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Abstract

This note is a short conceptual elaboration of the conjecture of Saniga et al. [J. Opt. B: Quantum Semiclass 6 (2004)

L19–L20] by regarding a set of mutually unbiased bases (MUBs) in a d-dimensional Hilbert space as an analogue of an

arc in a (finite) projective plane of order d. Complete sets of MUBs thus correspond to (d + 1)-arcs, i.e., ovals. In the

Desarguesian case, the existence of two principally distinct kinds of ovals for d = 2n and n P 3, viz. conics and non-con-

ics, implies the existence of two qualitatively different groups of the complete sets of MUBs for the Hilbert spaces of

corresponding dimensions. A principally new class of complete sets of MUBs are those having their analogues in ovals

in non-Desarguesian projective planes; the lowest dimension when this happens is d = 9.

� 2005 Elsevier Ltd. All rights reserved.
It has for a long time been suspected but only recently fully recognized [1–4] that finite (projective and related) geom-

etries may provide us with important clues for solving the problem of the maximum cardinality of MUBs for Hilbert

spaces of finite dimensions d. It is well-known [5,6] that this number cannot be greater than d + 1 and that this limit is

reached if d is a power of a prime. Yet, a still unanswered question is if there are non-prime-power values of d for which

this bound is attained. On the other hand, the minimum number of MUBs was found to be three for all dimensions

d P 2 [7]. Motivated by these facts, Saniga et al. [1] have conjectured that the question of the existence of the maximum,

or complete, sets of MUBs in a d-dimensional Hilbert space if d differs from a prime power is intricately connected with

the problem of whether there exist projective planes whose order d is not a power of a prime. This note aims at getting a

deeper insight into this conjecture by introducing particular objects in a finite projective plane, the so-called ovals,

which can be viewed as geometrical analogues of complete sets of MUBs.

We shall start with a more general geometrical object of a projective plane, viz. a k-arc—a set of k points, no three of

which are collinear [see, e.g. 8,9]. From the definition it immediately follows that k = 3 is the minimum cardinality of

such an object. If one requires, in addition, that there is at least one tangent (a line meeting it in a single point only) at

each of its points, then the maximum cardinality of a k-arc is found to be d + 1, where d is the order of the projective

plane [8,9]; these (d + 1)-arcs are called ovals. It is striking to observe that such k-arcs in a projective plane of order d
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and MUBs of a d-dimensional Hilbert space have the same cardinality bounds. Can, then, individual MUBs (of a d-

dimensional Hilbert space) be simply viewed as points of some abstract projective plane (of order d) so that their basic

combinatorial properties are qualitatively encoded in the geometry of k-arcs? A closer inspection of the algebraic geo-

metrical properties of ovals suggests that this may indeed be the case.

To this end in view, we shall first show that every proper (non-composite) conic in PG(2,d), a (Desarguesian) pro-

jective plane over the Galois field GF(d), is an oval. A conic is the curve of second order
Q:
X
i6j

cijzizj ¼ 0; i; j ¼ 1; 2; 3; ð1Þ
where cij are regarded as fixed quantities and zi as variables, the so-called homogeneous coordinates of the projective

plane. The conic is degenerate (composite) if there exists a change of the coordinate system reducing Eq. (1) into a form

of fewer variables; otherwise, the conic is proper (non-degenerate). It is well-known [see, e.g. 8] that the equation of any

proper conic in PG(2,d) can be brought into the canonical form
eQ: z1z2 � z23 ¼ 0. ð2Þ
From the last equation it follows that the points of eQ can be parametrized as .zi = (r2,1,r), . 5 0, and this implies that

a proper conic in PG(2,d) contains d + 1 points; the point (1,0,0) and d other points specified by the sequences (r2,1,r) as
the parameter r runs through the d elements of GF(d = pn), p being a prime and n a positive integer. Moreover, it can

easily be verified that any triple of distinct points of eQ are linearly independent (i.e. not on the same line), as [10]
det

1 0 0

r2
1 1 r1

r2
2 1 r2

0
B@

1
CA ¼ r2 � r1 6¼ 0 ð3Þ
and 0 1

det

r2
1 1 r1

r2
2 1 r2

r2
3 1 r3

B@ CA ¼ ðr1 � r2Þðr2 � r3Þðr3 � r1Þ 6¼ 0. ð4Þ
Hence, a proper conic of PG(2,d) is indeed an oval. The converse statement is, however, true for d odd only; for d even

and greater than four there also exist ovals which are not conics [8–11]. In order to see this explicitly, it suffices to recall

that all the tangents to a proper conic Q of PG(2,d = 2n) are concurrent, i.e. pass via one and the same point, called the

nucleus [8–11]. So, the conic Q together with its nucleus form a (d + 2)-arc. Deleting from this (d + 2)-arc a point

belonging to Q leaves us with an oval which shares d = 2n points with Q. Taking into account that a proper conic is

uniquely specified by five of its points, it then follows that such an oval cannot be a conic if nP 3; for, indeed, if it

were then it would have with Q more than five points in common and would thus coincide with it, a contradiction.

Let us rephrase these findings in terms of the above-introduced MUBs—k-arcs analogy. We see that whilst for any

d = pn there exist complete sets (c-sets for short) of MUBs having their counterparts in proper conics, d = 2n with nP 3

also feature c-sets whose analogues are ovals which are not conics. In order words, our analogy implies that MUBs do

not behave the same way in odd and even (power-of-prime) dimensions. And this is, indeed, the property that at the

number theoretical level has been known since the seminal work of Wootters and Fields [5, see also 7], being there inti-

mately linked with the fact that so-called Weil sums
X
k2GF ðpnÞ

exp
2pi
p

Tr ðmk2 þ nkÞ
� ������

�����; ð5Þ
with m,n 2 GF(pn) and the absolute trace operator ‘‘Tr’’ defined as
Tr ðgÞ � gþ gp þ gp
2 þ � � � þ gp

n�1

; g 2 GF ðpnÞ; ð6Þ
are non-zero (and equal to
ffiffiffiffiffi
pn

p
) for all p > 2, playing thus a key role for proving the mutual unbiasedness in these cases,

but vanish for p = 2 [see e.g. 12]. In the light of our analogy, this difference acquires a qualitatively new, and more re-

fined, algebraic-geometrical contents/footing. Remarkably, this refinement concerns especially even (2n) dimensions, as

we shall demonstrate next.

In the example above, we constructed a particular kind of an oval by adjoining to a proper conic its nucleus and then

removing a point of the conic; such an oval, called a pointed-conic, was shown to be inequivalent to a conic for n P 3.

However, for nP 4 there exists still another type of non-conic ovals, termed irregular ones, that cannot be constructed

this way [see e.g. 8,11,13]. This intriguing hierarchy of oval�s types is succinctly summarized in the following table:
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n

1 It is a really intriguing fact to realiz
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Ordinary conic
 Yes
 Yes
 Yes
 Yes
Pointed-conic
 No
 No
 Yes
 Yes
Irregular oval
 No
 No
 No
 Yes
Pursuing our analogy to the extreme, one observes that whereas d = 2 and d = 4 can accommodate only one kind of c-

sets of MUBs, viz. those present also in odd dimensions and having their counterparts in ordinary conics, d = 8 should

already feature two different types and Hilbert spaces of d P 16 should be endowed with as many as three qualitatively

different kinds of such sets. So, if this analogy holds, a new MUBs� physics is to be expected to emerge at the three-qubit

level and become fully manifested for four- and higher-order-qubit states/configurations.

Finally, we shall briefly address the non-Desarguesian case. We start with an observation that the definition of an

oval is expressed in purely combinatorial terms and so it equally well applies to finite non-Desarguesian planes. These

planes, however, do not admit coordinatization in terms of any Galois field [14–16]; hence, the c-sets of MUBs corre-

sponding to ovals in such planes must fundamentally differ from ‘‘Desarguesian’’ sets. The lowest order for which non-

Desarguesian planes were found to exist is d = 9, and there are even three distinct kinds of them; this means that it is

also two-qutrit states whose properties merit a careful inspection.1 The most tantalizing aspect of this analogy is, how-

ever, the case where d is composite (i.e. not a prime power) because such projective planes, if they exist, must necessarily

be non-Desarguesian [14,15]. So, if there exist c-sets of MUBs for d composite, their properties cannot be described in

terms of fields; instead, one has to employ a more abstract concept, that of (planar) ternary rings, as these are proper

systems for charting non-Desarguesian projective planes [15,16]. And this is perhaps the most serious implication of our

approach and a serious challenge for further geometrically-oriented explorations of MUBs, especially given an impor-

tant role that MUBs start playing in current quantum cryptographic schemes/protocols and quantum information the-

ory in general.

As a concluding note, it is worth mentioning that the geometrical concepts and structures employed above also find

their proper place in the theory of Cremonian space-times—a theory which aims at accounting for our perception of

time and space [see, e.g. 19,20]. And as this theory was found to share a number of interesting features with another

remarkable concept, that of Cantorian transfinite fractal space [see, e.g. 21,22], we would not be surprised if the physics

of MUBs could eventually be formulated in a pure set-theoretic framework [23].
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