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Abstract – Mermin’s pentagram, a specific set of ten three-qubit observables arranged in
quadruples of pairwise commuting ones into five edges of a pentagram and used to provide a
very simple proof of the Kochen-Specker theorem, is shown to be isomorphic to an ovoid (elliptic
quadric) of the three-dimensional projective space of order two, PG(3, 2). This demonstration
employs properties of the real three-qubit Pauli group embodied in the geometry of the symplectic
polar space W (5, 2) and rests on the facts that: 1) the four observables/operators on any of the
five edges of the pentagram can be viewed as points of an affine plane of order two, 2) all the
ten observables lie on a hyperbolic quadric of the five-dimensional projective space of order two,
PG(5, 2), and 3) that the points of this quadric are in a well-known bijective correspondence with
the lines of PG(3, 2).

Copyright c© EPLA, 2012

Introduction. – In 1993, Mermin [1] proposed two
ingenious and remarkably simple geometrical proofs of
the Kochen-Specker theorem. The first one, which became
known as Mermin’s (magic) square, employs a set of
nine elements/observables of the generalized Pauli group
of two-qubits. These nine observables are placed at the
vertices of a 3× 3 grid and form six sets of three pairwise
commuting elements, lying along three horizontal and
three vertical lines, each observable thus pertaining to two
such sets. The observables are selected in such a way that
the product of their triples in five of the six sets is +I,
whilst in the remaining set it is −I, I being the identity
matrix. The second proof, known as Mermin’s (magic)
pentagram, uses a set of ten elements of the three-qubit
Pauli group. Here, the ten observables form five sets of
four mutually commuting elements placed along the five
edges of a pentagram. Again, each observable belongs to
two such sets (“contexts”) and the product of fours in any
given set is +I except for one where it yields −I.
Soon after the properties of N -qubit Pauli groups

were found to be fully encoded in the geometry of the
symplectic polar spaces of rank N and order two,W (2N −
1, 2) [2–5], the Mermin (magic) square could readily be
ascribed to a neat finite geometrical meaning, namely as:
a special kind of geometric hyperplane of W (3, 2) [2,3],

(a)E-mail: msaniga@astro.sk

a hyperbolic quadric in PG(3, 2) [4], or a projective line
over the direct product of two smallest Galois fields,
P1(GF (2)×GF (2)) [6]. These last findings repeatedly
turned out to be of great physical importance, for example,
in revealing a fascinating finite-geometrical meaning of
the E6(6)-symmetric black hole entropy formula of D= 5
supergravity theories [7]. In the present paper, employing
basic properties of the finite symplectic polar space behind
the three-qubit Pauli group, we shall show that the
structure of the Mermin pentagrammatic configuration
can similarly be recast in terms of another well-known
object of finite geometry.

Mermin’s pentagram, affine plane of order two,
the Klein quadric, the Klein correspondence and
an ovoid of PG(3, 2). – Our starting point is a particu-
lar copy of the Mermin pentagram depicted in fig. 1, left;
here I is the 2× 2 identity matrix, X ≡ σx, Z ≡ σz, and,
e.g., ZZZ is a shorthand for Z ⊗Z ⊗Z. The set of ten
three-qubit operators we adopted is, however, not that of
Mermin [1], but that of Aravind [8], who was motivated
by the paper by Kernaghan and Peres [9]. The reason is
that all the ten matrices are real and can thus be viewed
as a subset of the real three-qubit Pauli group.
In order to “decipher” the structure of our Mermin’s

pentagram one has to invoke certain aspects of the finite
geometric interpretation of the real three qubit Pauli
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Fig. 1: (Colour on-line) Left: an illustration of the Mermin
pentagram. The four three-qubit observables along any edge
are pairwise commuting; the product of those along the
horizontal (red) edge is −III, while those along any other
edge multiply to +III. Right: a picture of the finite geometric
configuration behind the Mermin pentagram: the five edges of
the pentagram correspond to five copies of the affine plane of
order two, sharing pairwise a single point.

Fig. 2: An illustration of the case (left) where no three of the
four observables (represented by empty circles) pertaining to
an edge are collinear in the associated Fano plane; they form
an affine plane of order two (right).

group [2–4]. Omitting the identity and disregarding signs,
63 elements of this group correspond to 63 points of
the symplectic polar space W (5, 2), and maximal subsets
of pairwise commuting elements of the group have their
counterparts in maximal totally isotropic subspaces of
W (5, 2), which are Fano planes. As each Fano plane has
seven points, any maximal subset of mutually commuting
operators is of cardinality seven. Each edge from our
Mermin’s pentagram, obviously, selects from its ambient
Fano plane only four points. There are two possibilities
for such a selection; either no three of these four points
are collinear (fig. 2), or three of them lie on a line
in the corresponding Fano plane (fig. 3). The second
possibility can, however, be readily disregarded as the four
observables on any edge have obviously the same footing.
This implies that each edge of the pentagram is a copy of
the affine plane of order two and the pentagram framework
can be reformulated as five affine planes of order two
sharing pairwise a single point, no three being on the
same point —see fig. 1, right. Next we employ the fact
that we are dealing with the real three-qubit Pauli group.
In such a case [4] the structure of the symplectic polar
space W (5, 2) is refined in terms of the orthogonal polar
space Q+(5, 2) (which is nothing but the famous Klein
quadric), the points of which correspond to the symmetric

Fig. 3: An illustration of a hypothetical case where three of the
four observables would lie on a line of the Fano plane.
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Fig. 4: (Colour on-line) The PG(3, 2)-image of the Mermin
pentagram under the Klein correspondence. The edges of
the pentagram correspond to the points of an ovoid/elliptic
quadric, and its ten observables map into the lines joining the
points in pairs.

operators/elements of the group. As all ten observables of
our pentagram are symmetric, they must lie on Q+(5, 2).
Now, the generators of Q+(5, 2) (i.e., maximal subspaces
fully lying on Q+(5, 2)) are Fano planes and there are
two systems of them, each having 15 members. Any two
distinct planes from the same system share a point, whilst
two planes from different systems are either disjoint, or
have a line in common (see, e.g., [10,11]). It then follows
that our five affine planes must all originate from Fano
planes of the same system.
As a final step, we employ the famous Klein correspon-

dence between the points of the Klein quadric Q+(5, 2)
and the lines of PG(3, 2) (see, e.g., table 15.10 of [10]
for more details). Under this correspondence, the seven
points in a plane of one system of Q+(5, 2) correspond to
the seven lines through a point of PG(3, 2), and those of
a plane of the other system to the seven lines lying in a
plane of PG(3, 2); an affine plane of order two lying on
Q+(5, 2) will then have for its PG(3, 2)-image either four
lines through a point, no three coplanar, or four lines in
a plane, no three concurrent. Adopting the former view,
we thus find that the PG(5, 2)-configuration depicted in
fig. 1, right, has for its PG(3, 2)-counterpart the set of five
points, no three collinear and no four lying in the same
plane, that is, a copy of an ovoid (or, elliptic quadric)
(see, e.g., [10]). The ten three-qubit Pauli matrices of the
pentagram are thus represented by ten lines joining the
five points of the ovoid in pairs —as illustrated in fig. 4.
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We started this section with the observation that the
four observables sharing an edge of the pentagram do not
represent a maximal commuting set in the corresponding
three-qubit Pauli group. We also stressed that any such
maximal set consists of seven elements carried by a
Fano plane of W (5, 2). It is, therefore, instructive to see
explicitly the projective closures of the edges (up to signs):

{ZZI, ZIZ, IZZ} (for green edge),

{XXI,XIZ, IXZ} (for blue edge),

{XIX, IZX,XZI} (for violet edge),

{IXX,ZXI,ZIX} (for yellow edge),

{IY Y, Y IY, Y Y I} (for red edge),

where Y ≡ iσy. One can readily check that, up to a sign,
the product of each of the five triples of observables is the
identity matrix and so each of them represents indeed a
line in the associated Fano plane (which is highlighted in
fig. 2, left, by three big bullets). One further notes that
only the observables of the red-edge projective closure
contain the matrix Y , which reflects the fact that this
edge stands on a different footing that the other four.

Conclusion. – We have shown that the Mermin
pentagrammatic framework of ten three-qubit observ-
ables, which furnishes a very economic and elegant
proof of the Kochen-Specker theorem, can be viewed
as a distinguished object of finite geometry, namely an
ovoid (elliptic quadric) of PG(3, 2); the five edges of the
pentagram correspond to the five points of the ovoid
and its ten vertices/observables are represented by the
lines joining pairs of points of the ovoid. This finding
may serve as another justification of our firm belief that
all important sets of operators/observables associated
with finite-dimensional Hilbert spaces are underlaid by
notable objects of finite geometry. In the light of this
paper, a particularly interesting and challenging task

would be to look for higher-rank analogues of Mermin’s
configuration(s). Already the next case in the hierarchy,
N = 4, deserves serious attention. This is mainly because
an associated hyperbolic quadric Q+(7, 2), the locus of
symmetric elements of the four-qubit Pauli group, is
unusual in that it admits a graph automorphism of order
three known as a triality that swaps its points and two
systems of generators, and preserves the set of totally
singular lines (see, e.g., [12]).
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[7] Lévay P., Saniga M., Vrana P. and Pracna P., Phys.
Rev. D, 79 (2009) Art. No. 084036.

[8] Aravind P. K.,Mermin’s Pentagram and Bell’s Theorem
(arXiv:quant-ph/0104138).

[9] Kernaghan M. and Peres A., Phys. Lett. A, 198
(1995) 1.

[10] Hirschfeld J. W. P., Finite Projective Spaces of Three
Dimensions (Clarendon, Oxford) 1985.

[11] Conwell G. M., Ann. Math., 11 (1910) 60.
[12] Tits J., Inst. Hautes Etudes Sci. Publ. Math., 2

(1959) 13.

50006-p3


