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Abstract
The basic combinatorial properties of a complete set of mutually unbiased
bases (MUBs) of a q-dimensional Hilbert space Hq, q = pr with p being a
prime and r a positive integer, are shown to be qualitatively mimicked by the
configuration of points lying on a proper conic in a projective Hjelmslev plane
defined over a Galois ring of characteristic p2 and rank r. The q vectors of
a basis of Hq correspond to the q points of a (so-called) neighbour class and
the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour
classes on the conic.

PACS numbers: 02.10.Hh, 02.40.Dr, 03.65.Ca
Mathematics Subject Classification: 51C05, 81R99, 81Q99

Two distinct orthonormal bases of a q-dimensional Hilbert space, Hq , are said to be mutually
unbiased if all inner products between any element of the first basis and any element of the
second basis are of the same value 1/

√
q. This concept plays a key role in a search for a

rigorous formulation of quantum complementarity and lends itself to numerous applications
in quantum information theory. It is a well-known fact (see, e.g., [1–9] and references therein)
that Hq supports at most q + 1 pairwise mutually unbiased bases (MUBs) and various algebraic
geometrical constructions of such q + 1, or complete, sets of MUBs have been found when
q = pr , with p being a prime and r a positive integer. In our recent paper [10], we have
demonstrated that the bases of such a set can be viewed as points of a proper conic (or, more
generally, of an oval) in a projective plane of order q. In this paper, we extend and qualitatively
finalize this picture by showing that individual vectors of all such bases can also be represented
by points, although these points are of a different nature and require a more general projective
setting, that of a projective Hjelmslev plane [11–14].

To this end, we shall first introduce the basics of the Galois ring theory (see, e.g., [15] for
the symbols, notation and further details). Let, as above, p be a prime number and r a positive
integer, and let f (x) ∈ Zp2 [x] be a monic polynomial of degree r whose image in Zp[x] is

0305-4470/06/020435+06$30.00 © 2006 IOP Publishing Ltd Printed in the UK 435

http://dx.doi.org/10.1088/0305-4470/39/2/013
mailto:msaniga@astro.sk
mailto:planat@lpmo.edu
http://stacks.iop.org/JPhysA/39/435


436 M Saniga and M Planat

irreducible. Then GR(p2, r) ≡ Zp2 [x]/(f ) is a ring, called a Galois ring, of characteristic p2

and rank r, whose maximal ideal is pGR(p2, r). In this ring there exists a non-zero element ζ

of order pr − 1 that is a root of f (x) over Zp2 , with f (x) dividing xpr−1 − 1 in Zp2 [x]. Then
any element of GR(p2, r) can uniquely be written in the form

g = a + pb, (1)

where both a and b belong to the so-called Teichmüller set Tr ,

Tr ≡ {0, 1, ζ, ζ 2, . . . , ζ pr−2}, (2)

having

q = pr (3)

elements. From equation (1) it is obvious that g is a unit (i.e., an invertible element) of
GR(p2, r) iff a �= 0 and a zero divisor iff a = 0. It then follows that GR(p2, r) has #t = q2

elements in total, out of which there are #z = q zero divisors and #u = q2 − q = q(q − 1)

units. Next, let ‘ ’ denote reduction modulo p; then obviously T r = GF(q), the Galois field
of order q, and ζ is a primitive element of GF(q). Finally, one notes that any two Galois rings
of the same characteristic and rank are isomorphic.

Now we have a sufficient algebraic background to introduce the concept of a projective
Hjelmslev plane over GR(p2, r), henceforth referred to as PH(2, q).3 PH(2, q) is an incidence
structure whose points are classes of ordered triples (�x̆1, �x̆2, �x̆3), where both � and at least
one x̆i (i = 1, 2, 3) are units, whose lines are classes of ordered triples (σ l̆1, σ l̆2, σ l̆3), where
both σ and at least one l̆i (i = 1, 2, 3) are units, and the incidence relation is given by

3∑

i=1

l̆i x̆i ≡ l̆1x̆1 + l̆2x̆2 + l̆3x̆3 = 0. (4)

From this definition it follows that in PH(2, q)—as in any ordinary projective plane—there is
a perfect duality between points and lines; that is, instead of viewing the points of the plane
as the fundamental entities, and the lines as ranges (loci) of points, we may equally well take
the lines as primary geometric constituents and define points in terms of lines, characterizing
a point by the complete set of lines passing through it. It is also straightforward to see that
this plane contains

#trip = #3
t − #3

z

#u
= (q2)3 − q3

q(q − 1)
= q3(q3 − 1)

q(q − 1)
= q2(q2 + q + 1) (5)

points/lines and that the number of points/lines incident with a given line/point is, in light of
equation (4), equal to the number of non-equivalent couples (�x̆1, �x̆2)/(σ l̆1, σ l̆2), i.e.

#coup = #2
t − #2

z

#u
= (q2)2 − q2

q(q − 1)
= q2(q2 − 1)

q(q − 1)
= q(q + 1). (6)

These figures should be compared with those characterizing ordinary finite planes of order q,
which read #trip = q2 + q + 1 and #coup = q + 1 (e.g., [16]).

Any projective Hjelmslev plane, PH(2, q) in particular, is endowed with a very important,
and of crucial relevance when it comes to MUBs, property that has no analogue in an ordinary
projective plane—the so-called neighbour (or, as occasionally referred to, non-remoteness)
relation. Namely (see, e.g., [12–14]), we say that two points A and B are neighbour, and write
A � B, if either A = B or A �= B and there exist two different lines incident with both;

3 This is, of course, a very specific, and rather elementary, kind of projective Hjelmslev plane; its most general,
axiomatic definition can be found, for example, in [12–14].
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otherwise, they are called non-neighbour or remote. The same symbol and the dual definition
are used for neighbour lines. Let us find the cardinality of the set of neighbours of a given
point/line of PH(2, q). Algebraically speaking, given a point �x̆i, i = 1, 2, 3, the points that
are its neighbours must be of the form �(x̆i + py̆i), with y̆i ∈ Tr ; for two points are neighbour
iff their corresponding coordinates differ by a zero divisor [12–14]. Although there are q3

different choices for the triple (y̆1, y̆2, y̆3), only q3/q = q2 of the classes �(x̆i +py̆i) represent
distinct points because �(x̆i + py̆i) and �(x̆i + p(y̆i + κx̆i)) represent one and the same point as
κ runs through all the q elements of Tr . Hence, every point/line of PH(2, q) has q2 neighbours,
the point/line in question inclusive. Following the same line of reasoning, but restricting only
to couples of coordinates, we find that given a point P and a line L, P incident with L, there
exist exactly (q2/q =) q points on L that are neighbour to P and, dually, q lines through P
that are neighbour to L.

Clearly, as A�A (reflexivity), A�B imply B�A (symmetry) and A�B and B�C imply
A � C (transitivity), the neighbour relation is an equivalence relation. Given ‘�’ and a point
P/line L, we call the subset of all points Q/lines K of PH(2, q) satisfying P � Q/L � K the
neighbour class of P/L. And since ‘�’ is an equivalence relation, the aggregate of neighbour
classes partitions the plane, i.e. the plane consists of a disjoint union of neighbour classes of
points/lines. The modulo-p-mapping then ‘induces’ a so-called canonical epimorphism of
PH(2, q) into PG(2, q), the ordinary projective plane defined over GF(q), with the neighbour
classes being the cosets of this epimorphism [14]. Loosely rephrased, PH(2, q) comprises
q2 + q + 1 ‘clusters’ of neighbour points/lines, each of cardinality q2, such that its restriction
modulo the neighbour relation is the ordinary projective plane PG(2, q) every single point/line
of which encompasses the whole ‘cluster’ of these neighbour points/lines. Analogously, each
line of PH(2, q) consists of q + 1 neighbour classes, each of cardinality q, such that its ‘ ’
image is the ordinary projective line in PG(2, q) whose points are exactly these neighbour
classes.

Let us illustrate these remarkable properties on the simplest possible example that is
furnished by PH(2, q = 2), i.e. the plane defined over GR(4, 1) whose epimorphic ‘shadow’
is the simplest projective plane PG(2, 2)—the Fano plane. As partially depicted in figure 1,
this plane consists of seven classes of quadruples of neighbour points/lines, each point/line
featuring three classes of couples of neighbour lines/points. When modulo-two-projected,
each quadruple of neighbour points/lines goes into a single point/line of the associated Fano
plane.

The most relevant geometrical object for our model [10] is, of course, a conic, which is a
curve Q of PH(2, q) whose points obey the equation

Q :
∑

i�j

cij x̆i x̆j ≡ c11x̆
2
1 + c22x̆

2
2 + c33x̆

2
3 + c12x̆1x̆2 + c13x̆1x̆3 + c23x̆2x̆3 = 0, (7)

with at least one of the cij ’s being a unit of GR(p2, r). In particular, we are interested in a
proper conic, which is a conic whose equation cannot be reduced into a form featuring fewer
variables whatever coordinate transformation one would employ. It is known (see, e.g., [17])
that the equation of a proper conic of PH(2, q) can always be brought into a ‘canonical’ form

Q� : x̆1x̆3 − x̆2
2 = 0 (8)

from which it readily follows that any such conic is endowed, like a line, with q2 +q = q(q +1)

points; q2 of them are of the form

�x̆i = (1, σ, σ 2), (9)
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Figure 1. A schematic sketch of the structure of the simplest projective Hjelmslev plane, PH(2, 2).
Shown are all the 28 of its points (represented by small filled circles), grouped into seven pairwise
disjoint sets (neighbour classes), each of cardinality 4, as well as 24 of its lines (drawn as solid,
dashed, dotted and dot-dashed curves), forming six different neighbour classes. In order to make
the sketch more illustrative, different neighbour classes of lines have different colours. Also shown
is the associated Fano plane, PG(2, 2), whose points are represented by seven big circles, six of
its lines are drawn as pairs of line segments and the remaining line as a pair of concentric circles.
Note the intricate character of pairwise intersection of the lines of PH(2, 2); two lines from distinct
neighbour classes have just one point in common, while any two lines within a neighbour class
share (q =) 2 points, both of the same neighbour class.

(This figure is in colour only in the electronic version)

where the parameter σ runs through all the elements of GR(p2, r), whilst the remaining q are
represented by

�x̆i = (0, δ, 1), (10)

with δ running through all the zero divisors of GR(p2, r). And each point of a proper conic,
like that of a line, has q neighbours; for the neighbours of a particular point σ = σ0 of (9) are
of the form

�x̆i = (1, σ0 + pκ, (σ0 + pκ)2) = (
1, σ0 + pκ, σ 2

0 + p2κ
)

(11)

and there are obviously q of them (the point in question inclusive) as κ runs through Tr , and
all the q points of (10) are the neighbours of any of them. All in all, a proper conic, like a
line, of PH(2, q) features q + 1 pairwise disjoint classes of neighbour points, each having q
elements, these classes being the single points of its modular image in PG(2, q). To illustrate
the case, several proper conics in PH(2, 2) are shown in figure 2.

At this point our algebraic geometrical machinery is elaborate enough to generalize and
qualitatively complete the geometrical picture of MUBs proposed in [10] where we have
argued that a basis of Hq , q given by (3), can be regarded as a point of an arc in PG(2, q),
with a complete set of MUBs corresponding to a proper conic (or, in the case of p = 2, to
a more general geometrical object called oval). This model, however, lacks a geometrical
interpretation of the individual vectors of a basis, which can be achieved in our extended
projective setting in the manner of Hjelmslev only. Namely, taking any complete, i.e. of
cardinality q + 1, set of MUBs, its bases are now viewed as the neighbour classes of points
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Figure 2. The forms of five different proper conics located in PH(2, 2): x̆1x̆3 − x̆2
2 = 0

(solid curve), x̆1x̆2 − x̆2
3 = 0 (dashed), x̆2x̆3 − x̆2

1 = 0 (dotted), x̆1x̆2 + x̆2
3 = 0 (dot-dashed)

and x̆1x̆2 + x̆1x̆3 + x̆2x̆3 = 0 (dash-doubledotted). Note the intricacies of pairwise intersections
between the conics.

of a proper conic of PH(2, q) and the vectors of a given basis have their counterpart in the
points of the corresponding neighbour class. The property of different vectors of a basis being
pairwise orthogonal is then geometrically embodied in the fact that the corresponding points
are all neighbour, whilst the property of two different bases being mutually unbiased answers
to the fact that the points of any two neighbour classes are remote from each other. It is left
to the reader as an easy exercise to check that ‘rephrasing these statements modulo p’ one
recovers all the conic-related properties of MUBs given in [10], irrespective of the value of p.
The (p = 2) case of ‘non-conic’ MUBs is here, however, much more complex and intricate
than that in the ordinary projective planes and will properly be dealt with in a separate paper.

To conclude, it must be stressed that this remarkable analogy between complete sets of
MUBs and ovals/conics is worked out at the level of cardinalities only and thus still remains
a conjecture. Hence, the next crucial step is to construct an explicit mapping by associating a
MUB with each neighbour class of the points of the conic and a state vector of this MUB with
a particular point of the class. This is a much more delicate issue, as there are (at least) two
non-isomorphic kinds of projective Hjelmslev planes of order q = pr that have exactly the
same ‘cardinality’ properties, namely, the plane defined over the Galois ring GR(p2, r) and
the one defined over the ring of ‘dual’ numbers, GF(q)[x]/(x2) ∼= GF(q) + eGF(q), where
e2 = 0. Even for the simplest case (p = 2 and r = 1) there is an intricate difference in
geometry between the two planes, as the former contains (q2 + q + 1 =) 7 arcs, while the
latter does not (see, e.g., [18]). A thorough exploration of the fine structure of these two
Hjelmslev geometries, as well as of a number of other finite Hjelmslev and related ring planes,
is therefore a principal theoretical task for making further progress in this direction.
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