter graph, in a form showing its automorphism of order
seven, as a subgraph/subgeometry of the Hexagon .
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Klein’s group PSL2(7)

A presentation of this group of order 168 related to the
automorphism group of the Coxeter graph and its complement is

PSL2(7) ≡ {α, β, γ | α7 = β3 = γ2 = α−2βαβ−1 = (γβ)2 = (γα)3 = 1}.

Let us define

P =

(
1 0
0 0

)
, Q =

(
0 0
0 1

)
.

Then we can define an 8× 8 representation acting on the
three-qubit Pauli group by conjugation as follows:
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An 8× 8 representation of Klein’s group

D(α) = (C12C21)(C12C31)C23(C12C31) ≡


P Q 0 0
0 0 Q P
0 0 QX PX

PX QX 0 0



D(β) = C12C21 =


I 0 0 0
0 0 0 I
0 I 0 0
0 0 I 0



D(γ) = C21(I ⊗ I ⊗ Z ) =


Z 0 0 0
0 0 0 Z
0 0 Z 0
0 Z 0 0


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The N = 2, D = 4 STU truncation

By virtue of the PSL(2, 7) symmetry of the Coxeter graph we can
identify seven subsectors with 8 charges each. These correspond
to seven three-qubit states aµ, bµ . . . gµ, µ = 0, 1, . . . 7 with
integer amplitudes. This gives rise to the tripartite entanglement
of seven qubits interpretation of the 56 of E7.

S. Ferrara and M. J. Duff, Phys. Rev. D76, 025018 (2007)
P. Lévay, Phys. Rev. D75, 024024 (2007)

The correspondence is based on the rotation of the pattern:

−a7−ia0 ↔ IIY , a4+ia4 ↔ ZZY , a2+ia5 ↔ ZIY , a1+ia6 ↔ IZY .

related to
E7 ⊃ SL(2)a × SL(2)b × . . .SL(2)g

under which

56 → 2212111⊕ 1221211⊕ · · · ⊕ 2121112.
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Cayley’s hyperdeterminant, and the three qubit state of
one of the seven N = 2 truncations

|a〉 = a0|0〉+ a1|1〉+ . . . a7|7〉
= a000|000〉+ a001|001〉+ . . . a111|111〉

|ijk〉 ≡ |i〉A ⊗ |j〉B ⊗ |k〉C ∈ C2 ⊗ C2 ⊗ C2

D(a) = (a0a7)
2 + (a1a6)

2 + (a2a5)
2 + (a3a4)

2

− 2(a0a7)[(a1a6) + (a2a5) + (a3a4)]

− 2[(a1a6)(a2a5) + (a2a5)(a3a4) + (a3a4)(a1a6)]

+ 4a0a3a5a6 + 4a1a2a4a7

S = π
√
|D(a)|.
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Geometric hyperplanes and the Wootters spin flip
operation

A geometric hyperplane H of a point-line incidence geometry
Γ(P, L) is a proper subset of P such that each line of Γ meets H in
one or all points.

The complement of the Coxeter graph is a geometric hyperplane of
the hexagon with automorphism group PSL(2, 7). Are there other
interesting ones?
For an 8× 8 matrix we define the Wootters spin-flip operation as

M̃ ≡ −(Y ⊗ Y ⊗ Y )MT (Y ⊗ Y ⊗ Y ).

If M ∈ P3 then we can consider from the 63 operators the
Wootters self-dual ones for which M̃ = M. It turns out that we
have 27 self dual ones consisting of 12 antisymmetric and 15
symmetric operators. One can then prove that these 27 operators
form a geometric hyperplane of the hexagon. YYY 7→ IIY gives
another hyperplane e.t.c. altogether 28 ones!
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The hyperplane of the Hexagon with 27 points
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A D = 4 interpretation

Note that the decomposition

E7(7) ⊃ E6(6) × SO(1, 1) (1)

under which
56 → 1⊕ 27⊕ 27′ ⊕ 1′ (2)

describes the relation between the D = 4 and D = 5 duality
groups.
Notice that Wootters self-duality in the N = 8 language means
that

Tr(ΩZ) = 0, Z = ΩZΩT Ω = YYY .

The usual choice for N = 8 supergravity is Ω = IIY = Γ1 . With
this choice one can prove that

ΩZ = S + iA ≡ 1

2
x jkΓ1jk + i(y0jΓ1j − y1jΓj), (3)

(summation for j , k = 2, 3, . . . , 7).
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Connecting different forms of the cubic invariant.

Hence, with the notation

Ajk ≡ x j+1k+1, uj ≡ y0j+1, vj ≡ y1j+1, j , k = 1, 2, . . . , 6,

we get

I3 =
1

48
Tr(ΩZΩZΩZ) = Pf(A) + uTAv .

Notice that the operators

Γj , Γ1j , Γ1jk j , k = 2, 3 . . . 7

give rise to our noncommutative labelling, where

{Γ1, Γ2, Γ3, Γ4, Γ5, Γ6, Γ7} = {IIY ,ZYX ,YIX ,YZZ ,XYX , IYZ ,YXZ}.

Hence the connection between the D = 4 and D = 5 is related to
a one between the structures of GQ(2, 4) and one of the geometric
hyperplanes of the hexagon.
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The action of W (E6) of order 51840 on GQ(2, 4)

Let us consider the correspondence

I 7→ (00), X 7→ (01), Y 7→ (11), Z 7→ (10).

For example, XZI is taken to the 6-component vector (011000).
Knowing that W (E6) ∼= O−(6, 2),

O−(6, 2) = 〈c , d |c2 = d9 = (cd2)8 = [c , d2]2 = [c , d3cd3] = 1〉.

For the action of c

IXI ↔ XZI , ZYX ↔ YIX , IZI ↔ XXI

ZYZ ↔ YIZ , ZII ↔ YYI , ZYY ↔ YIY ,

the remaining 15 operators are left invariant. For the action of d
we get

IXI 7→ YXZ 7→ YZX 7→ YIX 7→ XYZ 7→ IYZ 7→ YXX 7→ ZZI 7→ YXY 7→

IZI 7→ ZYY 7→ XII 7→ YZY 7→ XYX 7→ XYY 7→ YIY 7→ YIZ 7→ IYY 7→
IYX 7→ ZXI 7→ ZYZ 7→ ZYX 7→ YYI 7→ YZZ 7→ ZII 7→ XZI 7→ XXI 7→
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The Weyl group as a finite subgroup of the U-duality group

It has been known for a long time that the maximal supergravity in
D dimensions obtained by Kaluza-Klein dimensional reduction from
D = 11 has a En(n)(R) symmetry where n = 11− D. It is
conjectured that the infinite discrete subgroup En(n)(Z) is an
exact symmetry of the corresponding string theory, known as
U-duality group. It is useful to identify a finite subgroup of the
U-duality group that maps the fundamental quantum states of
string theory among themselves. (See e.g. H. Lü, C. N. Pope and
K. S. Stelle: Nucl. Phys. B476,89 1996). This group is W (En(n)).
Here motivated by some of the techniques of quantum information
theory and finite geometry we have obtained an explicit realization
of W (E6) acting on the charges (U(1) gauge fields. (A similar
construction holds also for W (E7).) Notice that

C3
′ = Z6

2 o W ′(E7), B3
′ = Z6

2 o W ′(E6).

Where C′ and B′ are the central quotients of the three-qubit
Clifford and Bell groups.
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Conclusions

1 The finite geometric structure GQ(2, 4) of the D = 5 black
hole entropy is revealed.

2 Truncations in string theory are related to restriction to
hyperplanes.

3 A noncommutative labelling based on three-qubit Pauli
operators was given.

4 A connection to Mermin squares was established,

5 An interesting role of finite discrete subgroups (W (En),
PSL(2, 7)) of the U-duality group within the context of the
Black Hole Analogy was established.

6 Partial success in identifying the underlying finite geometric
structures of the 4D − 5D lift.
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