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with the following properties: (i) Any two distinct elements of the same family
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1. Introduction

The last two decades have witnessed a surge of interest in the ex-
ploration of the properties of certain groups relevant for physics in terms
of finite geometries. The main outcome of this initiative was a discovery
of a large family of groups – Dirac and Pauli groups – where commu-
tativity of two distinct elements admits a geometrical interpretation in
terms of the corresponding points being joined by an isotropic line (sym-
plectic polar spaces, see [11], [18], [16], [14], [17], [15], [19], [20], and [6]
for a comprehensive list of references) or the corresponding unimodular
vectors lying on the same free cyclic submodule (projective lines over
modular rings, e. g., [7], [8]). This effort resulted in our recent paper
[6], where the theory related to polar spaces was given the most general
formal setting.

Finite geometries in general, and polar spaces in particular, are
endowed with a number of remarkable properties which, in light of the
above-mentioned relations, can be directly translated into group theoret-
ical language. In this paper, our focus will be on one of them. Namely, we
shall consider pairs of n-simplices of an n-dimensional projective space
(n odd) which are mutually inscribed and circumscribed to each other.
First, the existence of these so-called Möbius pairs of n-simplices will
be derived over an arbitrary ground field. Then, it will be shown which
group theoretical features these objects entail if restricting to finite fields
of prime order p. Finally, the case of three-qubit Pauli group is worked
out in detail, in view of also depicting some distinguished features of the
case p = 2.

2. Möbius pairs of simplices

We consider the n-dimensional projective space PG(n, F ) over any
field F , where n ≥ 1 is an odd number. Our first aim is to show an
n-dimensional analogue of a classical result by Möbius [13]. Following
his terminology we say that two n-simplices of PG(n, F ) are mutually
inscribed and circumscribed if each point of the first simplex is in a hy-
perplane of the second simplex, and vice versa for the points of the second
simplex. Two such n-simplices will be called a Möbius pair of simplices
in PG(n, F ) or shortly a Möbius pair. There is a wealth of newer and
older results about Möbius pairs in PG(3, F ). See, among others, [5], [4,
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p. 258], [21], [22]. The possibility to find Möbius pairs of simplices in
any odd dimension n ≥ 3 is a straightforward task [2, p. 188]: Given any
n-simplex in PG(n, F ) take the image of its hyperplanes under any null
polarity π as second simplex. By this approach, it remains open, though,
whether or not the simplices have common vertices. For example, if one
hyperplane of the first simplex is mapped under π to one of the vertices
of the first simplex, then the two simplices share a common point. How-
ever, a systematic account of the n-dimensional case seems to be missing.
A few results can be found in [1] and [9]. There is also the possibility to
find Möbius pairs which are not linked by a null polarity. See [1, p. 137]
for an example over the real numbers and [3, p. 290ff.] for an example
over the field with three elements. Other examples arise from the points
of the Klein quadric representing a double six of lines in PG(3, F ). See
[10, p. 31].

We focus our attention to non-degenerate Möbius pairs. These are
pairs of n-simplices such that each point of either simplex is incident
with one and only one hyperplane of the other simplex. This property
implies that each point of either simplex does not belong to any subspace
which is spanned by less than n points of the other simplex, for then it
would belong to at least two distinct hyperplanar faces. We present
a construction of non-degenerate Möbius pairs which works over any
field F . The problem of finding all Möbius pairs in PG(n, F ) is not
within the scope of this article.

In what follows we shall be concerned with matrices over F which
are composed of the matrices

(1) K :=

(
0 −1
1 0

)

, J :=

(
1 1
1 1

)

, L :=

(
1 −1

−1 1

)

,

and the 2 × 2 unit matrix I. We define a null polarity π of PG(n, F ) in
terms of the alternating (n + 1) × (n+ 1) matrix1

(2) A :=








K −J . . . −J
J K . . . −J
...

...
. . .

...
J J . . . K







.

Thus all entries of A above the diagonal are −1, whereas those below
the diagonal are 1. Using the identities −K2 = I, JK − KL = 0, and

1Note that indices range from 0 to n.
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JL = 0 it is easily verified that A is indeed an invertible matrix, because

(3) A−1 =








−K −L . . . −L
L −K . . . −L
...

...
. . .

...
L L . . . −K







.

Let P := {P0, P1, . . . , Pn} be the n-simplex which is determined by
the vectors e0, e1, . . . , en of the standard basis of F n+1, i.e.,

(4) Pj = Fej for all j ∈ {0, 1, . . . , n}.

The elements of F n+1 are understood as column vectors. We first exhibit
the image of P under the null polarity π.

Lemma 1. Let S be a subspace of PG(n, F ) which is generated by
k+1≥2 distinct points of the simplex P. Then the following assertions
hold:

(a) S ∩ π(S) = ∅ if k is odd.

(b) S∩π(S) is a single point, which is in general position to the chosen
points of P, if k is even.

Proof. Suppose that S is the span of the points Pj0, Pj1, . . . , Pjk
, where

0 ≤ j0 < j1 < · · · < jk ≤ n. A point Y is in S if, and only if, it is
represented by a vector y ∈ F n+1 of the form

(5) y =
k∑

i=0

yji
eji

6= 0.

The rows of A with numbers j0, j1, . . . , jk comprise the coefficients of a
system of linear equations in n + 1 unknowns x0, x1, . . . , xn whose solu-
tions are the vectors of π(S). Substituting the vector y into this system
gives the homogeneous linear system (written in matrix form)

(6) Ak · (yj0, yj1, . . . , yjk
)T = (0, 0, . . . , 0)T,

where Ak is the principal submatrix of A which arises from the first
k + 1 rows and columns of A. Note that (6) holds, because the matrix
Ak coincides with the principal submatrix of A which arises from the
rows and columns with indices j0, j1, . . . , jk. The solutions of (6) are the
vectors of S ∩ π(S). There are two cases:
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k odd: Here Ak has full rank k + 1, as follows by replacing n with
k in (2) and (3). Hence the system (6) has only the zero-solution and
S ∩ π(S) = ∅, as asserted.

k even: Here Ak cannot be of full rank, as it is an alternating matrix
with an odd number of rows. By the above, the submatrix Ak−1 has rank
k, so that the rank of Ak equals to k. This implies that the solutions of
the linear system (6) is the span of a single non-zero vector. For example,

(7) (−1, 1,−1, 1,−1, . . . ,−1)T ∈ F k+1

is such a vector. It determines the point

(8) Pj0,j1,...,jk
:= F

(
k∑

i=0

(−1)i+1eji

)

.

Since the coordinates of Pj0,j1,...,jk
with numbers j0, j1, . . . , jk are non-

zero, the points Pj0, Pj1, . . . , Pjk
, Pj0,j1,...,jk

are in general position. ♦

The previous lemma holds trivially for k + 1 = 0 points, since
then S = ∅. It is also valid, mutatis mutandis, in the case k + 1 = 1,
even though here one has to take into account S = Pj0 yields again
the point S ∩ π(S) = Pj0. Hence the null polarity π and the sim-
plex P give rise to the following points: P0, P1 . . . , Pn (the points of P),
P012, P013, . . . , Pn−2,n−1,n (one point in each plane of P), . . . , P0,1,...,n−1, . . .
..., P1,2,...,n (one point in each hyperplane of P). All together these are

(9)

(
n + 1

1

)

+

(
n + 1

3

)

+ · · ·+

(
n + 1

n− 1

)

=
n∑

i=0

(
n

i

)

= 2n

mutually distinct points. We introduce another notation by defining

(10) Pj0,j1,...,jk
=: Qm0,m1,...,mn−k

,

where 0 ≤ m0 < m1 < · · · < mn−k ≤ n are those indices which do not
appear in Pj0,j1,...,jk

. We are now in a position to state our first main
result:

Theorem 1. In PG(n, F ), n ≥ 3, let the null-polarity π and the n-
simplex P = {P0, P1, . . . , Pn} be given according to (2) and (4), respec-
tively. Then the following assertions hold:

(a) P and Q := {Q0, Q1, . . . , Qn}, where the points Qm are defined by
(10), is a non-degenerate Möbius pair of n-simplices.
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(b) The n-simplices P and Q are in perspective from a point if, and
only if, F is a field of characteristic two.

Proof. Ad (a): Choose any index m ∈ {0, 1, . . . , n}. Then Qm is the
image under π of the hyperplane S which is spanned by P0, . . . , Pm−1,
Pm+1, . . . , Pn. The proof of Lemma 1 shows how to find a system of linear
equations for Qm. Furthermore, formula (8) provides a coordinate vector
for Qm. However, such a vector can be found directly by extracting the
m-th column of the matrix A−1, viz.

(11)
m−1∑

i=0

(−1)i+m+1ei +
n∑

k=m+1

(−1)k+mek =: qm.

(The vector from (8) is (−1)mqm.) As the columns of A−1 form a basis
of F n+1, the point set Q is an n-simplex.

The n+ 1 hyperplanes of the simplex Q are the images under π of
the vertices of P. Each of these hyperplanes has a linear equation whose
coefficients comprise one of the rows of the matrix A. So a point Pj is
incident with the hyperplane π(Pi) if, and only if, the (i, j)-entry of A is
zero. Since each row of A has precisely one zero entry, we obtain that
each point of P is incident with one and only one hyperplane of Q.

In order to show that each point of Q is incident with precisely one
hyperplane of the simplex P, we apply a change of coordinates from the
standard basis e0, e1, . . . , en to the basis bi := (−1)iqi, i ∈ {0, 1, . . . , n}.
The points Fbi constitute the n-simplex Q. Let B be the matrix with
columns b0, b1, . . . , bn. With respect to the basis bi the columns of B−1 de-
scribe the points of P, and BTAB = A is a matrix for π. The columns of
B−1 and A−1 are identical up to an irrelevant change of signs in columns
with odd indices. Therefore, with respect the basis bi, the simplex Q
plays the role of P, and vice versa. So the assertion follows from the
result in the preceding paragraph.

Ad (b): For each j ∈ {0, 2, . . . , n− 1} the lines PjQj and Pj+1Qj+1

meet at that point which is given by the vector
(12)
−ej + qj = −(ej+1 + qj+1) = (−1, 1, . . . ,−1, 1,−1,−1

︸ ︷︷ ︸

j, j+1

, 1,−1, . . . , 1,−1)T.

Comparing signs we see that −e0 + q0 and −e2 + q2 are linearly in-
dependent for CharK 6= 2, whereas for CharK = 2 all lines PkQk,
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k ∈ {0, 1, . . . , n} concur at the point

(13) C := F (1, 1, . . . , 1)T. ♦

Remark 1. Choose k + 1 distinct vertices of P, where 3 ≤ k ≤ n is
odd. Up to a change of indices it is enough to consider the k-simplex
{P0, P1, . . . , Pk} and its span, say S. The null polarity π induces a null
polarity πS in S which assigns to X ∈ S the (k−1)-dimensional subspace
π(X) ∩ S. We get within S the settings of Th. 1 with k rather than n
points and πS instead of π. The nested non-degenerate Möbius pair in S
is formed by the k-simplex {P0, P1, . . . , Pk} and the k-simplex comprising
the points

(14) Q0,k+1,...,n, Q1,k+1,...,n, . . . , Qk,k+1,...,n.

This observation illustrates the meaning of all the 2n points which arise
from P and the null polarity π. If we allow k = 1 in the previous
discussion then, to within a change of indices, the nested degenerate
Möbius pair {P0, P1} = {Q0,2,...,n, Q1,2,...,n} is obtained.

Remark 2. The case F = GF(2) deserves particular mention, since
we can give an interpretation for all points of PG(n, 2) in terms of our
Möbius pair. Recall the following notion from the theory of binary codes:
The weight of an element of GF(2)n+1 is the number of 1s amongst its
coordinates. The 2n points addressed in Rem. 1 are given by the vectors
with odd weight. The 2n vectors with even weight are, apart from the zero
vector, precisely those vectors which yield the 2n−1 points of the hyper-
plane π(C) :

∑n+1
i=0 xi = 0. More precisely, the vectors with even weight

w ≥ 4 are the centres of perspectivity for the nested non-degenerate
Möbius pairs of (w− 1)-simplices, whereas the vectors with weight 2 are
the points of intersection of the edges of P with π(C). The latter points
may be regarded as “centres of perspectivity” for the degenerate Möbius
pairs formed by the two vertices of P on such an edge. Each point of
the hyperplane π(C) is the centre of perspectivity of precisely one nested
Möbius pair.

3. Commuting and non-commuting elements

Our aim is to translate the properties of Möbius pairs into prop-
erties of commuting and non-commuting group elements. We shortly
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recall some results from [6]. Let (G, ·) be a group and p be a prime.
Suppose that the centre Z(G) of G contains the commutator subgroup
G

′ = [G,G] and the set G
(p) of pth powers. Also, let G

′ be of order p.
Then V := G/Z(G) is a commutative group which, if written additively,
is a vector space over GF(p) in a natural way. Furthermore, given any
generator g of G

′ we have a bijection ψg : G
′ → GF(p) : gm 7→ m for

all m ∈ {0, 1, . . . , p}. The commutator function in G assigns to each
pair (x, y) ∈ G × G the element [x, y] = xyx−1y−1. It gives rise to the
non-degenerate alternating bilinear form

(15) [·, ·]g : V × V → GF(p) : (xZ(G), yZ(G)) 7→ ψg([x, y]).

We assume now that V has finite dimension n + 1, and we consider the
projective space PG(n, p) := P(V ). Its points are the one-dimensional
subspaces of V . In our group theoretic setting a non-zero vector of V is
a coset xZ(G) with x ∈ G \ Z(G). The scalar multiples of xZ(G) are
the cosets of the form xkZ(G), k ∈ {0, 1, . . . , p−1}, because multiplying
a vector of V by k ∈ GF(p) means taking a kth power in G/Z(G). So
x, x′ ∈ G describe the same point X of PG(n, p) if, and only if, none of
them is in the centre of G, and x′ = xkz for some k ∈ {1, 2, . . . , p−1} and
some z ∈ Z(G). Under these circumstances x (and likewise x′) is said to
represent the point X. Conversely, the point X is said to correspond to
x (and likewise x′). Note that the elements of Z(G) determine the zero
vector of V . So they do not represent any point of PG(n, p).

The non-degenerate alternating bilinear form from (15) determines
a null polarity π in PG(n, p). We quote the following result from [6,
Th. 6]: Two elements x, y ∈ G \ Z(G) commute if, and only if, their
corresponding points in PG(n, p) are conjugate with respect to π, i.e.,
one of the points is in the polar hyperplane of the other point. This
crucial property is the key for proving Lemma 2 and Th. 2 below.

Lemma 2. Suppose that x0, x1, . . . , xr ∈ G \ Z(G) is a family of group
elements. Then the following assertions are equivalent:

(a) The points corresponding to x0, x1, . . . , xr constitute an n-simplex
of the projective space PG(n, p), whence r = n.

(b) There exists no element in G \ Z(G) which commutes with all of
x0, x1, . . . , xr, but for each proper subfamily of x0, x1, . . . , xr at least
one such element exists.

Proof. The points corresponding to the family (xi) generate PG(n, p)
if, and only if, their polar hyperplanes have no point in common. This
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in turn is equivalent to the non-existence of an element in G \ Z(G)
which commutes with all elements of the family (xi). The proof is now
immediate from the following observation: An n-simplex of PG(n, p) can
be characterised as being a minimal generating family of PG(n, p). ♦

This result shows that the dimension n + 1 of V can be easily
determined by counting the cardinality of a family of group elements
which satisfies condition (b). We close this section by translating Th. 1:

Theorem 2. Let G be a group which satisfies the assumptions stated in
the first paragraph of this section. Also, let V = G/Z(G) be an (n+1)-
dimensional vector space over GF(p). Suppose that x0, x1, . . . , xn ∈ G\
\Z(G) and y0, y1, . . . , yn ∈ G \ Z(G) are two families of group elements
which represent a non-degenerate Möbius pair of PG(n, p) as in Th. 1.
Then the following assertions hold:

(a) There exists no element in G\Z(G) which commutes with x0, x1, . . .
. . . , xn.

(b) The elements x0, x1, . . . , xn are mutually non-commuting.

(c) For each i ∈ {1, 2, . . . , n} the element xi commutes with all yj such
that j 6= i.

Each of these three assertions remains true when changing the role of the
elements x0, x1, . . . , xn and y0, y1, . . . , yn.

Proof. The assertion in (a) follows from Lemma 2. Since all non-
diagonal entries of the matrix A from (2) equal to 1, no two points which
are represented by the elements xi are conjugate with respect to π. Hence
(b) is satisfied. Finally, (c) follows, as the polar hyperplane of the point
represented by xi contains all the points which are represented by the
elements yj with j 6= i. The last statement holds due to the symmetric
role of the two simplices of a Möbius pair which was established in the
proof of Th. 1 (a). ♦

Remark 3. According to Rem. 1 we may obtain nested non-degenerate
Möbius pairs from appropriate subfamilies of x0, x1, . . . , xn. These Möbius
pairs satisfy, mutatis mutandis, properties (b) and (c).

Example 1. We consider the complex matrices
(16)

σ0 :=

(
1 0
0 1

)

, σx :=

(
0 1
1 0

)

, σy :=

(
0 −i
i 0

)

, σz :=

(
1 0
0 −1

)

.

The matrices iασβ with α ∈ {0, 1, 2, 3} and β ∈ {0, x, y, z} constitute the
Pauli group P of order 16. The centre of P is
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Z(P ) =
{
iασ0 | α ∈ {0, 1, 2, 3}

}
.

The commutator subgroup P
′ = {±σ0} and the set P

(2) = {±σ0} of
squares are contained in Z(P ). By Sec. 3, the factor group P /Z(P ), if
written additively, is a vector space over GF(2). For each β ∈ {0, x, y, z}
the coset Z(P )σβ is denoted by β. In this notation, addition can be
carried out according to the relations 0+β=β, β+β=0, and x+y+z = 0.
The mapping

(17) 0 7→ (0, 0)T, x 7→ (1, 0)T, y 7→ (0, 1)T, z 7→ (1, 1)T

is an isomorphism of P /Z(P ) onto the additive group of the vector space
GF(2) × GF(2).

Let G be the group of order 256 comprising the three-fold Kronecker
products iασβ⊗σγ⊗σδ with α ∈ {0, 1, 2, 3} and β, γ, δ ∈ {0, x, y, z}. This
group acts on the eight-dimensional Hilbert space of three qubits. In our
terminology from Sec. 3 (with p := 2) we have
(18)
Z(G) =

{
iασ0⊗σ0⊗σ0 | α ∈ {0, 1, 2, 3}

}
, G

′ = G
(2) = {±σ0⊗σ0⊗σ0},

and g = −σ0 ⊗ σ0 ⊗ σ0. Hence V = G/Z(G) is a six-dimensional vector
space over GF(2) endowed with an alternating bilinear form [·, ·]g. We
introduce βγδ as a shorthand for Z(G)(σβ ⊗ σγ ⊗ σδ), where β, γ, δ ∈
∈ {0, x, y, z}. In this notation, addition in V can be carried out com-
ponentwise according to the relations stated before. An isomorphism of
V onto GF(2)6 is obtained by replacing the three symbols of an element
of V according to (17). This gives the coordinate vector of an element
of V . For example, the coordinate vectors of the six elements

(19) x00, y00, 0x0, 0y0, 00x, 00y ∈ V

comprise the standard basis of GF(2)6. These six elements therefore form
a basis of V . The projective space PG(5, 2) = P(V ), like any projective
space over GF(2), has the particular property that each of its points is
represented by one and only one non-zero vector of V . We therefore
identify V \ {000} with PG(5, 2).

Recall the matrices defined in (1). The matrix of the alternating
bilinear form from (15) with respect to the basis (19) equals to the 6× 6
matrix diag(K,K,K) over GF(2). In order to obtain a Möbius pair

(20) P = {P0, P1, . . . , P5}, Q = {Q0, Q1, . . . , Q5}
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we have to use another basis of V , e. g., the one which arises in terms of
coordinates from the six columns of the matrix

(21) T :=





I J J
0 I J
0 0 I



 .

Indeed, TT · diag(K,K,K) · T gives an alternating 6 × 6 matrix A as
in (2). We thus can translate our results from Sec. 2 as follows: First,
we multiply T with the “old” coordinate vectors from there and, sec-
ond, we express these “new” coordinate vectors as triplets in terms of
0, x, y, z. The vertices P0, P1, . . . , P5 and Q0, Q1, . . . , Q5 can be read off,
respectively, from the first and second row of the following matrix:

(22)
x00 y00 zx0 zy0 zzx zzy
yzz xzz 0yz 0xz 00y 00x

.

We note that P and Q are in perspective from a point according to
Th. 1. This point is zzz. Since each line of PG(5, 2) has only three
points, the entries of the second row in (22) can be found by adding zzz
to the entries from the first row. Each point of PG(5, 2) corresponds to
four elements of the group G, whence the points of P ∪ Q correspond
to 48 elements of G, none of them in the centre Z(G). We can rephrase
the Möbius property as follows: Let two out of these 48 elements of G

represent distinct points. Then these two elements commute if, and only
if, they represent points which are in distinct rows and distinct columns
of the matrix (22). The 20 points P012, P013, . . . , P345 are obtained by
adding three of the points of P. Explicitly, we get:

(23)
0x0 0y0 0zx 0zy xz0 xyx xyy xxx xxy x0z
yz0 yyx yyy yxx yxy y0z z0x z0y zxz zyz

.

We leave it to the reader to find the
(
6
4

)
= 15 nested Möbius pairs of tetra-

hedra which are formed by four points from P and the four appropriate
points from (23). By Rem. 2, the 32 points from (22) and (23) are pre-
cisely the points off the polar hyperplane of zzz. This means that none
of the corresponding elements of G commutes with the representatives
of the distinguished point zzz.

The results from [6] show that Th. 2 can be applied to a wide class
of groups, including the generalised Pauli groups acting on the space of
N -qudits provided that d is a prime number.
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4. Conclusion

Following the strategy set up in our recent paper [6], we have got a
deeper insight into the geometrical nature of a large class of finite groups,
including many associated with finite Hilbert spaces. This was made pos-
sible by employing the notion of a Möbius pair of n-simplices in a finite
odd-dimensional projective space, PG(n, p), p being a prime. Restrict-
ing to non-degenerate Möbius pairs linked by a null polarity, we have
first shown their existence for any odd n, a remarkable nested structure
they form, and perspectivity from a point of the simplices in any such
pair if p = 2. Then, the commutation properties of the group elements
associated with a Möbius pair have been derived. In particular, the two
disjoint families of n+1 group elements that correspond to a Möbius pair
are such that any two distinct elements/operators from the same family
do not commute and each element from one family commutes with all
but one of the elements from the other family. As the theory also encom-
passes a number of finite generalised Pauli groups, that associated with
three-qubits (n = 5 and p = 2) was taken as an illustrative example, also
because of envisaged relevance of Möbius pairs to entanglement proper-
ties of a system of three fermions with six single-particle states [12]. It
should, however, be stressed that above-outlined theory is based on a
particular construction of Möbius pairs, and so there remains an inter-
esting challenge to see in which way it can be generalised to incorporate
arbitrary Möbius pairs.
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[5] GUINAND, A. P.: Graves triads, Möbius pairs, and related matrices, J. Geom.

10 (1-2) (1977), 9–16.

[6] HAVLICEK, H., ODEHNAL, B. and SANIGA, M.: Factor-group-generated polar
spaces and (multi-)qudits. SIGMA Symmetry Integrability Geom. Methods Appl.

5 (2009), paper 096, 15 pp. (electronic). (arXiv:0903.5418).

[7] HAVLICEK, H. and SANIGA, M.: Projective ring line of a specific qudit, J.

Phys. A 40 (43) (2007), F943–F952 (arXiv:0708.4333).

[8] HAVLICEK, H. and SANIGA, M.: Projective ring line of an arbitrary single
qudit, J. Phys. A 41 (1) (2008), 015302, 12 pp. (arXiv:0710.0941).

[9] HERRMANN, H.: Matrizen als projektive Figuren, Jber. Deutsch. Math. Verein.

56 (Abt. 1) (1952), 6–20. Erratum: ibid. 104.

[10] HIRSCHFELD, J. W. P.: Finite Projective Spaces of Three Dimensions, Oxford
University Press, Oxford, 1985.

[11] HUPPERT, B.: Endliche Gruppen. I, Die Grundlehren der Mathematischen Wis-
senschaften, Band 134, Springer-Verlag, Berlin, 1967.
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