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Abstract
Coding, transmission and recovery of quantum states with high security and
efficiency, and with as low fluctuations as possible, is the main goal of
quantum information protocols and their proper technical implementations.
The paper deals with this topic, focusing on the quantum states related to
Galois algebras. We first review the constructions of complete sets of
mutually unbiased bases in a Hilbert space of dimension q = pm , with p
being a prime and m a positive integer, employing the properties of Galois
fields Fq (for p > 2) and/or Galois rings of characteristic four R4m (for
p = 2). We then discuss the Gauss sums and their role in describing
quantum phase fluctuations. Finally, we examine an intricate connection
between the concepts of mutual unbiasedness and maximal entanglement.

Keywords: quantum information, quantum phase, algebraic methods, finite
fields, finite rings

1. Introduction

It has been known for a long time that concepts belonging to
the separate fields of quantum optics, quantum information,
Galois algebra and geometry, or even group theory, are
related. In the realm of quantum optics, problems arose
in attempts to identify a suitable Hermitian operator for the
quantum optical phase [1, 2]; they can now be solved by
means of a properly defined quantum phase operator over
a Galois field [3]. In the field of quantum information,
the quantum theory of von Neumann measurements is being
supplemented by more symmetric and efficient protocols
based, for example, on mutually unbiased bases (MUBs) [4–6],
or positive operator valued measures (POVMs) [7], which
are optimally constructed thanks to a Galois algebra. The
Galois fields and rings are being extensively used to weave
the resources of quantum information, in most applications
such as entanglement-assisted quantum cryptography, cloning,
coding and computing [8, 9], as well as in relation to the
group theoretical approach of coherent states [10–13]. Finally,
Galois fields can be used to provide coordinates for the
projective planes [14, 15], or the discrete phase space [4, 16],

3 Author to whom any correspondence should be addressed.

which are geometrical concepts having an intrinsic relevance
to complete sets of MUBs.

The physical motivations to embark on detailed studies of
MUBs are as follows. First, MUBs enter rigorous treatments
of Bohr’s principle of complementarity that distinguishes
between quantum and classical systems at the practical level
of measurements. At the conceptual level, two observables are
complementary if precise knowledge of one of them implies
that all possible outcomes of measuring the other one are
equally probable. The eigenstates of such complementary
observables are non-orthogonal quantum states, and in any
attempt to distinguish between them, information gain is
only possible at the expense of introducing disturbance.
This property was first implicitly exploited by Bennett and
Brassard in 1984 to secure the quantum key exchange against
eavesdropping. Most quantum cryptography protocols to-date,
like the original BB84 one, use only one-qubit technologies,
i.e. quantum states embedded in a Hilbert space of dimension
2, usually the polarization states of a single photon. But it was
found that the security against eavesdropping is heightened by
using all the three mutually unbiased bases of qubits, going to
higher-dimensional Hilbert spaces (i.e. employing qudits), or
by making use of entanglement-based protocols [17].
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There is a mathematical implementation of the
complementary principle which leads to this key notion of
mutual unbiasedness. LetO be an observable in a Hilbert space
of dimension q, Hq , which is represented by a Hermitian q ×q
matrix. Let us assume that its real eigenvalues are multiplicity-
free and its eigenvectors |b〉 belong to an orthonormal basis
B. Let O′ be a (prepared) complementary observable with
eigenvectors |b′〉 in B ′. IfO is measured, then the probability to
find the system in the state |b〉 ∈ B is given by |〈b|b′〉|2 = 1/q.
We here recall that two orthonormal bases B and B ′ of Hq are
mutually unbiased precisely when |〈b|b′〉|2 = 1

q for all b ∈ B
and b′ ∈ B ′. It can be shown that in order to fully recover the
density matrix of a set of identical copies of a quantum state, we
need at least q +1 measurements performed on complementary
observables [7, 18].

A simple example is provided by the ‘complementary’
Pauli spin matrices in the Hilbert space H2, e.g. σx = [ 0 1

1 0

]
,

σy = [ 0 −i
i 0

]
and σz = [ 1 0

0 −1

]
, where σy = iσxσz . The

eigenvectors of these three observables are respectively in the
bases B0 = (|0〉, |1〉), B1 = 1√

2
(|0〉 + |1〉, |0〉 − |1〉), B2 =

1√
2
(|0〉+i|1〉, |0〉−i|1〉). They constitute a complete set of three

MUBs from which an arbitrary qubit state |ψ〉 = α|0〉 + β|1〉,
|α|2 + |β|2 = 1, can be recovered.

Recently, a search for complete, (q + 1)-sets of MUBs in
Hq triggered off a way of remarkable activity [19]. First, if
the dimension q = p, p being an odd prime number, then
using the discrete Fourier transform applied to the kets |n〉 in
the computational basis (|0〉, |1〉, . . . , |p − 1〉),

|θk〉 = 1√
p

p−1∑
n=0

exp

(
2iπkn

p

)
|n〉, (1)

and replacing k in (1) by its unique decomposition k = an + b
in the set Zp of integers modulo p, one gets

|θa
b 〉 = 1√

p

p−1∑
n=0

exp
(

2iπ(an + b)n

p

)
|n〉. (2)

Equation (2) defines a set of p bases (with the index a =
0, . . . , p − 1) of p vectors (with the index b = 0, . . . , p − 1).
The p bases are mutually unbiased to each other and to the
computational basis and thus form the expected (p + 1)-set
of MUBs. This procedure, however, fails for qubits, i.e. for
p = 2, because the polynomial in the exponential factor of (2)
has a degree which is not coprime to 2. This observation will be
made clear below in relation to the property of the Weil sums.
It is worthwhile observing that the complete set of MUBs in
this case can also be derived from the generalized Pauli spin
matrices

Xq |n〉 = |n + 1〉,

Zq |n〉 = exp

(
2iπn

q

)
|n〉;

(3)

here, the eigenvectors of the unitary operators (Z p , X p, X p Z p,

. . . , X p Z p−1
p ) generate the set of p + 1 MUBs [20]. The task

of finding a complete set of MUBs may also be related to
the phase properties of the single-mode electromagnetic field
in quantum optics [2]. A suitable procedure to examine the

phase properties of a quantized electromagnetic field state is
to introduce a Hermitian phase operator of the form

�PB =
∑
k∈Zq

θk|θk〉〈θk |, (4)

with eigenvalues θk = θ0 + 2πk
q , θ0 being an arbitrary

initial phase, and eigenvectors as in the discrete Fourier
transform (1).4

It has been said that with a complete set of q + 1 mutually
unbiased measurements one can ascertain the density matrix
of an ensemble of unknown quantum q-states; hence, a
natural question emerges as what mathematics can provide
the construction. It is known that in dimensions q = pm , p
being a prime and m a positive integer, the complete sets of
MUBs result from a Fourier analysis over the Galois fields
Fq (p odd) [22] or the Galois rings R4m (p = 2) [24]. See
also [25].

2. Quantum phase states in MUBs and their relation
to additive characters in the Galois field Fq:
m-qudits in odd characteristic p

2.1. Construction of finite fields

The key relation between finite (also called) Galois fields and
MUBs is the theory of characters. A Galois field Fq , q = pm ,
is a finite set structure endowed with two group operations,
addition ‘+’ and multiplication ‘·’. It can be represented
as classes of polynomials obtained by computing modulo an
irreducible polynomial over the ground field Fp = Zp [26, 28].

Let us consider the ring of polynomials Fp[x] defined over
the field Fp

Fp[x] = {a0 + a1x + · · · + anxn}, ai ∈ Fp. (5)

For a polynomial g ∈ Fp[x], the residue class ring
Fp[x]/(g), where (g) is the ideal class generated by g, is a
field iff g is irreducible (cannot be factored) over Fp . For
example, for q = 22 one can choose the polynomial g(x) =
x2 + x + 1 ∈ F2[x] which is irreducible over F2. Contrary
to Z4, which has zero divisors and is thus only a ring, the
above construction defines indeed the field with four residue
classes: F4 = {0, 1, x, x + 1}. For example [x] + [x + 1] =
x+(g)+x+1+(g) = 2x+1+(g)+(g) = 1+(g) = [1]. Similarly
[x][x] = (x + (g))(x + (g)) = x2 + (g)(2x + 1) = x2 + (g) =
x2 −(x2 +x +1)+(g) = −(x +1)+(g) = (x +1)+(g) = [x +1].

It can be shown that a Galois field with q elements exists
iff q = pm , a power of a prime number p. Actually they are
several representations of Galois fields. The first one is as a
polynomial as in (5). The second one consists in identifying
the Galois field Fq , with q = pm , to the vector space Fm

p
built from the coefficients of the polynomial. The third one
uses the property that F∗

q = Fq − {0} is a multiplicative cyclic
group. One needs the concept of a primitive polynomial. A
(monic) primitive polynomial, of degree m, in the field Fq [x]
is irreducible over Fq and has a root α ∈ Fqm that generates
the multiplicative group of Fqm . A polynomial g ∈ Fq[x] of

4 Pegg and Barnett [2] used the same quantum phase operator for an arbitrary
dimension q and thus failed to notice the connection of their problem to
complete sets of MUBs. See [21] and [3] for a generalization of their work.
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Table 1. Three representations of the Galois field F8.

As powers of α As polynomials As 3-tuples in Z3
2

0 0 (0, 0, 0)
1 1 (0, 0, 1)
α α (0, 1, 0)
α2 α2 (1, 0, 0)
α3 1 + α (0, 1, 1)
α4 α + α2 (1, 1, 0)
α5 1 + α + α2 (1, 1, 1)
α6 1 + α2 (1, 0, 1)

degree m is primitive iff g(0) �= 0 and divides xr − 1, with
r = qm − 1.

For example F8 can be built from R = F2 and g =
x3 + x + 1 which is primitive over F2. One gets F8 =
F2[x]/(g) = {0, 1, α, α2, α3 = 1 + α, α4 = α + α2, α5 =
1 + α + α2, α6 = 1 + α2} (see table 1).

2.2. Characters of a finite field and Gauss sums

A character κ(g) over an Abelian group G is a (continuous)
map from G to the field of complex numbers C of unit modulus,
i.e. such that |κ(g)| = 1, g ∈ G . In a finite field Fq there
are two finite Abelian groups that are of significance:-namely,
the additive group and the multiplicative group of the field
(chapter 5 in [26]). The characters pertaining to these two
group structures are very different.

As far as the additive group is concerned one starts with a
map from the extended field Fq to the ground field Fp which
is called the trace function

tr(x) = x + x p + · · · + x pm−1 ∈ Fp, ∀x ∈ Fq . (6)

In addition to its property of mapping an element of Fq into
Fp , the trace function has other interesting properties [26]:

tr(x + y) = tr(x) + tr(y), x, y ∈ Fq

tr(ax) = a tr(x), x ∈ Fq, a ∈ Fp,

tr(a) = ma, a ∈ Fp,

tr(xq) = tr(x), x ∈ Fq .

(7)

Using (6), a canonical additive character over Fq is defined as

κ(x) = ωtr(x)
p , ωp = exp

(
2iπ

p

)
, x ∈ Fq; (8)

it is easy to check that κ(x + y) = κ(x)κ(y), x, y ∈ Fq .
Characters of the multiplicative group F∗

q are called
multiplicative characters of Fq . Since F∗

q is a cyclic group of
order q − 1, its characters can easily be determined as [26, 29]

ψk(n) = ωnk
q−1, k = 0 . . . q −2, n = 0 . . . q −2. (9)

The construction of complete sets of MUBs is related to
character sums with polynomial arguments f (x), also called
Weil sums [24], namely

W f =
∑
x∈Fq

κ( f (x)). (10)

In particular (theorem 5.38 in [26]), for a polynomial fd(x) ∈
Fq[x] of degree d � 1 and gcd(d, q) = 1, one finds W fd �
(d − 1)q1/2. The quantum fluctuations arising from the phase
MUBs are found to be related to Gauss sums which are of the
form

G(ψ, κ) =
∑
x∈F∗

q

ψ(x)κ(x). (11)

Using the notationψ0 for a trivial multiplicative character, ψ =
1, and κ0 for a trivial additive character, κ = 1, the Gaussian
sums (11) acquire the following values: G(ψ0, κ0) = q − 1;
G(ψ0, κ) = −1; G(ψ, κ0) = 0 and |G(ψ, κ)| = q1/2 for any
non-trivial characters κ and ψ .

2.3. Galois quantum phase states

We shall now introduce a class of quantum phase states as
a ‘Galois’ discrete quantum Fourier transform of the Galois
number kets

|θ(y)〉 = 1√
q

∑
n∈Fq

ψk(n)κ(yn)|n〉, y ∈ Fq, (12)

in which the coefficient in the computational basis
{|0〉, |1〉, . . . , |q − 1〉} represents the product of an arbitrary
multiplicative character ψk(n) with an arbitrary additive
character κ(yn). It is easy to show that previous basic results
in this area can be obtained as particular cases of (12). Indeed,
as in [2], for κ = κ0 and ψ ≡ ψk(n) one recovers the ordinary
quantum Fourier transform over Zq . As also shown in [2], the
corresponding states

|θk〉 = 1√
q

∑
n∈Zq

ψk(n)|n〉 (13)

are eigenstates of the Hermitian phase operator

�PB =
∑
k∈Zq

θk|θk〉〈θk | (14)

with eigenvalues θk = θ0 + 2πk
q , θ0 being an arbitrary initial

phase. We also recover the result of Wootters and Fields [22]
in a more general form by employing the Euclidean division
theorem (see theorem 11.19 in [27]) for the field Fq , which
says that, given any two polynomials y and n in Fq , there
exists a uniquely determined pair (a, b) ∈ Fq × Fq such that
y = an + b, deg(b) < deg(a). Using this decomposition in
the exponent of (12), we obtain

|θa
b 〉 = 1√

q

∑
n∈Fq

ψk(n)κ(an2 + bn)|n〉, a, b ∈ Fq . (15)

The result of [22] corresponds to the trivial multiplicative
character ψ0 = 1. Equation (15) defines a set of q bases
(with index a) of q vectors (with index b). Employing the
Weil sums (10), it is easily shown that for q odd the bases
are orthogonal and mutually unbiased to each other and to the
computational basis as well [24, 3].

S486



Galois algebras of squeezed quantum phase states

2.4. Quantum phase fluctuations

As already mentioned, following [2], a convenient procedure
to examine the phase properties of a quantized electromagnetic
field state is by introducing a phase operator, and this was one of
the reasons that led Pegg and Barnett to introduce their famous
Hermitian phase operator �PB. In this section we proceed
along the same lines using the phase form of the Wootters–
Fields MUBs.

2.4.1. The Galois phase operator. The phase MUBs as given
by (15) are eigenstates of a ‘Galois’ quantum phase operator

�Gal =
∑
b∈Fq

θb|θa
b 〉〈θa

b |, a, b ∈ Fq, (16)

with eigenvalues θb = 2πb
q . We use this fact to perform several

calculations of quantum phase expectation values and phase
variances for these MUBs. Inserting (15) in (16), and making
use of the properties of the field theoretical trace, the Galois
quantum phase operator can be brought into the form

�Gal = 2π

q2

∑
m,n∈Fq

ψk(n − m)ωtr[a(n2−m2)]
p S(n,m)|n〉〈m|,

S(n,m) =
∑
b∈Fq

bωtr[b(n−m)]
p . (17)

In the diagonal matrix elements, we have the partial sums
S(n, n) = q(q−1)

2 so that 〈n|�Gal|n〉 = π(q−1)
q . In the non-

diagonal matrix elements, the partial sums can be calculated
from

∑
b∈Fq

bεb = ε(1 + 2ε + 3ε2 + · · · + qεq−1) = ε[ 1−εq

(1−ε)2 −
qεq

1−ε ] = εq
ε−1 , where we introduced ε = ωtr(n−m)

p and we made
use of the relation εq = 1. Hence,

S(m, n) = q

1 − ω
tr(m−n)
p

. (18)

2.4.2. Galois phase properties of a pure quantum
electromagnetic state. For the evaluation of the phase
properties of a general pure state of an electromagnetic field
mode in the Galois number field we proceed similarly to [2].
Thus, we consider the pure state of the form

| f 〉 =
∑
n∈Fq

un|n〉, un = 1√
q

exp(inβ), (19)

where β is a real parameter, and sketch the computation of the
phase probability distribution |〈θb| f 〉|2, the phase expectation
value 〈�Gal〉 = ∑

b∈Fq
θb|〈θb| f 〉|2 and the phase variance

〈��2
Gal〉 = ∑

b∈Fq
(θb − 〈�Gal〉)2|〈θb| f 〉|2, respectively (the

upper index a for the basis is implicit and we discard it
for simplicity). The two factors in the expression for the
probability distribution have absolute values bounded by
the absolute value of generalized Gauss sums G(ψ, κ) =∑

x∈Fq
ψ(g(x))κ( f (x)), with f, g ∈ Fq[x]. Weil [7] showed

that for f (x) of degree d with gcd(d, q) = 1 as in (10), under
the constraint that for the multiplicative character ψ of order
s the polynomial g(x) should not be an sth power in Fq [x]
and with ν distinct roots in the algebraic closure of Fq , the
order of magnitude of the sums is (d + ν − 1)

√
q. The overall

bound is |〈θb| f 〉|2 � 1
q and it follows that the absolute value

of the Galois phase expectation value is bounded from above
as expected for a common phase operator:

|〈�Gal〉| � 2π

q2

∑
b∈Fq

b � π. (20)

The exact formula for the phase expectation value reads

〈�Gal〉 = 2π

q3

∑
m,n∈Fq

eβ(m, n)S(m, n), (21)

where eβ(m, n) = ψk(m − n) exp[i(n − m)β]χ[a(m2 − n2)]
and S(m, n) is as defined earlier. The set of all the q diagonal
terms m = n in 〈�Gal〉 contributes an order of magnitude
2π
q3 qS(n, n) 
 π . The contributions from off-diagonal terms
in (21) are not easy to evaluate analytically; yet, we were able
to show that |S(m, n)| = q

2 | sin[πp tr(n − m)]|−1.
The phase variance can be written as

〈��2
Gal〉 =

∑
b∈Fq

(θ2
b − 2θb〈�Gal〉)|〈θb| f 〉|2; (22)

the term 〈�Gal〉2
∑

b∈Fq
|〈θb| f 〉|2 does not contribute since

it is proportional to the Weil sum
∑

b∈Fq
ωtr(b(n−m))

p =
0. As a result, a cancellation of the quantum phase
fluctuations may occur in (22) from the two extra terms
of opposite signs. But the calculations are again not
easy to perform analytically. For the first term one gets
2(2π/q2)2

∑
m,n∈Fq

eβ(m, n)|S(m, n)|2. The second term

acquires the form −2
∑

b∈Fq
θb〈�Gal〉|〈θb| f 〉|2 = −2〈�Gal〉2.

Partial cancellation occurs in the diagonal terms, leading to the
contribution ≈ − 2π2

3 , which is still (in absolute value) twice
the amount of phase fluctuations found in the classical regime.
A closed form for the estimate of the non-diagonal terms is still
an open problem. In odd prime dimension q = p bounds on
phase probability distribution, expectation value and variance
can be established [23].

3. Quantum phase states in MUBs and their relation
to additive characters in Galois rings R4m: m-qubits

The Weil sums (10), which have been proved useful in the
construction of MUBs for odd p (and, so, odd dimensions
q = pm ), are not useful for p = 2, because in this case the
degree of the polynomial fd (x) is such that gcd(2, q) = 2—the
characteristic of the relevant Galois fields.

3.1. The Galois rings R4m

An elegant method for constructing complete sets of MUBs
of m-qubits was found by Klappenecker and Rötteler [24]5.
The method makes use of objects belonging to the context of
quaternary codes [30], the so-called Galois rings R4m ; we shall
only give its brief sketch and refer the interested reader to [24]
for more mathematical details.

In contrast to the Galois fields where the ground alphabet
has p elements (p a prime number) in the field Fp = Zp ,
the ring R4m takes its ground alphabet in Z4. To construct

5 Other, less explicit methods related to the discrete Fourier transform have
also been proposed [9, 6].
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it one uses the ideal class (h), where h is a (monic) basic
irreducible polynomial of degree m, i.e. such that its restriction
to h̄(x) = h(x)mod2 is irreducible over Z2. The Galois
ring R4m is defined as the residue class ring Z4[x]/(h). It
has cardinality 4m . We also need the concept of a primitive
polynomial. A (monic) primitive polynomial, of degree m, in
the ring Fq [x] is irreducible over Fq and has a root α ∈ Fqm

that generates the multiplicative group of Fqm . A polynomial
f ∈ Fq[x] of degree m is primitive iff f (0) �= 0 and divides
xr − 1, with r = qm − 1. Similarly for Galois rings R4m , if
h̄[x] is a primitive polynomial of degree m in Z2[x], then there
exists a unique basic primitive polynomial h(x) of degree m
in Z4[x] (it divides xr − 1, with r = 2m − 1). It can be
found as follows [31]. Let h̄(x) = e(x) − d(x), where e(x)
contains only even powers and d(x) only odd powers; then
h(x2) = ±(e2(x) − d2(x)). For m = 2, 3 and 4 one takes
h̄(x) = x2 + x + 1, h̄(x) = x3 + x + 1 and h̄(x) = x4 + x + 1 and
one gets h(x) = x2 +x +1, x3 +2x2 +x −1 and x4 +2x2 −x +1,
respectively. Any element y ∈ R4m can be uniquely expressed
in the form y = a + 2b, where a and b belong to the so-called
Teichmüller set Tm = (0, 1, ξ, . . . , ξ 2m−2), where ξ is a non-
zero element of the ring which is a root of the basic primitive
polynomial h(x) [24]. Moreover, one finds that a = y2m

. We
can also define the trace to the base ring Z4 as the map

t̃r(y) =
m−1∑
k=0

σ k(y), (23)

where σ is the so-called Frobenius automorphism, endowed
with the following remarkable property:

σ(a + 2b) = a2 + 2b2. (24)

Let us apply this formula to the case m = 2 (which
corresponds to 2-qubits). In R42 = Z4[x]/(x2 + x + 1) the
Teichmüller set reads T2 = (0, 1, x, 3 + 3x); the 16 elements
a + 2b with a and b in T2 are shown in the following matrix:




0 2 2x 2 + 2x
1 3 1 + 2x 3 + 2x
x 2 + x 3x 2 + 3x

3 + 3x 1 + 3x 3 + x 1 + x


 . (25)

For example the element in the second line of the fourth column
equals 1 + 2(3 + 3x) = 3 + 2x .

The case m = 3 (i.e. 3-qubits) can be examined in a similar
fashion, with the ring R43 = Z4[x]/(x3 + 2x2 + x − 1) and the
Teichmüller set featuring the following eight elements: T3 =
{0, 1, x, x2, 1+ 3x + 2x2, 2+ 3x + 3x2, 3+ 3x + x2, 1+ 2x + x2}.

In a Galois ring of characteristic 4 the additive characters
are

κ̃(x) = ω
t̃r(x)
4 = i t̃r(x). (26)

The Weil sums (10) are replaced by the exponential sums [24]

�(y) =
∑
u∈Tm

κ̃(yu), y ∈ R4m (27)

which satisfy

|�(y)| =




0 if y ∈ 2Tm , y �= 0,

2m if y = 0,√
2m otherwise.

(28)

Gauss sums for Galois rings were constructed in [32]:

G y(ψ̃, κ̃) =
∑

x∈R4m

ψ̃(x)κ̃(yx), y ∈ R4m , (29)

where the multiplicative character ψ̄(x) can be made explicit.
Using the notation ψ̄0 for a trivial multiplicative character and
κ̃0 for a trivial additive character, the Gaussian sums (29) satisfy
G y(ψ̃0, κ̃0) = 4m ; G y(ψ̃, κ̃0) = 0 and |G y(ψ̃ , κ̃)| � 2m .

3.2. Phase states for m-qubits

The quantum phase states for m-qubits can be found as the
‘Galois ring’ Fourier transform

|θ(y)〉 = 1√
2m

∑
n∈Tm

ψ̃k(n)κ̃(yn)|n〉, y ∈ R4m . (30)

Using the Teichmüller decomposition in the character function
κ̃ , one obtains

|θa
b 〉 = 1√

2m

∑
n∈Tm

ψ̃k(n)κ̃[(a + 2b)n]|n〉, a, b ∈ Tm .

(31)
This defines a set of 2m bases (with index a) of 2m vectors (with
index b). Using the exponential sums (27), it is easy to show
that the bases are orthogonal and mutually unbiased to each
other and to the computational basis. The case ψ̄ ≡ ψ̄0 = 1
was obtained earlier [24].

4. Mutual unbiasedness and maximal entanglement

By definition entangled states in Hq cannot be factored
into tensorial products of states in Hilbert spaces of lower
dimensions. We shall now show that there is an intrinsic
relation between MUBs and maximal entanglement.

The familiar Bell states are defined as

(|B0,0〉, |B0,1〉) = 1√
2
(|00〉 + |11〉, |00〉 − |11〉),

(|B1,0〉, |B1,1〉) = 1√
2
(|01〉 + |10〉, |01〉 − |10〉),

where the compact notation |00〉 = |0〉 � |0〉, |01〉 = |0〉 �
|1〉, . . . is employed for the tensorial products. These states
are both orthonormal and maximally entangled, i.e., such that
trace2|Bu,k〉〈Bu,k| = 1

2 I2, where trace2 means the partial trace
over the second qubit [33]. One can define more general Bell
states using the multiplicative Fourier transform (13) applied
to the tensorial products of two qudits,

|Bu,k〉 = 1√
q

q−1∑
n=0

ωkn
q |n, n + u〉. (32)

Also these states are both orthonormal, 〈Bu,k|Bu ′,k′ 〉 = δuu ′δkk′ ,
and maximally entangled, trace2|Bu,k〉〈Bu,k | = 1

q Iq . We define
here an even more general class of maximally entangled states
using the Fourier transform (15) over Fq as follows:

|Ba
u,b〉 = 1√

q

q−1∑
n=0

ωtr[(an+b)n]
p |n, n + u〉. (33)
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A list of the generalized Bell states of qutrits for the basis
a = 0 can be found in [10], which is a work that relies on a
coherent state formulation of entanglement. In general, for q
a power of a prime, starting from (33) one obtains q2 bases of
q maximally entangled states. Each set of the q bases (with
u fixed) has the property of mutual unbiasedness. Similarly,
for sets of maximally entangled m-qubits one uses the Fourier
transform over Galois rings (31) so that

|Ba
u,b〉 = 1√

2m

2m−1∑
n=0

it̃r[(a+2b)n]|n, n + u〉. (34)

For qubits (m = 1) one recovers the common family of Bell
states. For two-particle sets of quartits (see [3]) one gets
four sets of |Ba

u,b〉, u = 0, . . . , 3, each entailing four MUBs,
a = 0, . . . , 3.

The two related concepts of mutual unbiasedness and
maximal entanglement derive from the study of lifts of the
base field Zp to Galois fields of prime characteristic p > 2 (in
odd dimensions), or of lifts of the base ring Z4 to Galois rings
of characteristic 4 (in even dimensions). One may wonder if
lifts to more general algebraic structures could play a role in
the study of non-maximal entanglement.

5. Conclusion

This paper has emphasized the relationship between
the technological, physical and mathematical levels of
understanding the complementarity in quantum mechanics.
Secure quantum communications, quantum measurements and
other optimal protocols of the emerging field of quantum
information, such as quantum cloning, teleportation and
computing, make use of mathematical concepts such as
abstract algebra, algebraic number theory and finite geometry.
Mutual unbiasedness is a very important concept arising from
the exact formulation of quantum complementarity, and in
this sense full complementarity seems to be possible only if
the Hilbert space’s dimension is a power of a prime number.
This reminds us of the quantum phase-locking effect [21] in
which the phase oscillations are smoothed out at dimensions
equal to a prime power, due to the properties of the Mangoldt
function in the prime number theory. It might well be that
the Riemann hypothesis will eventually be formulated as a
quantum complementarity effect! The quantum theory of von
Neumann measurements is being progressively replaced by
MUBs-type measurements, or by other types of measurement
called SIC POVMs, which are positive operator valued
measurements with an optimal symmetry and efficiency. It is
believed that these measures exist in arbitrary dimension and—
being intimately connected to MUBs—they thus deserve the
most serious attention [7]. We have also mentioned in the last
section an application to phase MUB states of a generalized
Bell type. This could lead to the discovery of new measures
for the degree of entanglement.
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[24] Klappenecker A and Rötteler M 2003 Lect. Notes Comput. Sci.
2948 137–44

[25] Planat M, Rosu H, Perrine S and Saniga M 2004 Finite
algebraic geometrical structures underlying mutually
unbiased quantum measurements Preprint
quant-ph/0409081

[26] Lidl R and Niederreiter H 1983 Finite Fields (Reading, MA:
Addison-Wesley)

[27] Lidl R and Pilz G 1998 Applied Abstract Algebra 2nd edn
(New York: Springer)

[28] Murphy T 2002 Finite Fields A course available at http://www.
maths.tcd.ie/pub/Maths/Courseware/FiniteFields/
FiniteFields.pdf

[29] Ip L 2002 Solving shift problems and the hidden coset problem
using the Fourier transform Preprint quant-ph/0205034

[30] Wan Z X 1997 Quaternary Codes (Singapore: World
Scientific)

[31] Hammons A R, Kumar P V, Calderbank A R, Sloane N J A
and Sole P 1994 IEEE Trans. Inf. Theory 40 301–19

[32] Yunchang Oh and Heung-Joon Oh 2001 Kangweon-Kyungki
Math. J. 9 1–7

[33] Nielsen M A and Chuang I 2000 Quantum Computation and
Quantum Information (Cambridge: Cambridge University
Press) p 582

S489

http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.imaph.tu-bs.de/qi/problems
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf
http://www.maths.tcd.ie/pub/Maths/Courseware/FiniteFields/FiniteFields.pdf

	1. Introduction
	2. Quantum phase states in MUBs and their relation to additive characters in the Galois field F_q: m-qudits in odd characteristic p
	2.1. Construction of finite fields
	2.2. Characters of a finite field and Gauss sums
	2.3. Galois quantum phase states
	2.4. Quantum phase fluctuations
	2.4.1. The Galois phase operator.
	2.4.2. Galois phase properties of a pure quantum electromagnetic state.


	3. Quantum phase states in MUBs and their relation to additive characters in Galois rings R_4^m : m-qubits
	3.1. The Galois rings R_4^m
	3.2. Phase states for m-qubits

	4. Mutual unbiasedness and maximal entanglement
	5. Conclusion
	Acknowledgment
	References

