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A comprehensive graph theoretical and finite geometrical study of the commutation
relations between the generalized Pauli operators of N -qudits is performed in which ver-
tices/points correspond to the operators and edges/lines join commuting pairs of them.
As per two-qubits, all basic properties and partitionings of the corresponding Pauli
graph are embodied in the geometry of the generalized quadrangle of order two. Here,
one identifies the operators with the points of the quadrangle and groups of maximally
commuting subsets of the operators with the lines of the quadrangle. The three basic
partitionings are (a) a pencil of lines and a cube, (b) a Mermin’s array and a bipartite-
part and (c) a maximum independent set and the Petersen graph. These factorizations
stem naturally from the existence of three distinct geometric hyperplanes of the quad-
rangle, namely a set of points collinear with a given point, a grid and an ovoid, which
answer to three distinguished subsets of the Pauli graph, namely a set of six operators
commuting with a given one, a Mermin’s square, and set of five mutually non-commuting
operators, respectively. The generalized Pauli graph for multiple qubits is found to follow
from symplectic polar spaces of order two, where maximal totally isotropic subspaces
stand for maximal subsets of mutually commuting operators. The substructure of the
(strongly regular) N -qubit Pauli graph is shown to be pseudo-geometric, i. e., isomorphic
to a graph of a partial geometry. Finally, the (not strongly regular) Pauli graph of a
two-qutrit system is introduced; here it turns out more convenient to deal with its dual
in order to see all the parallels with the two-qubit case and its surmised relation with
the generalized quadrangle Q(4, 3), the dual of W (3).
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1 Introduction

The intricate structure of commuting/non-commuting relations between N -qubit observables
may serve as a nice illustration of the distinction between the quantum and the classical
and failure of classical ideas about measurements. A deeper understanding of this structure
is central to the explanation of quantum peculiarities such as quantum complementarity,
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quantum entanglement as well as other related conceptual (or practical) issues like no-cloning,
quantum teleportation, quantum cryptography and quantum computing, to mention a few.
Many “strange features” of finite quantum mechanics are linked with two important open
theoretical questions: finding complete sets of mutually unbiased bases [1] and/or solving the
Kochen-Specker theorem in relevant dimensions [2]. Both problems are tricky and difficult
due to a large number of the observables involved. Already for a two-qubit system, there are
as many as fifteen operators — tensor products of the four Pauli matrices. This set can be
viewed as a graph if one regards the operators as vertices and joins any pair of commuting
ones by an edge. The two-qubit Pauli graph, henceforth referred to as P[2, 2], is regular of
degree six, that is, every observable commutes with other six; one of its subgraphs, frequently
termed as a Mermin’s square, has already been thoroughly studied due to its relevance to a
number of quantum “paradoxes” [2, 3]. For N -qubits (N -qutrits), N > 2, the corresponding
graphs P[2, N ] (P[3, N ]) are endowed with 4N − 1 (9N − 1) vertices. One of their partitions
features 2N + 1 (3N + 1) maximally commuting sets of 2N − 1 (3N − 1) operators each and is
intimately related to the derivation of the maximum sets of mutually unbiased bases in the
corresponding dimensions [4, 5].

This paper aims at an in-depth understanding of the properties of the N -qudit Pauli graphs
by employing a number of novel graph theoretical and finite geometrical tools. It is organized
as follows. Sec. 2 first lists basic notions and definitions of graph theory and then introduces
the relevant finite geometries. The latter start with the ubiquitous Fano plane, continue with
other remarkable finite projective configurations (e. g., Pappus and Desargues) and related
subspaces, and ends with more abstract and involved structures, such as generalized polygons
and (symplectic) polar spaces. Sec. 3 introduces the two-qubit Pauli graph and discusses its
basic properties. The graph’s three basic factorizations are then examined in very detail
and their algebraic geometrical origin is pointed out: first, in terms of the three kinds of
the geometric hyperplanes of the generalized quadrangle of order two, second in terms of the
projective lines over the rings of order four and characteristic two residing in the projective
line over Z2×2

2 [6]. Sec. 4 discusses a self-similarity of the N -qubit graph; one shows that its
structure is that of the symplectic polar spaces of order two [7] and strongly regular graphs
associated with them. Finally, Sec. 5 deals with some properties of the two-qutrit Pauli graph
P[3, 2] and muses about possible finite geometry behind it.

2 Graphs and geometry

2.1 Excerpts from graph theory

A graph G consists of two sets, a non-empty set V (G) of vertices and a set E(G) of two
element subsets of V (G) called edges, the latter regarded as joins of two vertices. Alternatively,
vertices are also called points and edges also lines [8, 9, 10]. Two distinct vertices of G are
called adjacent if there is an edge joining them; similarly, two distinct edges with a common
vertex are called adjacent. If one vertex belongs to one edge both are said to be incident. The
adjacency matrix A = [aij ] of a graph G with |V (G)| = v vertices is an v× v matrix in which
aij = 1 if the vertex vi is adjacent to the vertex vj and aij = 0 otherwise. The degree D of a
vertex in a graph G is the number of edges incident with it; a regular graph is a graph where
each vertex has the same degree. A strongly regular graph is a regular graph in which any
two adjacent vertices are both adjacent to a constant number of vertices, and any two non



M. Planat and M. Saniga 129

adjacent vertices are also both adjacent to a constant, though usually different, number of
vertices. The graph spectrum spec(G) is composed of the eigenvalues (with properly counted
multiplicities) of its adjacency matrix. For a regular graph, the largest eigenvalue equals the
degree of the graph and the absolute value of any other eigenvalue is less than D.

A subgraph of G is a graph having all of its vertices and edges in G. For any set S of
vertices of G, the induced subgraph, denoted 〈S〉, is the maximal subgraph G with the vertex
set S. A vertex and an edge are said to cover each other if they are incident. A set of vertices
which cover all the edges of a graph G is called a vertex cover of G, and the one with the
smallest cardinality is called a minimum vertex cover. The latter induces a natural subgraph
G′ of G composed of the vertices of the minimum vertex cover and the edges joining them in
the original graph. An independent set (or coclique) I of a graph G is a subset of vertices
such that no two vertices represent an edge of G. Given the minimum vertex cover of G and
the induced subgraph G′, a maximum independent set I is defined from all vertices not in G′.
The set G′ together with I partition the graph G.

Two graphs G and H are isomorphic (written G ∼= H) if there exists a one-to-one cor-
respondence between their vertex sets which preserves adjacency. An invariant of a graph
G is a number associated with G which has the same value for any graph isomorphic to G.
A complete set of invariants would determine a graph up to isomorphism, yet no such set is
known for any graph. The most important invariants for a graph G are the number of its
vertices v = |V (G)|, the number of its edges e = |E(G)|, the degree at each vertex, its girth
g(G), i. e., the length of a shortest cycle (if any) in G, its diameter and its (vertex) chromatic
number. The distance between two points in G is the length of the shortest path joining
them, if any. In a connected graph, distance is a metric. A shortest path is called a geodesic
and the diameter of a connected graph is the length of the longest geodesic. A coloring of a
graph is an assignment of colors to its points so that no two adjacent points have the same
color. A c-coloring of a graph G uses c colors. The chromatic number κ(G) is defined as the
minimum c for which G has a c-coloring.

Quite often the structure of a given graph can be expressed in a compact form, in terms
of smaller graphs and operations on them. Graph union, graph product, graph composition
and graph complement are a few [8]. The complement Ĝ of a graph G has V (G) as its vertex
set, and two vertices are adjacent in Ĝ if they are not in G. We will also need the concept
of the line graph L(G) of a graph G, i. e., the graph which has a vertex associated with each
edge of G and an edge if and only if the two edges of G share a common vertex.

2.2 Graphs and finite geometries

A finite geometry may be defined as a finite space S = {P,L} of points P and lines L such
that certain conditions, or axioms, are satisfied [11]. One of the simplest set of axioms are
those defining the so-called Fano plane: (i) there are seven points and seven lines, (ii) each
line has three points and (iii) each point is on three lines. The Fano plane is a member of
several communities, some of them of great relevance to the structure of an N -qubit system.
It is, first of all, a near linear space, that is a space such that any line has at least two points
and two points are on at most one line. The Fano plane is also a linear space for which the
second axiom “at most” can be replaced by “exactly”. More generally, a projective plane is
a linear space in which any two lines meet and there exists a set of four points no three of
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which lie on a line. The projective plane axioms are dual in the sense that they also hold by
switching the role of points and lines. In a projective plane every point/line is incident with
the same number k + 1 of lines/points, where k is called the order of the plane. It has been
long conjectured that a projective plane exists if and only k is a power of a prime number and
this conjecture was related to the existence of complete sets of mutually unbiased bases for
N -qudits [12]. The Fano plane is, in fact, the smallest projective plane, having order k = 2.
Projective planes of order k can be constructed from 3-dimensional vector spaces over finite
fields Fk; such planes are necessarily Desarguesian, but there also exist non-Desarguesian
planes which do not admit such a coordinatization.

The Fano plane belongs also to a large family of projective configurations, which consist
of a finite set of points and a finite set of lines such that each point is incident with the same
number of lines and each line is incident with the same number of points. Such a configuration
may be denoted (va, eb), where v stands for the number of points, e for the number of lines,
a is the number of lines per point and b the number of points per line. If the number of
points equals the number of lines one simply denotes a configuration as (va), although it is
not, in general, unique. A configuration is said to be self-dual if its axioms remain the same
by interchanging the role of points and lines. The Fano plane is a configuration (73). We
will soon meet other two distinguished projective configurations: the Pappus configuration
(93) and the Desargues configuration (103). All the three configurations are self-dual. Any
configuration may also be seen as a regular graph by regarding its points as vertices and its
lines as edges.

Recently, another class of finite geometries was found out to be of great relevance for
two-qubits — projective lines defined over finite rings instead of fields [3, 13, 14, 15]. Given
an associative ring R with unity and GL(2, R), the general linear group of invertible two-
by-two matrices with entries in R, a pair (α, β) is called admissible over R if there exist

γ, δ ∈ R such that
(

α β
γ δ

)
∈ GL2(R). The projective line over R is defined as the set

of equivalence classes of ordered pairs (%α, %β), where % is a unit of R and (α, β) admissible
[16, 17]. Such a line carries two non-trivial, mutually complementary relations of neighbor and
distant. In particular, its two distinct points X: (%α, %β) and Y : (%γ, %δ) are called neighbor

if
(

α β
γ δ

)
/∈ GL2(R) and distant otherwise. The corresponding graph takes the points as

vertices and its edges link any two mutually neighbor points. For R = Fk, (the graph of)
the projective line lacks any edge, being an independent set of cardinality k + 1, or a (k + 1)-
coclique. Edges appear only for a line over a ring featuring zero-divisors, and their number
is proportional to the number of zero-divisors and/or maximal ideals of the ring concerned
(see, e. g., [13]–[17] for a comprehensive account of the structure of finite projective ring lines).
Projective lines of importance for our model will be, as already mentioned in Sec. 1, the line
defined over the (non-commutative) ring of full 2× 2 matrices with coefficients in Z2, as well
as the lines defined over three distinct types of rings of order four and characteristic two [6].

A linear space such that any two-dimensional subspace of it is a projective plane is called
a projective space. The smallest non trivial example (other than the Fano plane) is the binary
three dimensional space PG(3, 2) of which two-dimensional subspaces are Fano planes. A
generalized quadrangle is a near linear space such that given a line L and a point P not on
the line, there is exactly one line K through P that intersects L (in some point Q) [18]. A
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finite generalized quadrangle is said to be of order (s, t) if every line contains s+1 points and
every point is in exactly t + 1 lines and it is called thick if both s > 1 and t > 1; otherwise, it
is called slim. If s = t, we simply speak of a quadrangle of order s. A generalized quadrangle
of order (s, 1) or (1, t) is called a grid or a dual grid, both being slim. The simplest thick
generalized quadrangle, usually denoted as W (2), is of order 2; it is a self-dual object featuring
15 points/lines and a cornerstone of our model.

Further concepts closely related to a projective space are those of a subspace and of a
geometric hyperplane. A set of points in a projective space is a subspace if and only if for
any line L the set contains no point, one point, or all the points of L. More restrictively,
a geometric hyperplane H of a finite geometry is a set of points such that every line of the
geometry either contains exactly one point of H, or is completely contained in H.

Last but not least, we need to introduce the concept of a polar space. A polar space
S = {P, L} is a near-linear space such that for every point P not on a line L, the number of
points of L joined to P by a line equals either one (as for a generalized quadrangle) or the
total number of points of the line [11]. A polar space of rank N (N ≥ 2) can also be seen [19]
as a set {P} of points, together with certain subsets, called subspaces, such that: (a) every
subspace, together with its own subspaces, is isomorphic to the projective space PG(d, q) over
the finite field Fq and of dimension d at most N − 1, (b) the intersection of two subspaces is
a subspace, (c) for each point P not in a subspace R of dimension N − 1, there is a unique
subspace S of dimension N − 1 such that R ∩ S is (N − 2)-dimensional, and (d) there are at
least two disjoint subspaces of dimension N − 1. A polar space of rank two is a generalized
quadrangle. A particular class of higher-rank, N > 2, polar spaces called symplectic polar
spaces are, as already outlined in [7], the geometries behind (strongly regular) multiple-qubit
Pauli graphs (Sec. 4).

3 The Pauli graph of two-qubits

Let us consider the fifteen tensor products σi⊗σj , i, j ∈ {1, 2, 3, 4} and (i, j) 6= (1, 1), of Pauli

matrices σi = (I2, σx, σy, σz), where I2 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
and

σy = iσxσz, label them as follows 1 = I2 ⊗ σx, 2 = I2 ⊗ σy, 3 = I2 ⊗ σz, a = σx ⊗ I2,
4 = σx ⊗ σx. . . , b = σy ⊗ I2,. . . , c = σz ⊗ I2,. . . , and find the product and the commutation
properties of any two of them — as given in Table 1 and Table 2, respectively. Joining two
distinct mutually commuting operators by an edge, one obtains the Pauli graph P[2, 2] with
incidence matrix as shown in Table 2. After removing the triple {a, b, c} of the “reference”
observables, the incidence matrix can be cast into a remarkably compact form (Table 3) which
makes use of three 3× 3 matrices: O (the “zero” matrix), A (the identity matrix) and Â (the
matrix complementary to A). The main invariants of P[2, 2] and those of some of its most
important subgraphs are listed in Table 4. As it readily follows from Tables 1–3, P[2, 2] is
6-regular and, so, intricately connected with the complete graphs Kn, n = 5, 6 or 7. First,
one checks that P[2, 2] ∼= L̂(K6), i. e., it is isomorphic to the complement of line graph of
K6. Next, computing its minimum vertex cover (Table 4), one recovers the Petersen graph
PG ≡ L̂(K5). Finally, P[2, 2] is also found to be isomorphic to the minimum vertex cover
of L̂(K7). Now, we turn to remarkable partitionings/factorizations and the corresponding
distinguished subgraphs of P[2, 2].
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1 2 3 a 4 5 6 b 7 8 9 c 10 11 12

1 0 i3 −i2 4 a i6 −i5 7 b i9 −i8 10 c i12 −i11
2 −i3 0 i1 5 −i6 a i4 8 −i9 b i7 11 −i12 c i10
3 i2 −i1 0 6 i5 −i4 a 9 i8 −i7 b 12 i11 −i10 c
a 4 5 6 0 1 2 3 ic i10 i11 i12 −ib −i7 −i8 −i9
4 a i6 −i5 1 0 i3 −i2 i10 ic −12 11 −i7 −ib 9 −8
5 −i6 a i4 2 −i3 0 i1 i11 12 ic −10 −i8 −9 −ib 7
6 i5 −i4 a 3 i2 −i1 0 i12 −11 10 ic −i9 8 −7 −ib
b 7 8 9 −ic −i10 −i11 −i12 0 1 2 3 ia i4 i5 i6
7 b i9 −i8 −i10 −ic 12 −11 1 0 i3 −i2 i4 ia −6 5
8 −i9 b i7 −i11 −12 −ic 10 2 −i3 0 i1 i5 6 ia −4
9 i8 −i7 b −i12 11 −10 −ic 3 i2 −i1 0 i6 −5 4 ia
c 10 11 12 ib i7 i8 i9 −ia −i4 −i5 −i6 0 1 2 3
10 c i12 −i11 i7 ib −9 8 −i4 −ia 6 −5 1 0 i3 −i2
11 −i12 c i10 i8 9 ib −7 −i5 −6 −ia 4 2 −i3 0 i1
12 i11 −i10 c i9 −8 7 ib −i6 5 −4 −ia 3 i2 −i1 0

Table 1. The product properties between any two Pauli operators of two-qubits; 0 ≡ I2.

1 a 4

6 3

8

10 c

9

12

7b

11

(−6)

(6)
(−5)

(5)

(4)

(FP) (CB)

(−4)
2

5

Fig. 1. Partitioning of P[2, 2] into a pencil of lines in the Fano plane (FP ) and a cube (CB). In
FP any two observables on a line map to the third one on the same line. In CB two vertices
joined by an edge map to points/vertices in FP . The map is explicitly given for an entangled path
by labels on the corresponding edges.

3.1 The “Fano pencil” FP and the cube CB

We shall first tackle the 7+8 partitioning of the graph which can, for example, be realized
by the following subgraphs/subsets: FP = 〈1, 2, 3, a, 4, 5, 6〉 and CB = 〈b, 7, 8, 9, c, 10, 11, 12〉.
The subgraph FP can also be regarded as a line pencil in the Fano plane [3, 20] as well as
a hyperplane of W (2) [6]; the number of choices for this partitioning is obviously equal to
the number of the vertices of the full graph (see [3] for another choice). A CB is also the
generalized Petersen graph G(4, 1) [9]. Employing Table 1, it is easy to observe that two
vertices on one line of FP map to the third one on the same line, i. e., 1.a = 4, 2.a = 5 and
3.a = 6. The three observables are found to share a common base of 4-dimensional vectors;
for this particular choice, the lines in the Fano pencil FP feature unentangled 2-qubit bases.
In addition, an edge of CB is mapped to a vertex of FP , e. g., 8.10 = 6, 8.12 = −4, etc.
In particular, there is a closed path of length 6 (shown with thick lines) in the cube graph
CB which features six bases of entangled states. It is worth mentioning here that in [3] the
projective lines over direct product of rings of the type Z×n

2 , n = 2, 3, 4, were used to tackle
this kind of partitioning. With these lines it was possible to grasp the structure of the two
subsets, but not the coupling between them; to get a complete picture required employing a
more abstract projective line with a more involved structure [6].
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1 2 3 a 4 5 6 b 7 8 9 c 10 11 12
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0
2 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0
3 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1
a 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0
4 1 0 0 1 0 0 0 0 0 1 1 0 0 1 1
5 0 1 0 1 0 0 0 0 1 0 1 0 1 0 1
6 0 0 1 1 0 0 0 0 1 1 0 0 1 1 0
b 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0
7 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1
8 0 1 0 0 1 0 1 1 0 0 0 0 1 0 1
9 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0
c 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1
10 1 0 0 0 0 1 1 0 0 1 1 1 0 0 0
11 0 1 0 0 1 0 1 0 1 0 1 1 0 0 0
12 0 0 1 0 1 1 0 0 1 1 0 1 0 0 0

Table 2. The commutation relations between pairs of Pauli operators of two-qubits aka
the incidence matrix of the Pauli graph P[2, 2]. The symbol “0”/“1” stands for non-
commuting/commuting; although the diagonal should feature 1’s (every operator commutes with
itself), we put there 0’s for the reason which will become apparent from the text.

O A A A

A O Â Â

A Â O Â

A Â Â O

Table 3. Structure of the incidence matrix of P[2, 2] after removal of the triple of operators {a, b, c}.

3.2 The Mermin square MS and the bipartite part BP

We shall focus next on the 9+6 partitioning which can be illustrated, for example, by the
subgraphs BP = 〈1, 2, 3, a, b, c〉 and MS = 〈4, 5, 6, 7, 8, 9, 10, 11, 12〉. The BP part is easily
recognized as the bipartite graph K[3, 3], while the MS part is a 4-regular graph. There is a
map from the edges of BP to the vertices of MS, and a map from two vertices of a line in
MS to the third vertex on the same line. The bases defined by two commuting operators in
BP are unentangled. By contrast, operators on any row/column of MS define an entangled
base. A square/grid like the MS was used by Mermin [2] — and frequently referred to as a
Mermin’s square since then — to provide a simple proof of the Kochen-Specker theorem in
four dimensions. The proof goes as follows. One observes that the square is polarized in the
sense that the product of three operators on any column equals +I4 (the 4×4 identity matrix),
while the product of three observables on any row equals −I4. By multiplying all columns
and rows one gets −I4. This is, however, not the case for the eigenvalues of the observables;
they all equal ±1 and their corresponding products always yield +1 because each of them
appears in the product twice; once as the eigenvalue in a column and once as the eigenvalue
in a row. The algebraic structure of mutually commuting operators thus contradicts that of
their eigenvalues, which furnishes a proof of the Kochen-Specker theorem. The MS set is
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G P[2, 2] PG ∼= MV C MS BP FP CB
v 15 10 9 6 7 8
e 45 15 18 9 9 12

spec(G) {−35,19,6} {−24,15,3} {−24,14,4} {−3,04,3} {−2,−13,12,3} {−3,−13,13,3}
g(G) 3 5 3 4 3 3
κ(G) 4 3 3 2 3 2

Table 4. The main invariants of the Pauli graph P[2, 2] and its subgraphs, including its minimum
vertex covering MV C isomorphic to the Petersen graph PG. For the remaining symbols, see the
text.

(BP) (MS)

11 6 7
(−)

(−)
5

(+)

12
(−)

8

(+)

109

(+)

4

c
(12)

3

(6) (10)

b2

1 (4) a

Fig. 2. Partitioning of P[2, 2] into an unentangled bipartite graph (BP ) and a fully entangled
Mermin square (MS). In BP two vertices on any edge map to a point in MS (see the labels of
the edges on a selected closed path). In MS any two vertices on a line map to the third one.
Operators on all six lines carry a base of entangled states. The graph is polarized, i.e., the product
of three observables in a row is −I4, while in a column it is +I4.

also recognized as a (92, 63) configuration for any point is incident with two lines and any
line is incident with three points and does not change its shape if we reverse our notation,
i. e., join by an edge two mutually non-commuting observables; in graph theoretical terms this
means that the MS equals its complement. It is also interesting to see that this configuration
sits inside the Pappus (93) configuration (all vertices and lines in Fig. 3) by removing from
the latter the three non-concurrent lines (the dotted ones). Last but not least, it needs to be
mentioned that the MS configuration represents also the structure of the projective line over
the product ring Z2×Z2 if we identify the points sets of the two and regard edges as joins of
mutually distant points [14, 15]; it was precisely this fact that motivated our in-depth study of
projective ring lines [13, 17] and finally led to the discovery of the relevant geometries behind
two- and multiple-qubit systems [3, 6, 7].

3.3 The Petersen graph PG and the maximum independent set I

The third fundamental partitioning of P[2, 2] comprises a maximum independent set I and
the Petersen graph PG [6]. This can be done in six different ways and one of them features
I = 〈1, 2, 6, 9, 12〉 and PG = 〈3, a, 4, 5, b, 7, 8, c, 10, 11〉. As in the case of their cousins CB and
BP , the Petersen graph PG admits a map of its edges into the vertices of the independent set
I. Its complement, P̂G, can be viewed as a Desargues configuration (103) (see Fig. 5) whose
points are the vertices of PG and lines are triples of non-commuting observables ok, ol, om,
k 6= l 6= m, ok.ol = ±iom. The Desargues configuration is, like those of Fano and Pappus,
self-dual.
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4
5

6

9
8

7

10

1211

Fig. 3. The Mermin square MS viewed as a “sub-Pappus” configuration; the Pappus configuration
(93) is obtained by adding the three extra lines (dotted).

b

7

11

4
8

3

c

a10

1 2

6

9
12

(−6)

(2)

(1)

(9)

5
(12)

(PG) (I)

Fig. 4. The partitioning of P[2, 2] into a maximum independent set (I) and the Petersen graph
(PG), aka its minimum vertex cover. The two vertices on an edge of PG correspond/map to a
vertex in I (as illustrated by the labels on the edges of a selected closed path).

3.4 Finite projective algebraic geometry underlying P[2, 2]

3.4.1 P[2, 2] as the generalized quadrangle of order two — W (2)

At this point we have dissected P[2, 2] to such an extent that we are ready to show the unique
finite projective geometry hidden behind — namely the generalized quadrangle of order two,
W (2) [6]. As already mentioned in Sec. 2.2, W (2) is the simplest thick generalized quadrangle
endowed with fifteen points and the same number of lines, where every line features three
points and, dually, every point is incident with three lines, and where every point is joined
by a line (or, simply, collinear) with other six points [18, 20]. These properties can easily
be grasped from the drawing of this object, dubbed for obvious reasons the doily, depicted
in Fig. 6; here, all the points are drawn as small circles, while lines are represented either
by line segments (ten of them), or as segments of circles (the remaining five of them). To
recognize in this picture P[2, 2] one just needs to identify the fifteen points of W (2) with
our fifteen generalized Pauli operators as explicitly illustrated, with the understanding that
collinear means commuting (and, so, non-collinear reads non-commuting); the fifteen lines
of W (2) thus stand for nothing but fifteen maximum subsets of three mutually commuting
operators each.
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3

10

11

5

8

7

4

c

a

b

Fig. 5. The complement of the Petersen graph viewed as the Desargues configuration; every line
comprises three pairwise non-commuting operators ok, ol, om, k 6= l 6= m, i. e., the operators
obeying the rule ok.ol = ±iom.
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Fig. 6. W (2) as the unique underlying geometry of two-qubit systems. The Pauli operators
correspond to the points and maximally commuting subsets of them to the lines of the quadrangle.
Three operators on each line have a common base; six out of fifteen such bases are entangled (the
corresponding lines being indicated by boldfacing).

That W (2) is indeed the right projective setting for P[2, 2] stems also from the fact that it
gives a nice geometric justification for all the three basic partitionings/factorizations of P[2, 2].
To see this, we just employ the fact that W (2) features three distinct kinds of geometric
hyperplanes [18]: 1) a perp-set (Hcl(X)), i. e., a set of points collinear with a given point X,
the point itself inclusive (there are 15 such hyperplanes); 2) a grid (Hgr) of nine points on six
lines, aka a slim generalized quadrangle of order (2, 1) (there are 10 such hyperplanes); and 3)
an ovoid (Hov), i. e., a set of (five) points that has exactly one point in common with every line
(there are six such hyperplanes). One then immediately sees [6] that a perp-set is identical
with a Fano pencil, a grid answers to a Mermin square and, finally, an ovoid corresponds to
a maximum independent set. Because of self-duality of W (2), each of the above introduced
hyperplanes has its dual, line-set counterpart. The most interesting of them is the dual of
an ovoid, usually called a spread, i. e., a set of (five) pairwise disjoint lines that partition the
point set; each of six different spreads of W (2) represents such a pentad of mutually disjoint
maximally commuting subsets of operators whose associated bases are mutually unbiased
[3, 4]. It is also important to mention a dual grid, i. e., a slim generalized quadrangle of order
(1, 2), having a property that the three operators on any of its nine lines share a base of
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unentagled states. It is straightforward to verify that these lines are defined by the edges of a
BP ; each of the remaining six lines (fully located in the corresponding/complementary MS)
carries a base of entangled states (see Fig. 6).

We shall finish this section with the following observation. A triad of a generalized quad-
rangle is an unordered triple of pairwise non-collinear points, with the common elements of
the perp-sets of all the three points called its centers [18]. W (2) possesses two different kinds
of triads: 1) those featuring three centers (e. g., the triple {b, 5, 11}), as well as 2) those which
are unicentric (e. g., the triple {1, 6, 12}).

3.4.2 P[2, 2] and the projective line over the full two-by-two matrix ring over Z2

W (2) is found as a subgeometry of many interesting projective configurations and spaces
[18, 20]. We will now briefly examine a couple of such embeddings of W (2) in order to reveal
further intricacies of its structure and, so, to get further insights into the structure of the
two-qubit Pauli graph.

We shall first consider an embedding of W (2) in the projective line defined over the ring
Z2×2

2 of full 2× 2 matrices with Z2-valued coefficients,

Z2×2
2 ≡

{(
α β
γ δ

)
| α, β, γ, δ ∈ Z2

}
, (1)

because it was this projective ring geometrical setting where the relevance of the structure
W (2) for two-qubits was discovered [6]. To facilitate our reasonings, we label the matrices of
Z2×2

2 in the following way

1′ ≡
(

1 0
0 1

)
, 2′ ≡

(
0 1
1 0

)
, 3′ ≡

(
1 1
1 1

)
, 4′ ≡

(
0 0
1 1

)
,

5′ ≡
(

1 0
1 0

)
, 6′ ≡

(
0 1
0 1

)
, 7′ ≡

(
1 1
0 0

)
, 8′ ≡

(
0 1
0 0

)
,

9′ ≡
(

1 1
0 1

)
, 10′ ≡

(
0 0
1 0

)
, 11′ ≡

(
1 0
1 1

)
, 12′ ≡

(
0 1
1 1

)
,

13′ ≡
(

1 1
1 0

)
, 14′ ≡

(
0 0
0 1

)
, 15′ ≡

(
1 0
0 0

)
, 0′ ≡

(
0 0
0 0

)
, (2)

and see that {1′, 2′, 9′, 11′, 12′, 13′} are units (i. e., invertible matrices) and
{0′, 3′, 4′, 5′, 6′, 7′, 8′, 10′, 14′, 15′} are zero-divisors (i. e., matrices with vanishing determinants),
with 0’ and 1’ being, respectively, the additive and multiplicative identities of the ring. Em-
ploying the definition of a projective ring line given in Sec. 2.2, it is a routine, though a bit
cumbersome, taskc to find out that the line over Z2×2

2 is endowed with 35 points whose
coordinates, up to left-proportionality by a unit, read as follows

(1′, 1′), (1′, 2′), (1′, 9′), (1′, 11′), (1′, 12′), (1′, 13′),

(1′, 0′), (1′, 3′), (1′, 4′), (1′, 5′), (1′, 6′), (1′, 7′), (1′, 8′), (1′, 10′), (1′, 14′), (1′, 15′),

(0′, 1′), (3′, 1′), (4′, 1′), (5′, 1′), (6′, 1′), (7′, 1′), (8′, 1′), (10′, 1′), (14′, 1′), (15′, 1′),

(3′, 4′), (3′, 10′), (3′, 14′), (5′, 4′), (5′, 10′), (5′, 14′), (6′, 4′), (6′, 10′), (6′, 14′). (3)
cSee, for example, [13, 14] for more details about this methodology and a number of illustrative examples of
a projective ring line.
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(MS)

(1’,12’)

(1’,13’)

(1’,2’)

(1’,9’)

(3’,10’)

(3’,14’)

(3’,4’)

(5’,10’)

(5’,14’)

(5’,4’)

(6’,10’)

(6’,4’)

(6’,14’)

(BP)

(1’,11’)

(1’,1’)

Fig. 7. A BP + MS factorization of P[2, 2]) in terms of the points of the subconfiguration of the
projective line over the full matrix ring Z2×2

2 ; the points of the BP have both coordinates units,
whilst those of the MS feature in both entries zero-divisors. The “polarization” of the Mermin
square is in this particular ring geometrical setting expressed by the fact that each column/row is
characterized by the fixed value of the the first/second coordinate. Compare with Fig. 2.

Next, we pick up two mutually distant points of the line. Given the fact that GL(2, R) acts
transitively on triples of pairwise distant points [16], the two points can, without any loss
of generality, be taken to be the points U0 := (1, 0) and V0 := (0, 1). The points of W (2)
are then those points of the line which are either simultaneously distant or simultaneously
neighbor to U0 and V0. The shared distant points are, in this particular representation, (all
the) six points whose both entries are units,

(1′, 1′), (1′, 2′), (1′, 9′),

(1′, 11′), (1′, 12′), (1′, 13′), (4)

whereas the common neighbors comprise (all the) nine points with both coordinates being
zero-divisors,

(3′, 4′), (3′, 10′), (3′, 14′),

(5′, 4′), (5′, 10′), (5′, 14′),

(6′, 4′), (6′, 10′), (6′, 14′), (5)

the two sets thus readily providing a ring geometrical explanation for a BP +MS factorization
of the algebra of the two-qubit Pauli operators, Fig. 7, after the concept of mutually neighbor
is made synonymous with that of mutually commuting [6]. To see all the three factorizations
within this setting it suffices to notice that the ring Z2×2

2 contains as subrings all the three
distinct kinds of rings of order four and characteristic two, viz. the (Galois) field F4, the local
ring Z2[x]/〈x2〉, and the direct product ring Z2 × Z2 [21], and check that the corresponding
lines can be identified with the three kinds of geometric hyperplanes of W (2) as shown in
Table 5 [6].

The other embedding of W (2) to be briefly dealt with is the one into the projective space,
PG(3, 2), as illustrated in Fig. 8. This embedding is, in fact, a very close ally of the previous
one due to a remarkable bijective correspondence between the points of the line over Z2×2

2

and the lines of PG(3, 2) [22]. W (2) and PG(3, 2) are identical as the point sets, whilst the
fifteen lines of W (2) are so-called totally isotropic lines with respect to a symplectic polarity
of PG(3, 2) (Sec. 4.2).
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Fig. 8. An illustration of an embedding of the generalized quadrangle W (2) (and thus of the
associated Pauli graph P[2, 2]) into the projective space PG(3, 2). The points of PG(3, 2) are
the four vertices of the tetrahedron, its center, the four centers of its faces and the six centers of
its edges; the lines are the six edges of the tetrahedron, the twelve medians of its faces, the four
circles inscribed in the faces, the three segements linking opposite edges of the tetrahedron, the
four medians of the terahedron and, finally, six circles located inside the tetrahedron [20]. The
fifteen points of PG(3, 2) correspond to the fifteen Pauli operators/vertices of P[2, 2]. All the
thirty-five lines of the space carry each a triple of operators ok, ol, om, k 6= l 6= m, obeying the
rule ok.ol = µom; the operators located on the fifteen totally isotropic lines belonging to W (2)
yield µ = ±1, whereas those carried by the remaining twenty lines (not all of them shown) give
µ = ±i.

4 The Pauli graph of N-qubits

Following the same strategy as in the preceding section, we find out that the 43 − 1 = 63
tensor products σi ⊗ σj ⊗ σk, [i, j, k = 1, 2, 3, 4, (i, j, k) 6= (1, 1, 1)] form the vertices and
their commuting pairs the edges of a regular graph of degree 30, P[2, 3], with spectrum
{−527, 335, 30}. The corresponding incidence matrix can also be cast into a compact tripartite
form, Table 6, after the reference points a3 = σx⊗I2⊗I2, b3 = σy⊗I2⊗I2 and c3 = σz⊗I2⊗I2

have been omitted. This matrix looks very much the same as its two-qubit counterpart (Table
3), save for the fact that now all the submatrices are of rank 15 × 15. As in the two-qubit
case, the matrix A3 can simply be viewed as the join of O3 and the unit matrix I8. The same
self-similarity pattern interrelating the incidence matrices of (N + 1)- and N -qubit systems
is found for any N .

As for the two-qubit incidence matrix, one of the most natural factorizations of the
three-qubit matrix consists of the first block O3 and a larger square block M3, of car-

P[2, 2] set of five mutually non- set of six operators nine operators of a
commuting operators commuting with a given one Mermin’s square

W (2) ovoid perp-set\{reference point} grid
PL over F4

∼= Z2[x]/〈x2+x+1 〉 Z2[x]/〈x2〉 Z2 ×Z2
∼= Z2[x]/〈x(x+1)〉

Table 5. Three kinds of the distinguished subsets of the generalized Pauli operators of two-qubits
(P[2, 2])) viewed either as the geometric hyperplanes in the generalized quadrangle of order two
(W (2)) or as the projective lines over the rings of order four and characteristic two residing in the
projective line over Z2×2

2 (PL).
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dinality 45, containing O3 and Â3. The latter block is self-complementary, as is its two-
qubit counterpart, a Mermin square; it represents a regular graph of degree 22 and spectrum
{−510,−39,−22, 15, 318, 22}. The structure of this block is very intricate: it can be recovered
again by removing from the reduced incidence matrix shown in Table 6 the first triple of
points and all the reference points (of the type a, b and c, see Table 2) of the parent scale,
i. e., an extra set of 3 + 3× 4 = 15 “pseudo-reference” points of the “daughter” scale.

O3 A3 A3 A3

A3 O3 Â3 Â3

A3 Â3 O3 Â3

A3 Â3 Â3 O3

Table 6. The incidence matrix of P[2, 3] after removal of the triple of reference points (compare
with Table 3).

After a closer look at M3, one reveals in it three subsets isomorphic to the Mermin square
of two-qubits (Fig. 2 and/or Fig. 7), from which we can form doubles (18 points) and triples
(27 points) having spectra {−34,−18, 0, 34, 8} and {−312, 06, 38, 12}, respectively; the graph
of the latter bears number 105 in the list of graphs with few eigenvalues given in [23]. One
can also form m-tuples of the “generalized” Mermin square of size m = 1, 2, 3, 4 using the
“entangled” subset E located in the first block O3 and the extra MS copies from M3, to get
another interesting blocks E ∪MS, E ∪ (2×MS) and E ∪ (3×MS) and the associated graphs
with spectra {−34,−19, 34, 9}, {−312, 05, 38, 3(2±√6)} and {−54,−312, 02, 14, 312, 8±√91},
respectively.

4.1 Rank N symplectic polar spaces behind the N-qubit Pauli graphs

The geometry underlying higher order qubits [7] can readily be hinted from the observa-
tion that our doily W (2), embodying the two-qubit operators’ algebra, is the lowest rank
representative of a big family of symplectic polar spaces of order two.

A symplectic polar space (see, e. g., [19, 24, 25] for more details) is a d-dimensional vector
space over a finite field Fq, V (d, q), carrying a non-degenerate bilinear alternating form. Such
a polar space, usually denoted as Wd−1(q), exists only if d = 2N , with N being its rank. A
subspace of V (d, q) is called totally isotropic if the form vanishes identically on it. W2N−1(q)
can then be regarded as the space of totally isotropic subspaces of PG(2N−1, q) with respect
to a symplectic form, with its maximal totally isotropic subspaces, called also generators G,
having dimension N − 1. For q = 2, this polar space contains

|W2N−1(2)| = |PG(2N − 1, 2)| = 22N − 1 = 4N − 1 (6)

points and (2+1)(22+1) . . . (2N +1) generators. A spread S of W2N−1(q) is a set of generators
partitioning its points. The cardinalities of a spread and a generator of W2N−1(2) read

|S| = 2N + 1 (7)

and
|G| = 2N − 1, (8)
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respectively. Finally, it needs to be mentioned that two distinct points of W2N−1(q) are called
perpendicular if they are joined by a line; for q = 2, there exist

#∆ = 22N−1 (9)

points that are not perpendicular to a given point.
Now, in light of Eq. (6), we can identify the Pauli operators of N -qubits with the points of

W2N−1(2). If, further, we identify the operational concept “commuting” with the geometrical
one “perpendicular,” from Eqs. (7) and (8) we readily see that the points lying on generators
of W2N−1(2) correspond to maximally commuting subsets (MCSs) of operators and a spread
of W2N−1(2) is nothing but a partition of the whole set of operators into MCSs. Finally,
Eq. (9) tells us that there are 22N−1 operators that do not commute with a given operator.d

Recognizing W2N−1(2) as the geometry behind N -qubits, we will now turn our attention
on the properties of the associated Pauli graphs, P[2, N ].

4.2 Strong regularity of the N-qubit Pauli graph

As already introduced in Sec. 2.1, a strongly regular graph, srg(v, D, λ, µ), is a regular graph
having v vertices and degree D such that any two adjacent vertices are both adjacent to
a constant number λ of vertices, and any two distinct non-adjacent vertices are also both
adjacent to a constant number µ of vertices. It is known that the adjacency matrix A of any
such graph satisfies the following equations [28, 29]

AJ = DJ, A2 + (µ− λ)A + (µ−D)I = µJ, (10)

where J is the all-one matrix. Hence, A has D as an eigenvalue with multiplicity one and its
other eigenvalues are r (> 0) and l (< 0), related to each other as follows: r + l = λ− µ and
rl = µ −D. Strongly regular graphs exhibit many interesting properties [28]. In particular,
the two eigenvalues r and l are, except for (so-called) conference graphs, both integers, with
the following multiplicities

f =
−D(l + 1)(D − l)
(D + rl)(r − l)

and g =
D(r + 1)(D − r)
(D + rl)(r − l)

, (11)

respectively. The N -qubit Pauli graph is strongly regular, and its properties can be inferred
from the relation between symplectic polar spaces and partial geometries.

A partial geometry is a more general object than a finite generalized quadrangle. It is
finite near-linear space {P,L} such that for any point P not on a line L, (i) the number of
points of L joined to P by a line equals α, (ii) each line has (s + 1) points, (iii) each point
is on (t + 1) lines; this partial geometry is usually denoted as pg(s, t, α) [11]. The graph of
pg(s, t, α) is endowed with v = (s + 1) (st+α)

α vertices, L = (t + 1) (st+α)
α lines and is strongly

regular of the type

srg
(

(s + 1)
(st + α)

α
, s(t + 1), s− 1 + t(α− 1), α(t + 1)

)
. (12)

dShortly after Ref. [7] was posted on the arXiv-e, physicist D. Gross (Imperial College, London) sent us an
outline of the proof of this property and a couple of weeks later, Koen Thas (Ghent University), a young
mathematician, also informed us about finding a proof of the same statement [26]. The latter proof was
validated by H. Havlicek [27].
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The other way round, if a strongly regular graph exhibits the spectrum of a partial geometry,
such a graph is called a pseudo-geometric graph. Graphs associated with symplectic polar
spaces W2N−1(q) are pseudo-geometric [28], being

pg
(

q
qN−1 − 1

q − 1
, qN−1,

qN−1 − 1
q − 1

)
-graphs. (13)

Combining these facts with the findings of the preceding section, we conclude that that N -
qubit Pauli graph is of the type given by Eq. (13) for q = 2; its basics invariants for a few
small values of N are listed in Table 7.

N v L D r l λ µ s t α

2 15 15 6 1 −3 1 3 2 2 1
3 63 45 30 3 −5 13 15 6 4 3
4 255 153 126 7 −9 61 63 14 8 7

Table 7. Invariants of the Pauli graph P[2, N ], N = 2, 3 and 4, as inferred from the properties of
the symplectic polar spaces of order two and rank N . In general, v = 4N − 1, D = v− 1− 22N−1,

s = 2 2N−1−1
2−1

, t = 2N−1, α = 2N−1−1
2−1

, µ = α(t+1) = rl+D and λ = s−1+ t(α−1)) = µ+r+ l.
The integers v and e can also be found from s, t and α themselves.

5 The Pauli graph of two-qutrits

A complete orthonormal set of operators of a single-qutrit Hilbert space is [5]

σI = {I3, Z, X, Y, V, Z2, X2, Y 2, V 2}, I = 0, 1, 2, . . . , 8, (14)

where I3 is the 3 × 3 unit matrix, Z =




1 0 0
0 ω 0
0 0 ω2


, X =




0 0 1
1 0 0
0 1 0


, Y = XZ,

V = XZ2 and ω = exp (2iπ/3). Labelling the two-qutrit Pauli operators as follows 1 = I3⊗σ1,
2 = I3 ⊗ σ2, · · ·, 8 = I3 ⊗ σ8, a = σ1 ⊗ I3, 9 = σ1 ⊗ σ1,. . . , b = σ2 ⊗ I3, 17 = σ2 ⊗ σ1,. . . ,
c = σ3⊗I3,. . ., h = σ8⊗I2,. . ., 72 = σ8⊗σ8, one obtains the incidence matrix of the two-qutrit
Pauli graph P9.

Computing the spectrum {−715,−140, 524, 25} one observes that the graph is regular, of
degree 25, but not strongly regular. The structure of observables in P9 is much more involved
than in the case of two-qubits although it is still possible to recognize identifiable regular
subgraphs. In order to get necessary hints for the geometry behind this system, it necessitates
to pass to its dual graph, W9, i. e., the graph whose vertices are maximally commuting subsets
(MCSs) of P9. To this end, let us first give a complete list of the latter:

L1 = {1, 5, a, 9, 13, e, 41, 45}, L2 = {2, 6, a, 10, 14, e, 42, 46}, L3 = {3, 7, a, 11, 15, e, 43, 47},
L4 = {4, 8, a, 12, 16, e, 44, 48}, M1 = {1, 5, b, 17, 21, f, 49, 53}, M2 = {2, 6, b, 18, 22, f, 50, 54},
M3 = {3, 7, b, 19, 23, f, 51, 55}, M4 = {4, 8, b, 20, 24, f, 52, 56}, N1 = {1, 5, c, 25, 29, g, 57, 61},
N2 = {2, 6, c, 26, 30, g, 58, 62}, N3 = {3, 7, c, 27, 31, g, 59, 63}, N4 = {4, 8, c, 28, 32, g, 60, 64},
P1 = {1, 5, d, 33, 37, h, 65, 69}, P2 = {2, 6, d, 34, 38, h, 66, 70}, P3 = {3, 7, d, 35, 39, h, 67, 71},

P4 = {4, 8, d, 36, 40, h, 68, 72},
X1 = {9, 22, 32, 39, 45, 50, 60, 67}, X2 = {10, 17, 27, 40, 46, 53, 63, 68}, X3 = {11, 20, 30, 33, 47, 56, 58, 69},
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Fig. 9. A partitioning of W9 into a grid (top left), an 8-coclique (top right) and a four-dimensional
hypercube (bottom).

Fig. 10. A partitioning of W9 into a tripartite graph comprising a 10-coclique, two 9-cocliques
and a set of four triangles; the lines corresponding to the vertices of a selected triangle intersect
at the same observables of P9 and the union of the latter form a line of P9.

X4 = {12, 23, 25, 34, 48, 51, 61, 70}, X5 = {13, 18, 28, 35, 41, 54, 64, 71}, X6 = {14, 21, 31, 36, 42, 49, 59, 72},
X7 = {15, 24, 26, 37, 43, 52, 62, 65}, X8 = {16, 19, 29, 38, 44, 55, 57, 66},

Y1 = {9, 23, 30, 40, 45, 51, 58, 68}, Y2 = {10, 19, 32, 33, 46, 55, 60, 69}, Y3 = {11, 22, 25, 36, 47, 50, 61, 72},
Y4 = {12, 17, 26, 39, 48, 53, 62, 67}, Y5 = {13, 20, 27, 34, 41, 56, 63, 70}, Y6 = {14, 23, 28, 37, 42, 51, 64, 65},

Y7 = {15, 18, 29, 40, 43, 54, 57, 68}, Y8 = {16, 21, 30, 35, 44, 49, 58, 71},
Z1 = {9, 24, 31, 38, 45, 52, 59, 66}, Z2 = {10, 24, 25, 35, 46, 52, 61, 71}, Z3 = {11, 17, 28, 38, 47, 53, 64, 66},
Z4 = {12, 18, 31, 33, 48, 54, 59, 69}, Z5 = {13, 19, 26, 36, 41, 55, 62, 72}, Z6 = {14, 20, 29, 39, 42, 56, 57, 67},

Z7 = {15, 21, 32, 34, 43, 49, 60, 70}, Z8 = {16, 22, 27, 37, 44, 50, 63, 65}.
From there we find that W9 consists of 40 vertices and has spectrum {−415, 224, 12}, which
are the characteristics identical with those of the generalized quadrangle of order three formed
by the totally singular points and lines of a parabolic quadric Q(4, 3) in PG(4, 3)[18]. The
quadrangle Q(4, 3), like its two-qubit counterpart, exhibits all the three kinds of geomet-
ric hyperplanes, viz. a slim generalized quadrangle of order (3,1) (a grid), an ovoid, and a
perp-set, and these three kinds of subsets can all indeed be found to sit inside W9. One
of the grids is formed by the sixteen lines Li, Mi, Ni and Pi (i = 1, 2, 3 and 4) as illus-
trated in Fig. 9; the remaining 24 vertices comprise an 8-coclique (Xi, which correspond to
mutually unbiased bases), and a four-dimensional hypercube (Yi and Zi). Next, one can par-
tition W9 into a maximum independent set and the minimum vertex cover using a standard
graph software. The cardinality of any maximum independent set is 10 (= 32 + 1), which
means that any such set is an ovoid of Q(4, 3)[18]. It is easy to verify that, for example, the
set {L1,M2, N3, P4, X3, X8, Y4, Y6, Z2, Z7} is an ovoid; given any maximum independent set,
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Fig. 11. A partitioning of W9 into a perp-set and a “single-vertex-sharing” union of its three
ovoids.

Q(4, 3)/W9 can be partitioned as shown in Fig. 10. The remaining type of a hyperplane of
W9 is a perp-set, i.e. the set of 12 vertices adjacent to a given (“reference”) vertex (Fig. 11);
the set of the remaining 27 vertices can be shown to consist of three ovoids which share (al-
together and pairwise) just a single vertex — the reference vertex itself. This configuration
bears number 99 in a list of graphs with few eigenvalues given in Ref. [23] and can schemati-
cally be illustrated in form of a “triangle”, with a triangular pattern at its nodes and a 1× 2
grid put on its edges; the union of 1×2 grid and a triangle either forms a Mermin-square-type
graph M , as already encountered in the two-qubit case, or a quartic graph of another type,
denoted as K (see Fig. 11).

The foregoing observations and facts provide a reliable basis for us to surmise that the
geometry behind W9 is identical with that of Q(4, 3). If this is so, then the symplectic
generalized quadrangle of order three, W (3), which is the dual of Q(4, 3)[18], must underlie
the geometry of the Pauli graph P9. However, the vertex-cardinality of W (3) is 40 (the same
as that of Q(4, 3)), whilst P9 features as many as 80 points/vertices. Hence, if the geometries
of W (3) and P9 are isomorphic, then there must exits a natural pairing between the Pauli
operators such that there exists a bijection between pairs of operators of P9 and points of
W (3). This issue requires, obviously, a much more elaborate analysis, to be the subject of a
separate paper [37].

6 Conclusion

The paper introduces an important concept of the Pauli graph for the generalized Pauli
operators of finite-dimensional quantum systems and illustrates and discussed this concept
in an exhaustive detail for N -qubit systems, N ≥ 2. In doing so, the geometries underlying
these systems, viz. the symplectic polar spaces of rank N and order two, are invoked to reveal
all the intricacies of the algebra of the operators and its basic factorizations. Although there
exits a variety of other interesting geometry-oriented approaches to model finite dimensional
quantum systems (see, for example, [29]–[36]), ours seems to be novel in that it goes beyond
classical projective geometry and Galois fields and is, in principle, applicable to any quantum
system of finite dimension [37].

Pauli graphs and their associate finite geometries lend themselves to a number of im-
portant potential applications in quantum information theory. First of all, maximal cliques
correspond to the maximal sets of mutually commuting observables. The latter define com-
plementary measurements, a cornerstone of quantum cryptography and quantum tomography
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[1]. Complete sets of such complementary measurements seem to only exist in prime power
dimensions, although a rigorous proof of this conjecture has not been furnished yet; here,
the Pauli graphs’ related geometries open up a new avenue to prove/disprove this conjecture
[6, 7, 37, 38]. Moreover, mutually disjoint maximal cliques unambiguously determine d + 1
such complete sets (when they exist), which in turn may be used for a complete determi-
nation of an unknown quantum state from its d + 1 copies. Passing to the duals of Pauli
graphs leads to recovering of all the three distinct kinds of geometric hyperplanes, of which
one (ovoids) has already been shown to be intimately connected with the existence of (the
maximum set of) mutually unbiased bases [7]; the remaining two types of hyperplanes (i. e.,
perp-sets and grids) are surmised to clarify the properties of quantum entanglement [38] and
provide a geometrical footing for quantum computing.

Acknowledgements

This work was partially supported by the Science and Technology Assistance Agency under the
contract # APVT–51–012704, the VEGA projects # 2/6070/26 and # 7012 (all from Slovak
Republic), the trans-national ECO-NET project # 12651NJ “Geometries Over Finite Rings
and the Properties of Mutually Unbiased Bases” (France)) and by the CNRS-SAV Project
# 20246 “Projective and Related Geometries for Quantum Information” (France/Slovakia).
The second author also thanks Prof. Hans Havlicek (Vienna University of Technology) for a
number of enlightening discussions concerning the structure of projective ring lines and their
representations.

References

1. M. Planat, H. C. Rosu and S. Perrine (2006), A survey of finite algebraic geometrical structures
underlying mutually unbiased measurements, Found. Phys., Vol. 36, pp. 1662–1680.

2. N. David Mermin (1990), Simple unified form for the major no-hidden variable theorems, Phys.
Rev. Lett., Vol. 65, pp. 3373–3376.

3. M. Planat, M. Saniga and M. Kibler (2006), Quantum entanglement and projective ring geomery,
SIGMA, Vol. 2, Paper 066.
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