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INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE

TECHNISCHE UNIVERSITÄT WIEN
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Part 1

Introduction

F. A. Möbius gave an affirmative answer to the following
question in 1828:

Do there exist two tetrahedra each of which has all its ver-
tices lying in planes of the other?

F. A. Möbius. Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die
andere um- und eingeschrieben zugleich heissen? J. reine angew. Math., 3:273–
278, 1828.



Example
Here is an example in the three-dimensional Euclidean space.

The two (regular) tetrahedra are mutually inscribed and circumscribed.

We call them a Möbius pair of tetrahedra or shortly a Möbius pair .



The Three-Dimensional Case

The result of Möbius involves only incidence properties, so it is a theorem of three-

dimensional projective geometry over the real numbers.

There is a wealth of older and newer papers on Möbius pairs (H. S. M. Coxeter,

A. P. Guinand, K. Witczyński, . . . ).

It turns out that Möbius pairs exist in the three-dimensional projective space over any

field F . (All our fields are understood to be commutative.)



Möbius Pairs

In what follows we consider the n-dimensional projective space PG(n, F ) over any

field F , where n ≥ 1.

Two n-simplices of PG(n, F ) are mutually inscribed and circumscribed if each point

of the first simplex is in a hyperplane of the second simplex, and vice versa for the

points of the second simplex.

Two such n-simplices will be called a Möbius pair of simplices in PG(n, F ) or shortly

a Möbius pair.



Existence

A systematic account of the n-dimensional case seems to be missing. We could find

just a few results:

• In PG(n, F ), with n odd, choose any null polarity and any n-simplex, say P. Then

the poles of the hyperplanes of P comprise a simplex Q, say. The simplices P

and Q form a Möbius pair (folklore, mentioned in a book by H. Brauner).

• The Klein image of a double six of lines in PG(3, F ) gives a Möbius pair in

PG(5, F ) (folklore, mentioned in a book by J. W. P. Hirschfeld).

• Other examples are due to L. Berzolari and H. S. M. Coxeter.



Non-Degeneracy

A Möbius pair is said to be non-degenerate if each point of either simplex is incident
with one and only one hyperplane of the other simplex.

Question:

Do non-degenerate Möbius pairs exist in PG(n, F ) for all n ≥ 1 and all fields F?



A Negative Answer

Any triangle P0, P1, P2 in the projective plane PG(2, F ) can be extended to a Möbius
pair.

However, all solutions are degenerate.

P0 = Q0 P1

P2

Q2

Q1

P0 = Q2 P1

P2

Q0

Q1

P0 = Q2 P1 = Q0

P2

Q1

P0 = Q2 P1 = Q0

P2 = Q1



Part 2

Non-degenerate Möbius Pairs

In the second part the existence of non-degenerate Möbius

pairs will be established for projective spaces PG(n, F ) of

odd dimension n ≥ 1.

The problem of finding all non-degenerate Möbius pairs is not within the scope of

this lecture.



Basic Assumptions

We define an alternating (n + 1) × (n + 1) matrix

A :=













0 −1 . . . −1

1 0 . . . −1
... ... . . . ...

1 1 . . . 0













. (1)

It is easily verified that A is an invertible matrix. Thus A defines a null polarity π of

PG(n, F ).



Basic Assumptions (cont.)

Let

P := {P0, P1, . . . , Pn}

be the n-simplex which is determined by the vectors e0, e1, . . . , en of the standard

basis of Fn+1, i. e.,

Pj = Fej for all j ∈ {0, 1, . . . , n}. (2)

The elements of Fn+1 are understood as column vectors.



Towards an Affirmative Answer

Lemma 1. Let S be a subspace of PG(n, F ) which is generated by k + 1 ≥ 1 distinct

points of the simplex P, say Pj0, Pj1, . . . , Pjk
with 0 ≤ j0 < j1 < · · · < jk ≤ n. Then

the following assertions hold:

• k odd: S ∩ π(S) = ∅.

• k even: S ∩ π(S) is a single point, namely

Pj0,j1,...,jk
:= F

(

k
∑

i=0

(−1)i+1eji

)

.

Hence Pj0,j1,...,jk
is in general position to the chosen points of P.

The proof is an elementary calculation.



2n Distinguished Points

The null polarity π and the simplex P give rise to the following points:

• P0, P1 . . . , Pn (the points of P).

• P012, P013, . . . , Pn−2,n−1,n (one point in each plane of P)

. . .

• P0,1,...,n−1, . . . , P1,2,...,n (one point in each hyperplane of P).

All together these are

(

n + 1

1

)

+

(

n + 1

3

)

+ · · · +
(

n + 1

n

)

=
n

∑

i=0

(

n

i

)

= 2n (3)

mutually distinct points.



Main Result

Given Pj0,j1,...,jk
let 0 ≤ m0 < m1 < · · · < mn−k ≤ n be those indices which do not

appear in (j0, j1, . . . , jk). Then we define

Pj0,j1,...,jk
=: Qm0,m1,...,mn−k

. (4)

Theorem 1. In PG(n, F ), n odd, let the null polarity π and the n-simplex

P = {P0, P1, . . . , Pn}

be given according to (??) and (??), respectively. Then P and

Q := {Q0, Q1, . . . , Qn},

where the points Qm are defined by (??), is a non-degenerate Möbius pair of n-
simplices.



Further Results

Under the assumptions of Theorem ?? the following assertions hold:

• For n = 1 holds P0 = Q1 and P1 = Q0, otherwise n-simplices P and Q have no

points in common.

• For n ≥ 3 the n-simplices P and Q are in perspective from a point if, and only if,

F is a field of characteristic two.

• Any choice of an even number of points from P gives rise to a nested Möbius pair.

It shares, mutatis mutandis the properties of P and Q. This gives an interpretation

for all the 2n points from (??).



Part 3

Pauli Operators

In the third part it will be sketched—in terms of one exam-

ple only—how to apply our geometric results to get rather

peculiar systems of commuting / non-commuting Pauli op-

erators.



The Pauli Group

We consider the complex matrices

σ0 :=





1 0

0 1



 , σx :=





0 1

1 0



 , σy :=





0 −i

i 0



 , σz :=





1 0

0 −1



 . (5)

The sixteen matrices

iασβ with i :=
√
−1, α ∈ {0, 1, 2, 3}, and β ∈ {0, x, y, z}

constitute the Pauli group P . It acts on the two-dimensional Hilbert space of a single

quantum bit (qubit).



Symplectic Geometry

Let G = P ⊗C P be the the Kronecker product of the Pauli group with itself. This

group acts on the four-dimensional Hilbert space of two qubits.

• #G = 64.

• Centre of G: Z(G) = {iασ0 ⊗ σ0 | α = 0, 1, 2, 3}, #Z(G) = 4.

• G/Z(G) can be viewed as a 4-dimensional vector space V over GF(2) which is

equipped with a symplectic bilinear form.

• Commutation in G is equivalent to (symplectic) perpendicularity in V .



The Projective Point of View
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Here the Cremona-Richmond configuration is used to depict the three-dimensional
symplectic polar space over GF(2) (points and null lines only), a Möbius pair, all
centres of perspectivity, and the corresponding cosets of operators from P (using
shorthand notation).
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