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Geometries over Galois fields (and related finite combinatorial structures/algebras) have
recently been recognized to play an ever-increasing role in quantum theory, especially
when addressing properties of mutually unbiased bases (MUBs). The purpose of this
contribution is to show that completely new vistas open up if we consider a general-
ized class of finite (projective) geometries, viz. those defined over Galois rings and/or
other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic
combinatorial properties of a complete set of MUBs of a g-dimensional Hilbert space
Hgq, g = p" with p being a prime and r a positive integer, are qualitatively mimicked
by the configuration of points lying on a proper conic in a projective Hjelmslev plane
defined over a Galois ring of characteristic p2 and rank r. The g vectors of a basis of Hq
correspond to the ¢ points of a (so-called) neighbour class and the ¢ + 1 MUBs answer
to the total number of (pairwise disjoint) neighbour classes on the conic. Although this
remarkable analogy is still established at the level of cardinalities only, we currently work
on constructing an explicit mapping by associating a MUB to each neighbour class of
the points of the conic and a state vector of this MUB to a particular point of the class.
Further research in this direction may prove to be of great relevance for many areas of
quantum information theory, in particular for quantum information processing.
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1. Introduction

History offers us numerous examples when the solution of a tough physical problem
was found to be intimately linked with one or several long-standing problems of
purely mathematical nature. We believe that such a situation is currently encoun-
tered in quantum mechanics where we try to understand the “problem of quantum
measurement” in terms of so-called mutually unbiased bases of a finite-dimensional
Hilbert space. Here we are referring to our recent conjecture' that the question of
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the existence of the maximum, or complete, sets of mutually unbiased bases in a
g-dimensional Hilbert space if ¢ differs from a prime power (i.e., it is a “compos-
ite” integer) is intricately connected with the formidable geometrical combinatorics
problem of whether there exist projective planes of a “composite” order g.

Two distinct orthonormal bases of a g-dimensional Hilbert space, H,, are said
to be mutually unbiased if all inner products between any element of the first basis
and any element of the second basis are of the same value 1/,/q. This concept plays
a key role in a search for a rigorous formulation of quantum complementarity and
lends itself to numerous applications in quantum information theory. It is a well-
known fact (see, e.g., Refs. 2-9 and references therein) that H, supports at most
g + 1 pairwise mutually unbiased bases (MUBs) and various algebraic geometrical
constructions of such g + 1, or complete, sets of MUBs have been found when
q = p”, with p being a prime and r a positive integer. In our recent paper'® we have
demonstrated that the bases of such a set can be viewed as points of a proper conic
(or, more generally, of an oval) in an ordinary (Galois) projective plane of order
g. In this article we extend and qualitatively finalize this picture by showing that
also individual vectors of every such a basis can be represented by points, although
these points are of a different nature and require a more general projective setting,
that of a projective Hjelmslev plane. 11714

2. Galois Rings and Projective Hjelmslev Planes

To this end in view, we shall first introduce the basics of the Galois ring theory (see
e.g., Ref. 15 for the symbols, notation and further details). Let, as above, p be a
prime number and r a positive integer, and let f(x) € Zp2[x] be a monic polynomial
of degree r whose image in Zp[z| is irreducible. Then GR(p?,r) = Z,2[z]/(f) is a
ring, called a Galois ring, of characteristic p? and rank r, whose maximal ideal is
pGR(p?,7). In this ring there exists a non-zero element ¢ of order p” — 1 that is a
root of f(z) over 2,2, with f(z) dividing 7" ~! — 1 in Z,2[z]. Then any element of
GR(p?,r) can uniquely be written in the form

9=a+pbd, ()
where both a and b belong to the so-called Teichmiiller set 7,
T={01,¢.¢ ..., ¢, 2)
having
q=p" (3)

elements. From Eq. (1) it is obvious that g is a unit (i.e., an invertible element)
of GR(p?,7) iff @ # 0 and a zero-divisor iff @ = 0. It then follows that GR(p?,r)
has #¢ = ¢ elements in total, out of which there are #, = g zero-divisors and
#4 = ¢®> — q = g(g — 1) units. Next, let “~ denote reduction modulo p; then
T, = GF(q), the Galois field of order g, and ( is a primitive element of GF(q).
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Finally, one notes that any two Galois rings of the same characteristic and rank are
isomorphic.

Now we have a sufficient algebraic background to introduce the concept
of a projective Hjelmslev plane over GR(p?r), henceforth referred to as
PH(2,q).> PH(2,q) is an incidence structure whose points are classes of ordered
triples (p#1, o%2, p¥3), where both p and at least one &; (i = 1,2, 3) are units, whose
lines are classes of ordered triples (Jfl, alvg, leg), where both ¢ and at least one [;
(i = 1,2,3) are units, and the incidence relation is given by

3
Z lvl.f\él = lvl.f\él + iQQU:Q + ZJ3573 =0. (4)

(From this definintion it follows that in PH(2,q) — as in any ordinary projective
plane — there is a perfect duality between points and lines; that is, instead viewing
the points of the plane as the fundamental entities, and the lines as ranges (loci) of
points, we may equally well take the lines as primary geometric constituents and
define points in terms of lines, characterizing a point by the complete set of lines
passing through it. It is also straightforward to see that this plane contains

#—#s (@) PP -1
#u q(g—1) q(g—1)

points/lines and that the number of points/lines incident with a given
line/point is, in light of Eq.(4), equal to the number of non-equivalent couples

(0%1, gig)/(alvl,alvg), ie.,

#—# (@) _ PP -1)

#u al¢—1)  qlg—1)
These figures should be compared with those characterizing ordinary finite planes
of order g, which read #trip =¢*+¢+1 and #coup = g + 1, respectively (e.g.,
Ref. 16).

Any projective Hjelmslev plane, PH(2, ) in particular, is endowed with a very
important, and of crucial relevance when it comes to MUBs, property that has no
analogue in an ordinary projective plane — the so-called neighbour (or, as occa-
sionally referred to, non-remoteness) relation. Namely (see, e.g., Refs. 12-14), we
say that two points A and B are neighbour, and write A ® B, if either A = B,
or A # B and there exist two different lines incident with both; otherwise, they
are called nonneighbour, or remote. The same symbol and the dual definition is
used for neighbour lines. Let us find the cardinality of the set of neighbours of a
given point/line of PH(2, q). Algebraically speaking, given a point p%;, ¢ = 1,2, 3,
the points that are its neighbours must be of the form o (&; + pi;), with ¢; € 75
for two points are neighbour iff their corresponding coordinates differ by a zero

Horip = =¢ (¢ +q+1) (5)

#coup = =4q (q + 1) . (6)

2This is, of course, a very specific, and rather elementary, kind of projective Hjelmslev plane; its
most general, axiomatic definition can be found, for example, in Refs. 12-14.
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divisor.'?~ 1% Although there are ¢* different choices for the triple (¥1, 2, %3), only
q®/q = ¢* of the classes o (¥; + py;) represent distinct points because o (¥; + pij;)
and p (&; + p(¥; + x&;)) represent one and the same point as & runs through all
the q elements of 7,.. Hence, every point/line of PH(2,q) has q® neighbours, the
point/line in question inclusive. Following the same line of reasoning, but restrict-
ing only to couples of coordinates, we find that given a point P and a line £, P
incident with £, there exist exactly (q2 /a :) q points on £ that are neighbour to
P and, dually, ¢ lines through P that are neighbour to L.

Clearly, as A ® A (reflexivity), A ® B implies B ® A (symmetry) and A & B
and B ® C implies A ® C (transitivity), the neighbour relation is an equivalence
relation. Given “®” and a point P/line £, we call the subset of all points Q/lines
K of PH(2,q) satisfying P ® Q/L ® K the neighbour class of P/L. And since “®”
is an equivalence relation, the aggregate of neighbour classes partitions the plane,
i.e. the plane consists of a disjoint union of neighbour classes of points/lines. The
modulo-p-mapping then “induces” a so-called canonical epimorphism of PH(2,q)
into PG(2,q), the ordinary projective plane defined over GF{(q), with the neigh-
bour classes being the cosets of this epimorphism.4 Loosely rephrased, PH(2,q)
comprises g2 + g + 1 “clusters” of neighbour points/lines, each of cardinality ¢2,
such that its restriction modulo the neighbour relation is the ordinary projective
plane PG(2, q) every single point/line of which encompasses the whole “cluster” of
these neighbour points/lines. Analogously, each line of PH(2,q) consists of ¢ + 1
neighbour classes, each of cardinality ¢, such that its “— image is the ordinary
projective line in the PG(2, ¢) whose points are exactly these neighbour classes.

Let us illustrate these remarkable properties on the simplest possible example
that is furnished by PH(2, ¢ = 2), i.e. the plane defined over GR(4, 1) whose epimor-
phic “shadow” is the simplest projective plane PG(2,2) — the Fano plane. As par-
tially depicted in Fig. 1, this plane consists of seven classes of quadruples of neigh-
bour points/lines, each point/line featuring three classes of couples of neighbour
lines/points. When modulo-two-projected, each quadruple of neighbour points/lines
goes into a single point/line of the associated Fano plane.

The most relevant geometrical object for our model®® is, of course, a conic, that
is a curve Q of PH(2,q) whose points obey the equation

. o ou 2 w2 2 oy oy o ou
Q: g CijEiT; = c11%7 + 25 + ca3d3 + 128122 + c13%1E3 + cozdoZz =0, (7)
i<j

with at least one of the c;; 's being a unit of GR(p?,r). In particular, we are
interested in a proper conic, which is a conic whose equation cannot be reduced
into a form featuring fewer variables whatever coordinate transformation one would
employ. It is known (see, e.g., Ref. 17) that the equation of a proper conic of
PH(2,q) can always be brought into a “canonical” form

Q* : 531573 - 57% =0 (8)
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Fig. 1. A schematic sketch of the structure of the simplest projective Hjelmslev plane, PH(2,2).
Shown are all the 28 of its points (represented by small filled circles), grouped into seven pairwise
disjoint sets (neighbour classes), each of cardinality four, as well as 24 of its lines (drawn as solid,
dashed, dotted and dot-dashed curves), forming six different neighbour classes. In order to make
the sketch more illustrative, different neighbour classes of lines have different colour. Also shown
is the associated Fano plane, PG(2,2), whose points are represented by seven big circles, six of
its lines are drawn as pairs of line segments and the remaining line as a pair of concentric circles.
Notice the intricate character of pairwise intersection of the lines of PH(2,2); two lines from
distinct neighbour classes have just one point in common, while any two lines within a neighbour
class share (g =)2 points, both of the same neighbour class.

from which it readily follows that any such conic is endowed, like a line, with
q*> + g = q(q + 1) points; ¢ of them are of the form

Qi’i = (1)U> 02)7 (9)

where the parameter ¢ runs through all the elements of GR(p?,r), whilst the re-
maining g are represented by

with & running through all the zero-divisors of GR(p?, 7). And each point of a proper
conic, like that of a line, has ¢ neighbours; for the neighbours of a particular point
o = og of {9) are of the form

Qau:z = (1700 +ph:7 (00 +p"£)2) = (1700 +pK/7 0‘3 +p2"€) (11)

and there are g of them (the point in question inclusive) as k runs through 7., and
all the ¢ points of (10) are the neighbours of any of them. All in all, a proper conic,
like a line, of PH(2,q) features ¢ + 1 pairwise disjoint classes of neighbour points,
each having ¢ elements, these classes being the single points of its modular image
in PG(2,4q).

There exists, however, a profound difference between the two geometrical objects
when it comes to the neighbour relation. For while two distinct neighbour lines
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Table 1. The structure/composition of five different neighbour conics of PH(2,2). Every
conic comprises (“picks up”) a couple of points from each of the three relevant neighbour

classes (1,0,0), (0,1,0) and (1,1, 1), the points in question being labelled by a bullet (“e”).
To save space, we use the abbreviated notation where “100” stands for “(1,0,0)”, “120” for

“(1,2,0)”, etc.
(Neighbour Classes of) Points of PH(2, 2)

Type of (1,0,0) (0,1,0) (1,1,1)
Conic 100 | 120 | 102 | 122 | 010 | 210 | 012 | 212 | 111 | 131 | 113 | 311
Q(+) . . . . .
Q(f) ° ° ° . . .
Q(l) . . . .
Q(Q) ° ° .
Q(3) . . . . . .

always have ¢ points in common, two different neighbour conics (i.e., conics having
the same epimorphic image in the corresponding ordinary projective plane) may
also share more than g points, or, on the other hand, be completely disjoint. This
property is illustrated by Table 1, which features composition of several neighbour
conics of PH(2,2) whose image in PG(2,2) is the conic Q := %1% + Eg’ namely
the conics Q1) 1= F1d8y + 52, Q) 1= #1de — 52, OW) 1= &2y — 43 + 247, Q) .=
T1Zo — a“cg + 255%, QB) .= T1Zo — a“cg + 25:% + 29%5. We see, for example, that O and
Q® have 2(= ¢) points in common, Q) and Q=) overlap in 4(= 2¢ > ¢) points,
whilst Q) and @® do not share any point at all.

3. Hjelmslev Conics and MUBs

At this point our algebraic geometrical machinery is elaborate enough to generalize
and qualitatively complete the geometrical picture of MUBs proposed in Ref. 10
where we have argued that a basis of Hg, ¢ given by (3), can be regarded as a point of
an arc in PG(2, q), with a complete set of MUBs corresponding to a proper conic (or,
in the case of p = 2, to a more general geometrical object called oval). This model,
however, lacks a geometrical interpretation of the individual vectors of a basis, which
can be achieved in our extended projective setting ¢ la Hjelmslev only. Namely,
taking any complete, i.e., of cardinality ¢+ 1, set of MUBEs, its bases are now viewed
as the neighbour classes of points of a proper conic of PH(2,q) and the vectors of
a given basis have their counterpart in the points of the corresponding neighbour
class. The property of different vectors of a basis being pairwise orthogonal is then
geometrically embodied in the fact that the corresponding points are all neighbour,
whilst the property of two different bases being mutually unbiased answers to the
fact that the points of any two neighbour classes are remote from each other. It is
left to the reader as an easy exercise to check that “rephrasing these statements
modulo p” one recovers all the conic-related properties of MUBs given in Ref. 10,
irrespective of the value of p. The (p = 2) case of “non-conic” MUBs is here,
however, much more complex and intricate than that in the ordinary projective
planes and will properly be dealt with in a separate paper.
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Fig. 2. A sketchy illustration of the difference between the structures of the projective Hjelmslev
plane defined over the Galois ring GR(4,1) (i.e., PH(2,2)) and that defined over the ring of dual
numbers GF(2)[z]/(x?). Both the planes can be represented in such a way that they are made
identical in their point sets as well as in six neighbour classes of lines (Fig. 1), differing only in the
structure of the remaining neighbour class of lines. Selecting properly seven points (bold circles)
of a different neighbour class each, with the help of Fig. 1 it can easily be checked that no three
of them are collinear in the former case (left) while this property fails in the latter case (right) as
there exists a triple lying on the same line (namely that represented by a dot-dashed curve).

4. Conclusion

To conclude, it must be stressed that this remarkable analogy between complete sets
of MUBs and ovals/conics is worked out at the level of cardinalities only and thus
still remains a conjecture. Hence, the next crucial step to be done is to construct
an expliciting mapping by associating a MUB to each neighbour class of the points
of the conic and a state vector of this MUB to a particular point of the class.
This is a much more delicate issue, as there are (at least) two non-isomorphic
kinds of projective Hjelmslev planes of order ¢ = p" that have exactly the same
“cardinality” properties, viz. the plane defined over the Galois ring GR(p?,7) and
the one defined over the ring of “dual” numbers, GF(q)[z]/(z?) = GF(q)+e GF(q),
where €2 = 0,e # 0. Even for the simplest case (p = 2 and r = 1) there is an
intricate difference in geometry between the two planes, as the former contains
(¢> + g + 1 =)7-arcs, while the latter not (see, e.g., Ref. 18 and Fig. 2); it is also
worth noticing that while in the former plane the quadratic forms Q) and Q)
define, as we have seen, two distinct proper conics, in the latter one these forms
represent one and the same conic because the ring GF(2)[z]/(z?) is of characteristic
two (and, so, enjoying the property +1 = —1). A thorough exploration of the fine
structure of these two Hjelmslev geometries, as well as of a number of other finite
Hijelmslev and related ring planes'??° and geometries,?! is therefore a principal
theoretical task for making further progress in this direction. To furnish this task,
we have already made an important step by addressing the structure of a projective
plane over the ring of double numbers over Galois fields.??
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