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Non-unimodular points
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Projective ring line: admissible pair

Consider a(n associative) ring with unity, R , and GL(2,R), the general
linear group of invertible two-by-two matrices with entries in R .

A pair (a, b) ∈ R2 is called admissible over R if there exist c , d ∈ R such
that

(
a b

c d

)
∈ GL(2,R), (1)

which for commutative R reads

det

(
a b

c d

)
∈ R∗. (2)

A pair (a, b) ∈ R2 is called unimodular over R if there exist c , d ∈ R such
that ac + bd = 1.

For finite rings: admissible ⇔ unimodular.
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Projective ring line: free cyclic submodules

R(a, b), a (left) cyclic submodule of R2:
R(a, b) =

{
(αa, αb)|(a, b) ∈ R2, α ∈ R

}
.

A cyclic submodule R(a, b) is called free if the mapping α 7→ (αa, αb) is
injective, i. e., if all (αa, αb) are distinct.

Crucial property: if (a, b) is admissible, then R(a, b) is free.

However, there also exist rings yielding free cyclic submodules (FCSs)
containing no admissible pairs!

Generalizing the definition of P(R), the projective line over R :
P(R) =

{
R(a, b) ⊂ R2|R(a, b) free

}
.
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Non-unimodular FCS’s – ternions

The smallest order when they appear is the smallest ring of ternions R♦,
i. e. the ring isomorphic to the one of upper triangular two-by-two matrices
over the Galois field of two elements:

R♦ ≡

{(
a b

0 c

)
| a, b, c ∈ GF (2)

}
. (3)

Explicitly:

0 ≡

(
0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
, 2 ≡

(
1 1
0 1

)
, 3 ≡

(
1 1
0 0

)
,

4 ≡

(
0 0
0 1

)
, 5 ≡

(
1 0
0 0

)
, 6 ≡

(
0 1
0 0

)
, 7 ≡

(
0 1
0 1

)
.
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Non-unimodular FCS’s – ternions

Table: Addition (left) and multiplication (right) in R♦.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 6 7 5 4 2 3
2 2 6 0 4 3 7 1 5
3 3 7 4 0 2 6 5 1
4 4 5 3 2 0 1 7 6
5 5 4 7 6 1 0 3 2
6 6 2 1 5 7 3 0 4
7 7 3 5 1 6 2 4 0

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 1 3 7 5 6 4
3 0 3 5 3 6 5 6 0
4 0 4 4 0 4 0 0 4
5 0 5 3 3 0 5 6 6
6 0 6 6 0 6 0 0 6
7 0 7 7 0 7 0 0 7
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Non-unimodular FCS’s – ternions

36 unimodular vectors which generate 18 different FCS’s:

R♦(1, 0) = R♦(2, 0) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 0), (3, 0), (2, 0), (1, 0)},
R♦(1, 6) = R♦(2, 6) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 6), (3, 6), (2, 6), (1, 6)},
R♦(1, 3) = R♦(2, 3) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 3), (3, 3), (2, 3), (1, 3)},
R♦(1, 5) = R♦(2, 5) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 5), (3, 5), (2, 5), (1, 5)},
R♦(7, 3) = R♦(4, 3) = {(0, 0), (6, 0), (4, 0), (7, 0), (0, 3), (6, 3), (4, 3), (7, 3)},
R♦(7, 5) = R♦(4, 5) = {(0, 0), (6, 0), (4, 0), (7, 0), (0, 5), (6, 5), (4, 5), (7, 5)},
R♦(1, 7) = R♦(2, 4) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 6), (3, 0), (2, 4), (1, 7)},
R♦(1, 4) = R♦(2, 7) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 0), (3, 6), (2, 7), (1, 4)},
R♦(1, 1) = R♦(2, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 5), (3, 3), (2, 2), (1, 1)},
R♦(1, 2) = R♦(2, 1) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 3), (3, 5), (2, 1), (1, 2)},
R♦(4, 1) = R♦(7, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (0, 5), (6, 3), (7, 2), (4, 1)},
R♦(7, 1) = R♦(4, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (0, 3), (6, 5), (4, 2), (7, 1)},
R♦(3, 7) = R♦(3, 4) = {(0, 0), (0, 6), (0, 4), (0, 7), (3, 0), (3, 6), (3, 4), (3, 7)},
R♦(5, 7) = R♦(5, 4) = {(0, 0), (0, 6), (0, 4), (0, 7), (5, 0), (5, 6), (5, 4), (5, 7)},
R♦(5, 1) = R♦(5, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (5, 5), (5, 3), (5, 2), (5, 1)},
R♦(3, 1) = R♦(3, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (3, 5), (3, 3), (3, 2), (3, 1)},
R♦(6, 1) = R♦(6, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (6, 5), (6, 3), (6, 2), (6, 1)},
R♦(0, 1) = R♦(0, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (0, 5), (0, 3), (0, 2), (0, 1)},

and
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Non-unimodular FCS’s – ternions

6 non-unimodular vectors giving rise to 3 distinct FCS’s:

R♦(4, 6) = R♦(7, 6) = {(0, 0), (6, 0), (0, 6), (6, 6), (4, 0), (7, 0), (7, 6), (4, 6)},
R♦(4, 7) = R♦(7, 4) = {(0, 0), (6, 0), (0, 6), (6, 6), (4, 4), (7, 7), (7, 4), (4, 7)},
R♦(6, 4) = R♦(6, 7) = {(0, 0), (6, 0), (0, 6), (6, 6), (0, 4), (0, 7), (6, 7), (6, 4)}.
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Non-unimodular FCS’s – ternions
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Non-unimodular FCS’s – ternions
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Non-unimodular FCS’s – other rings

Our preliminary analysis of a few small cases indicates that this
non-unimodular part has in some cases the structure that it homomorphic
to a “standard” line. Let us introduce a couple of examples.

The first one is the line defined over a non-commutative ring of order 16
having 12 zero-divisors (a 16/12 ring), whose non-unimodular part is
homomorphic to the line defined over Z4 or Z2[x ]/〈x

2〉.

The other example is furnished by the line defined over a non-commutative
ring of the 16/14 type, whose non-unimodular part is homomorphic to the
line defined over Z2 ×Z2.

Both the cases are illustrated on the next figure; here, all crossed circles
represent vectors that do not lie on any FCS generated by unimodular pairs
(“outliers”), with those of them that are half-filled not generating FCSs.
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Non-unimodular FCS’s – other rings
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Non-unimodular FCS’s – other rings

The following table shows that up to order 27 there exists only one line
whose non-unimodular part is not homorphic to a ring line; here the first
column gives the ring type, the second column features the number of
outliers (total vs generating FCSs) and the last column lists the type of
homomorphic image of the non-unimodular part.

8/6 6/6 P(Z2)
16/12a 30/24 P(Z4) or P(Z2[x ]/〈x

2〉)
16/12b 42/36 not a ring line
16/14 24/18 P(Z2 ×Z2)
24/20 54/48 P(Z6) ≃ P(Z2 ×Z3)
27/15 48/48 P(Z3)
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Non-unimodular FCS’s – some more physics?
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3 dimensions
of spaceIII( ) + 1 dimension

of timeI( ) 3+1 dimensions
of space-time(           )

Couldn’t, then, our universe simply be a projective ring line of a huge, yet still finite order
(structured as shown in the table below), unjustly neglected and inadequately hidden under a
variety of disguises like a pseudo-Riemannian manifold, a world of strings and branes, etc.?

Space-time Projective Ring Line of a Very Large Order
Space Set of Unimodular Points
Time Set of Non-Unimodular Points
3D of Space Three Unique Maximum Sets of Mutually Neighbour Unimodulars
1D of Time Non-Unimodulars Form One Maximum Set of Mutually Neighbours
Arrow of Time Condensation Phenomenon
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‘Fano-snowflake’

Let’s now have a look at

free left cyclic submodules generated by

non-unimodular triples of elements from R♦.

We find altogether

42 non-unimodular triples of elements generating

21 distinct free left cyclic submodules:
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‘Fano-snowflake’
R♦(4, 6, 7) = {(0, 0, 0), (4, 6, 7), (7, 6, 4), (6, 6, 0), (4, 0, 4), (0, 6, 6), (6, 0, 6), (7, 0, 7)},
R♦(4, 7, 6) = {(0, 0, 0), (4, 7, 6), (7, 4, 6), (6, 0, 6), (4, 4, 0), (0, 6, 6), (6, 6, 0), (7, 7, 0)},
R♦(6, 4, 7) = {(0, 0, 0), (6, 4, 7), (6, 7, 4), (6, 6, 0), (0, 4, 4), (6, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(4, 4, 7) = {(0, 0, 0), (4, 4, 7), (7, 7, 4), (6, 6, 0), (4, 4, 4), (0, 0, 6), (6, 6, 6), (7, 7, 7)},
R♦(4, 7, 4) = {(0, 0, 0), (4, 7, 4), (7, 4, 7), (6, 0, 6), (4, 4, 4), (0, 6, 0), (6, 6, 6), (7, 7, 7)},
R♦(7, 4, 4) = {(0, 0, 0), (7, 4, 4), (4, 7, 7), (0, 6, 6), (4, 4, 4), (6, 0, 0), (6, 6, 6), (7, 7, 7)},
R♦(4, 4, 6) = {(0, 0, 0), (4, 4, 6), (7, 7, 6), (6, 6, 6), (4, 4, 0), (0, 0, 6), (6, 6, 0), (7, 7, 0)},
R♦(4, 6, 4) = {(0, 0, 0), (4, 6, 4), (7, 6, 7), (6, 6, 6), (4, 0, 4), (0, 6, 0), (6, 0, 6), (7, 0, 7)},
R♦(6, 4, 4) = {(0, 0, 0), (6, 4, 4), (6, 7, 7), (6, 6, 6), (0, 4, 4), (6, 0, 0), (0, 6, 6), (0, 7, 7)},
R♦(6, 6, 7) = {(0, 0, 0), (6, 6, 7), (6, 6, 4), (6, 6, 0), (0, 0, 4), (6, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(6, 7, 6) = {(0, 0, 0), (6, 7, 6), (6, 4, 6), (6, 0, 6), (0, 4, 0), (6, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 6) = {(0, 0, 0), (7, 6, 6), (4, 6, 6), (0, 6, 6), (4, 0, 0), (6, 6, 6), (6, 0, 0), (7, 0, 0)},
R♦(0, 6, 7) = {(0, 0, 0), (0, 6, 7), (0, 6, 4), (0, 6, 0), (0, 0, 4), (0, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(0, 7, 6) = {(0, 0, 0), (0, 7, 6), (0, 4, 6), (0, 0, 6), (0, 4, 0), (0, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(0, 4, 7) = {(0, 0, 0), (0, 4, 7), (0, 7, 4), (0, 6, 0), (0, 4, 4), (0, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(6, 0, 7) = {(0, 0, 0), (6, 0, 7), (6, 0, 4), (6, 0, 0), (0, 0, 4), (6, 0, 6), (0, 0, 6), (0, 0, 7)},
R♦(7, 0, 6) = {(0, 0, 0), (7, 0, 6), (4, 0, 6), (0, 0, 6), (4, 0, 0), (6, 0, 6), (6, 0, 0), (7, 0, 0)},
R♦(4, 0, 7) = {(0, 0, 0), (4, 0, 7), (7, 0, 4), (6, 0, 0), (4, 0, 4), (0, 0, 6), (6, 0, 6), (7, 0, 7)},
R♦(6, 7, 0) = {(0, 0, 0), (6, 7, 0), (6, 4, 0), (6, 0, 0), (0, 4, 0), (6, 6, 0), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 0) = {(0, 0, 0), (7, 6, 0), (4, 6, 0), (0, 6, 0), (4, 0, 0), (6, 6, 0), (6, 0, 0), (7, 0, 0)},
R♦(4, 7, 0) = {(0, 0, 0), (4, 7, 0), (7, 4, 0), (6, 0, 0), (4, 4, 0), (0, 6, 0), (6, 6, 0), (7, 7, 0)}.
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‘Fano-snowflake’

(0,7,7)

(0,0,7)

(7,0,7)

(7,0,0)

(7,7,0)

(0,7,0)

(0,4,4)

(0,0,4)

(4,0,4)

(4,0,0)

(4,4,0)

(0,4,0)

(0,6,6)

(0,0,6)

(6,0,6)

(6,0,0)

(6,6,0)

(0,6,0)

(4,6,0)

(7,6,0)

(6,4,0)

(6,7,0)

(4,0,6)

(7,0,6)

(6,0,4)

(6,0,7)

(0,4,6)

(0,7,6)

(0,6,4)

(0,6,7) (4,6,6)

(7,6,6)

(6,4,6)

(6,7,6)

(6,6,4)

(6,6,7)

(7,4,0)

(4,7,0)

(7,0,4)

(4,0,7)

(0,7,4)

(0,4,7) (6,7,7)

(6,4,4)

(7,6,7)

(4,6,4)

(7,7,6)

(4,4,6)

(6,7,4)

(6,4,7)

(7,4,6)

(4,7,6)

(7,6,4)

(4,6,7)
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‘Fano-snowflake’
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Generalization of ‘Fano-snowflake’

For a general ring of ternions, i. e. a ring of upper triangular two-by-two
matrices over

GF(q),

and non-unimodular

(n + 1)-tuples

of elements, the corresponding geometry features

PG(n, q)

in the middle of the ‘snow-flake.’
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Veldkamp spaces and...
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Veldkamp space – definition

Given a point-line incidence geometry Γ(P , L), a geometric hyperplane of
Γ(P , L) is a subset of its point set such that a line of the geometry is

either fully contained in the subset

or has with it just a single point in common.

The Veldkamp space of Γ(P , L), V(Γ), is the space in which

a point is a geometric hyperplane of Γ and

a line is the collection H ′H ′′ of all geometric hyperplanes H of Γ such
that H ′ ∩ H ′′ = H ′ ∩ H = H ′′ ∩ H or H = H ′,H ′′, where H ′ and H ′′

are distinct points of V(Γ).

For a Γ(P , L) with three points on a line, all Veldkamp lines are of the form
{H ′,H ′′,H ′∆H ′′} where H ′∆H ′′ is the complement of symmetric difference of H ′

and H ′′, i. e. they form a vector space over GF(2).
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V(GQ(2, 2)) ≃ PG(4, 2)

Its 31 points
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V(GQ(2, 2)) ≃ PG(4, 2)
And its 155 lines
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V(GQ(2, 2)) ≃ PG(4, 2)

Table: A succinct summary of the properties of the five different types of the lines
of V(GQ(2, 2)) in terms of the core (i. e., the set of points common to all the
three hyperplanes forming a line) and the types of geometric hyperplanes featured
by a generic line of a given type. The last column gives the total number of lines
per each type.

Type Core Perps Ovoids Grids #

I Pentad 1 0 2 45
II Collinear Triple 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15
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V(GQ(2, 4)) ≃ PG(5, 2)

Its 63 points comprise 27 perps and 36 doilies.

Its 651 lines are of four distinct types:

Table: The properties of the four different types of the lines of V(GQ(2, 4)) in
terms of the common intersection and the types of geometric hyperplanes
featured by a generic line of a given type. The last column gives the total number
of lines per the corresponding type.

Type Intersection Perps Doilies (Ovoids) Total

I Line 3 0 (–) 45
II Ovoid 2 1 (–) 216
III Perp-set 1 2 (–) 270
IV Grid 0 3 (–) 120
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V(GQ(2, 4)) ≃ PG(5, 2)
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V(GQ(4, 2)) ≃ ???

GQ(4, 2),
associated with the classical group PGU4(2),
can be represented by 45 points and 27 lines of
a non-degenerate Hermitian surface H(3, 4) in PG(3, 4).

Its geometric hyperplanes are 45 perps of points and 200 ovoids.

As no PG(d , q) has 200 + 45 = 245 points, V(GQ(4, 2)) can’t be
isomorphic to any projective space!

V(GQ(4, 2))

is not even a partial linear space, although, remarkably,

it contains a subspace isomorphic to PG(3, 4).
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No Veldkamp space

Do they also exist point-line incidence structures having

no Veldkamp space?

Yes, they do.

One of the smallest non-trivial examples is

the Moebius-Kantor 83-configuration.
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...Segre varieties
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Segre varieties: definition

Let S(N) ≡ PG (1, 2)× PG (1, 2)× · · · × PG (1, 2) be a Segre variety that is
N-fold direct product of projective lines of size three.

It is straightforward to see that the properties of

Veldkamp points of S(N)

are fully encoded in the properties of

Veldkamp lines of S(N−1).

To this end, we shall use a slightly generalized notion of the Veldkamp space of Γ,
V(Γ), which also includes Γ as the extraordinary geometric hyperplane and which
features extraordinary Veldkamp lines, the latter being of type {H,H, Γ}.

ord-V(S(N)) ∼= PG (2N − 1, 2)
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Segre varieties: geometric hyperplanes of S(2)

1

24

144

A diagrammatic representation of the types of geometric hyperplanes of S(2). The number
attached to a subfigure indicates how many distinct copies of a given hyperplane one gets by
rotating the subfigure around its center. The top row illustrates all 9 copies of type one
hyperplane (a perp), the middle row all 6 copies of type two hyperplane (an ovoid) and, for the
sake of completeness, the bottom row shows the extraordinary hyperplane. The encircled bullets
in the top row denote deep points.)
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Segre varieties: from S(1) to S(2)

9

H1

6

H2

3

1

An illustration of the fact that the two types of geometric hyperplanes of S(2) (right) can be
regarded as blow-ups of the Veldkamp lines of S(1) (left), or, vice versa, that a projection of a
type two (top right) or type one (bottom right) hyperplane of S(2) onto a line of S(2) can be
viewed, respectively, as the ordinary (top left) or an extraordinary (bottom left) Veldkamp line of
S(1).
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Segre varieties: geometric hyperplanes of S(3)

54321

Points of Order S(2)’s of Type

Tp Ps Ls 0 1 2 3 D H1 H2 VL Crd BS W
1 19 15 0 0 12 7 3 6 0 I 27 2 1
2 15 9 0 6 6 3 1 6 2 II, 1 54 3 2
3 13 6 1 6 6 0 0 6 3 2 108 4 2
4 11 3 4 6 0 1 0 3 6 3 54 5 3
5 9 0 9 0 0 0 0 0 9 4 12 6 3

Regarding hyperplanes as points of the PG(7, 2) (∼= ord-V(S(3))), it can be demonstrated that
those points that correspond to hyperplanes of type one, two and four, and whose number totals
to 135, all lie on a certain Q+

0 (7, 2) ⊂ PG(7, 2); note that these are exactly the three types
whose members feature points of maximum order.
It is also worth mentioning here that these three hyperplane types in their totality correspond to
the image, furnished by the Lagrangian Grassmannian of LG(3, 6) type, of the set of 135
maximal subspaces of W(5, 2).
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Segre varieties: from S(2) to S(3) – ordinary

H5

12

2

H4

54

9

H3

108

18

H2

36

6

Top: – A descriptive illustration of the structure of the four distinct types (1 to 4, left to right)
of ordinary Veldkamp lines of S(2); the three geometric hyperplanes comprising a Veldkamp line
are distinguished by different colors, with the points and lines shared by all of them being
colored black.
Bottom: – The four distinct types of geometric hyperplanes of S(3), as well as the number of
copies per each type, we get by blowing-up Veldkamp lines of S(2) of the type shown above the
particular subfigure.
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Segre varieties: from S(2) to S(3) - extraordinary

H2

18

6

H1

27

9

The same as in the previous figure, but for extraordinary Veldkamp lines of S(2) (top) and their
S(3) blown-up cousins (bottom).

M. Saniga (Astro-Inst SAV) Finite Geometries Bratislava, February 2018 36 / 113



Segre varieties: (ordinary) Veldkamp lines of S(3))

Core Composition
Tp Ps Ls H1 H2 H3 H4 H5 Crd
1 15 11 3 – – – – 27
2 13 8 2 1 – – – 162
3 12 6 2 – 1 – – 108
4 11 7 1 2 – – – 81
5 10 4 1 1 1 – – 648
6 9 6 – 3 – – – 18
7 9 4 1 – 2 – – 324
8 9(2) 3c 1 1 – 1 – 324

9 9 3 1 – 2 – – 324
10 9 3p – 3 – – – 18
11 9(3) 3c – 3 – – – 108

12 8 3 – 2 1 – – 648
13 8 2 1 – 1 1 – 648
14 7 3 1 – – 2 – 27
15 7 2p – 1 2 – – 162
16 7(2) 2c – 1 2 – – 324

17 7(3) 2c – 1 2 – – 324

18 7[2] 1 – 2 – 1 – 162

19 7[1] 1 – 1 2 – – 324

20 7 0 1 – 1 – 1 108
21 7 0 1 – – 2 – 108
22 6 2c – 1 1 1 – 648
23 6 2p – – 3 – – 108
24 6 1 – – 3 – – 648
25 6[3] 0 1 – – 1 1 216

26 6[2] 0 – 2 – – 1 108

27 6[1] 0 – 1 1 1 – 648

28 6[0] 0 – – 3 – – 36
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Segre varieties: (ordinary) Veldkamp lines of S(3))

Core Composition
Tp Ps Ls H1 H2 H3 H4 H5 Crd
29 5[1] 1 – 1 – 2 – 162

30 5[0] 1 – – 2 1 – 648

31 5(2) 0 – 1 1 – 1 324

32 5(1) 0 – 1 – 2 – 324

33 5(0) 0 – – 2 1 – 648

34 4 0 – – 2 – 1 324
35 4(3:1) 0 – – 1 2 – 216

36 4(2:2) 0 – – 1 2 – 324

37 3 1 – – – 3 – 54
38 3[1] 0 – 1 – – 2 54

39 3[0] 0 – – 1 1 1 216

40 2 0 – – – 2 1 108
41 0 0 – – – – 3 4
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Segre varieties: (ordinary) Veldkamp lines of S(3))

65

43

21

1817

1615

1413

3029

2827

2625

41

4039

3837

1211

109

87

2423

2221

2019

3635

3433

3231
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Segre varieties: from S(3) to S(4)

A tesseract-based frame for visualization of the structure of S(4); in order
to avoid too crowded appearance of the configuration, there are only
shown 24 (out of 81) points and 44 (out of 108) lines.

M. Saniga (Astro-Inst SAV) Finite Geometries Bratislava, February 2018 40 / 113



Segre varieties: geometric hyperplanes of S(4)

# of Points of Order # of S(3)’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W
1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1
2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2
3 53 52 0 2 12 26 13 1 6 3 2 0 0 III, 2 1296 4 2
4 51 48 1 0 12 32 6 0 8 0 4 0 0 3 648 5 2
5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3
6 47 40 0 4 18 20 5 0 4 4 4 0 0 5 3888 11 3
7 45 36 0 18 0 18 9 1 0 9 0 0 2 V, 6 144 7 3
8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4
9 45 36 2 4 18 16 5 0 4 2 4 2 0 7, 8 3888 8 3

10 45 36 0 6 18 18 3 0 3 3 6 0 0 9, 11 2592 9 3
11 43 32 1 8 18 12 4 0 2 4 4 2 0 12, 13 7776 12 3
12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4
13 41 28 0 12 18 8 3 0 0 6 4 2 0 15, 18 1944 19 4
14 41 28 0 14 12 14 1 0 1 3 6 2 0 17, 21 2592 15 4
15 41 28 2 8 18 12 1 0 1 3 7 0 1 16, 20 2592 10 3
16 41 28 0 8 24 8 1 0 0 4 8 0 0 19 1944 20 4
17 39 24 4 12 12 8 3 0 1 3 3 4 1 22, 25 5184 16 4
18 39 24 3 12 12 12 0 0 0 4 6 0 2 23, 26 1296 22 4
19 39 24 1 12 18 8 0 0 0 2 8 2 0 24, 27 7776 23 4
20 39 24 3 0 36 0 0 0 0 0 12 0 0 28 216 13 3
21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4
22 37 20 4 14 12 6 1 0 0 2 5 4 1 30–32 7776 21 4
23 37 20 3 12 18 4 0 0 0 0 8 4 0 33 3888 24 4
24 35 16 4 20 6 4 1 0 0 0 4 8 0 35 1296 28 5
25 35 16 7 12 12 4 0 0 0 0 6 4 2 34, 36 3888 25 4
26 33 12 12 12 6 0 3 0 0 2 0 6 4 37, 38 648 26 5
27 33 12 11 12 6 4 0 0 0 0 4 4 4 39 1296 29 5
28 31 8 13 16 0 0 2 0 0 0 0 8 4 40 648 27 5
29 27 0 27 0 0 0 0 0 0 0 0 0 12 41 24 30 6
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Segre varieties: S(4) hyperplanes on a Q+
0 (15, 2)

# of Points of Order # of S(3)’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W
1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1
2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2
3 53 52 0 2 12 26 13 1 6 3 2 0 0 III, 2 1296 4 2
5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3
7 45 36 0 18 0 18 9 1 0 9 0 0 2 V, 6 144 7 3
8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4
9 45 36 2 4 18 16 5 0 4 2 4 2 0 7, 8 3888 8 3

10 45 36 0 6 18 18 3 0 3 3 6 0 0 9, 11 2592 9 3
12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4
13 41 28 0 12 18 8 3 0 0 6 4 2 0 15, 18 1944 19 4
14 41 28 0 14 12 14 1 0 1 3 6 2 0 17, 21 2592 15 4
15 41 28 2 8 18 12 1 0 1 3 7 0 1 16, 20 2592 10 3
16 41 28 0 8 24 8 1 0 0 4 8 0 0 19 1944 20 4
21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4
22 37 20 4 14 12 6 1 0 0 2 5 4 1 30–32 7776 21 4
23 37 20 3 12 18 4 0 0 0 0 8 4 0 33 3888 24 4
26 33 12 12 12 6 0 3 0 0 2 0 6 4 37, 38 648 26 5
27 33 12 11 12 6 4 0 0 0 0 4 4 4 39 1296 29 5

The types of geometric hyperplanes of S(4) lying on the unique hyperbolic quadric

Q+
0 (15, 2) ⊂ PG(15, 2) that contains the S(4) (the first orbit) and is invariant under its stabilizer

group; these are precisely hyperplane types that originate from those types of (ordinary)
Veldkamp lines of S(3) whose cores feature odd number of points.
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Segre varieties: six particular h-types on the Q+
0 (15, 2)

# of Points of Order # of S(3)’s of Type

Tp Ps Ls 0 1 2 3 4 D H1 H2 H3 H4 H5 VL Crd BS W
1 65 76 0 0 0 32 33 4 8 0 0 0 0 I 81 2 1
2 57 60 0 0 12 24 21 2 6 4 0 0 0 II, 1 324 3 2
5 49 44 0 8 12 16 13 1 3 6 0 2 0 IV, 4 648 6 3
8 45 36 0 0 36 0 9 0 0 12 0 0 0 10 108 17 4

12 41 28 8 0 24 0 9 0 4 0 0 8 0 14 162 14 4
21 37 20 4 16 12 0 5 0 0 4 0 8 0 29 972 18 4

Six types of hyperplanes lying on Q+
0 (15, 2) that in their totality correspond to the image of the

set of 2295 maximal subspaces of the symplectic polar space W(7, 2). Interestingly, one orbit
consists of homogeneous hyperplanes, viz. of those whose all S(3)’s are of type H2; note that
they are exactly the types whose members feature no S(3) of type H3 and H5, each of them also
exhibiting points of maximum order.
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...Cayley-Dickson algebras
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Cayley-Dickson Algebras and Finite Geometry

Cayley-Dickson algebras represent a nested sequence
A0,A1,A2, . . . ,AN , . . . of 2

N -dimensional (in general non-associative)
R-algebras with AN ⊂ AN+1, where A0 = R and where for any N ≥ 0
AN+1 comprises all ordered pairs of elements from AN with conjugation
defined by

(x , y)∗ = (x∗,−y) (4)

and multiplication usually by

(x , y)(X ,Y ) = (xX − Yy∗, x∗Y + Xy). (5)
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Cayley-Dickson Algebras and Finite Geometry

Every finite-dimensional algebra is basically defined by the multiplication rule of
its basis.
The basis elements (or units) e0, e1, e2, . . . , e2N+1−1 of AN+1, e0 being the real
basis element (identity), can be chosen in various ways.
Our preference is the canonical basis

e0 = (e0, 0), e1 = (e1, 0), e2 = (e2, 0), . . . , e2N−1 = (e2N−1, 0),

e2N = (0, e0), e2N+1 = (0, e1), e2N+2 = (0, e2), . . . , e2N+1−1 = (0, e2N−1),

where, by abuse of notation, the same symbols are also used for the basis
elements of AN .
This is because one focuses on multiplication properties of basis elements and the
canonical basis seems to display most naturally the inherent symmetry of this
operation.
For, in addition to revealing the nature of the Cayley-Dickson recursive process, it
also implies that for both a and b being non-zero we have eaeb = ±ea⊕b, where
the symbol ‘⊕’ denotes ‘exclusive or’ of the binary representations of a and b.
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Cayley-Dickson Algebras and Finite Geometry

Employing a multiplication table of AN , N ≥ 2, it can be verified that the

2N − 1 imaginaries ea, 1 ≤ a ≤ 2N − 1, form
(
2N−1

2

)
/3 distinguished sets

each of which comprises three different units {ea, eb, ec} that satisfy
equation

eaeb = ±ec , (6)

and where each unit is found to belong to 2N−1 − 1 such sets.

Regarding the imaginaries as points and their distinguished triples as lines,
one gets a point-line incidence geometry where every line has three points
and through each point there pass 2N−1 − 1 lines and which is isomorphic
to PG(N − 1, 2).
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Cayley-Dickson Algebras and Finite Geometry

Let us assume, without loss of generality, that the elements in any
distinguished triple {ea, eb, ec} of AN are ordered in such a way that
a < b < c .

Then, for N ≥ 3, we can naturally speak about two different kinds of
triples and, hence, two distinct kinds of lines of the associated 2N -nionic
PG(N − 1, 2), according as a+ b = c or a+ b 6= c ; in what follows a line
of the former/latter kind will be called ordinary/defective.

This stratification of the line-set of the PG(N − 1, 2) induces a similar
partition of the point-set of the latter space into several types, where a
point of a given type is characterized by the same number of lines of either
kind that pass through it.
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Cayley-Dickson Algebras and ... Veldkamp Spaces

Obviously, if our projective space PG(N − 1, 2) is regarded as an abstract

geometry per se, every point and/or every line in it has the same footing.

So, to account for the above-described ‘refinement’ of the structure of our
2N -nionic PG(N − 1, 2), it turns out to be necessary to find a
representation of this space where each point/line is ascribed a certain
‘internal’ structure.

Such a representation is naturally provided by Veldkamp spaces!
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Octonions and the Pasch (62, 43)-configuration

∗ 1 2 3 4 5 6 7

1 −0 −3 +2 −5 +4 +7 −6

2 +3 −0 −1 −6 −7 +4 +5
3 −2 +1 −0 −7 +6 −5 +4

4 +5 +6 +7 −0 −1 −2 −3
5 −4 +7 −6 +1 −0 +3 −2
6 −7 −4 +5 +2 −3 −0 +1
7 +6 −5 −4 +3 +2 −1 −0

The multiplication table of the imaginary unit octonions ea, 1 ≤ a ≤ 7.
For the sake of simplicity, in what follows we shall employ a short-hand
notation ea ≡ a; likewise for the real unit e0 ≡ 0. There are also delineated
multiplication tables corresponding to the distinguished nested sequence of
sub-algebras of complex numbers (a = 1, the upper left corner) and
quaternions (1 ≤ a ≤ 3, the upper left 3× 3 square).
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Octonions and the Pasch (62, 43)-configuration

e4

e1

e6

e2

e3 e5

e7

PG(2, 2), the Fano plane, that provides the multiplication law for octonions.
We have six ordinary lines,

{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 6}, {2, 5, 7}, {3, 4, 7},

and only single defective one,
{3, 5, 6}.

Similarly, our octonionic PG(2, 2) features two distinct types of points. A type-one point is such
that two lines passing through it are ordinary, the remaining one being defective; such a point
lies in the set

{3, 5, 6} ≡ α.

A type-two point is such that every line passing through it is ordinary; such a point belongs to
the set

{1, 2, 4, 7} ≡ β,

which is highlighted by gray color in the figure.
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Octonions and the Pasch (62, 43)-configuration

3 5 6

7 4 2

1

The seven geometric hyperplanes of the Pasch configuration.

3 5 6

7

4

2

1

A unified view of the seven Veldkamp lines of the Pasch configuration.
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Sedenions and the Desargues (103)-configuration

∗ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 −0 −3 +2 −5 +4 +7 −6 −9 +8 +11 −10 +13 −12 −15 +14
2 +3 −0 −1 −6 −7 +4 +5 −10 −11 +8 +9 +14 +15 −12 −13
3 −2 +1 −0 −7 +6 −5 +4 −11 +10 −9 +8 +15 −14 +13 −12
4 +5 +6 +7 −0 −1 −2 −3 −12 −13 −14 −15 +8 +9 +10 +11
5 −4 +7 −6 +1 −0 +3 −2 −13 +12 −15 +14 −9 +8 −11 +10
6 −7 −4 +5 +2 −3 −0 +1 −14 +15 +12 −13 −10 +11 +8 −9
7 +6 −5 −4 +3 +2 −1 −0 −15 −14 +13 +12 −11 −10 +9 +8
8 +9 +10 +11 +12 +13 +14 +15 −0 −1 −2 −3 −4 −5 −6 −7
9 −8 +11 −10 +13 −12 −15 +14 +1 −0 +3 −2 +5 −4 −7 +6

10 −11 −8 +9 +14 +15 −12 −13 +2 −3 −0 +1 +6 +7 −4 −5
11 +10 −9 −8 +15 −14 +13 −12 +3 +2 −1 −0 +7 −6 +5 −4
12 −13 −14 −15 −8 +9 +10 +11 +4 −5 −6 −7 −0 +1 +2 +3
13 +12 −15 +14 −9 −8 −11 +10 +5 +4 −7 +6 −1 −0 −3 +2
14 +15 +12 −13 −10 +11 −8 −9 +6 +7 +4 −5 −2 +3 −0 −1
15 −14 +13 +12 −11 −10 +9 −8 +7 −6 +5 +4 −3 −2 +1 −0

The multiplication table of the imaginary unit sedenions ea, 1 ≤ a ≤ 15. As in the previous
section, we shall employ a short-hand notation ea ≡ a; likewise for the real unit e0 ≡ 0. There
are also shown multiplication tables corresponding to the distinguished nested sequence of
sub-algebras starting with complex numbers (a = 1), quaternions (1 ≤ a ≤ 3) and octonions
(1 ≤ a ≤ 7).
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Sedenions and the Desargues (103)-configuration

e15e15

e14e13

e12
e11 e10

e9e8

e7

e6

e5

e4

e3

e2

e1

An illustration of the structure of PG(3, 2) that provides the multiplication law for sedenions. As
in the previous case, the three imaginaries lying on the same line are such that the product of
two of them yields the third one, sign disregarded.

We have here 25 ordinary and 10 defective lines, and two distinct kinds of points.
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Sedenions and the Desargues (103)-configuration

An illustrative portrayal of the Desargues configuration, built around the model of the Pasch
configuration: circles stand for its points, whereas its lines are represented by triples of points on
common straight segments (six), arcs of circles (three) and a big circle.
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Sedenions and the Desargues (103)-configuration

PSfrag
14 13 11

9 10 12

6 5 3

7

1 2 4

8 15

The fifteen geometric hyperplanes of the Desargues configuration. The hyperplanes are labelled
by imaginary units of sedenions in such a way that the 35 lines of the Veldkamp space of the
Desargues configuration are identical with the 35 distinguished triples of units.
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Sedenions and the Desargues (103)-configuration

7-9-14 7-10-13 7-11-12

3-13-14 5-11-14 6-11-13

3-9-10 5-9-12 6-10-12

3-5-6

The ten Veldkamp lines of the Desargues configuration that represent the ten defective lines of the sedenionic PG(3, 2). The
three geometric hyperplanes comprising a given Veldkamp line are distinguished by different colors, with their common elements
(here just a single point) being colored black. For each Veldkamp line we also explicitly indicate its composition.
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Sedenions and the Desargues (103)-configuration

1

2

3

4

5

6

7

8 9

101112

13 14

15

A compact graphical view of illustrating the bijection between 15 imaginary unit sedenions and 15 geometric hyperplanes of the
Desargues configuration, as well as between 35 distinguished triples of units and 35 Veldkamp lines of the Desargues
configuration.
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32-nions and the Cayley-Salmon (154, 203)-configuration

The 155 lines of the associated PG(4, 2) split into

65 defective and

90 ordinary.

However, unlike the preceding two cases, there are three different types of
points in our 32-nionic PG(4, 2):

10 α-points, each of which is on nine defective and six ordinary lines;

15 β-points, each of which is on seven defective and eight ordinary
lines; and

6 γ-points, each of them being on fifteen ordinary (and, hence, on
zero defective) lines.

This stratification of the point-set of PG(4, 2) leads, in turn, to two
different kinds of defective lines and three distinct kinds of ordinary lines.

M. Saniga (Astro-Inst SAV) Finite Geometries Bratislava, February 2018 59 / 113



32-nions and the Cayley-Salmon (154, 203)-configuration

An illustration of the structure of the (154, 203)-configuration, built around the model of the
Desargues configuration. The five points added to the Desargues configuration are the three
peripheral points and the red and blue point in the center. The ten lines added are three lines
denoted by red color, three blue lines, three lines joining pairwise the three peripheral points and
the line that comprises the three points in the center of the figure, that is the ones represented
by a bigger red circle, a smaller blue circle and a medium-sized black one.
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32-nions and the Cayley-Salmon (154, 203)-configuration

1

333

The ten geometric hyperplanes of the (154, 203)-configuration of type one; the number below a
subfigure indicates how many hyperplane’s copies we get by rotating the particular subfigure
through 120 degrees around its center.
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32-nions and the Cayley-Salmon (154, 203)-configuration

3

333

111

The fifteen geometric hyperplanes of the (154, 203)-configuration of type two.
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32-nions and the Cayley-Salmon (154, 203)-configuration

3

111

The six geometric hyperplanes of the (154, 203)-configuration of type three.
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32-nions and the Cayley-Salmon (154, 203)-configuration

e

d

c

b

a

The five types of Veldkamp lines of the (154, 203)-configuration. Here, each representative of a geometric hyperplane is drawn
separately and different colors are used to distinguish between different hyperplane types: red is reserved for type one, yellow for
type two and blue for type three hyperplanes.
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Cayley-Salmon (154, 203)-configuration
Cayley-Salmon configuration lives in

PG(3, 2) (as the line-complement of a GQ(2, 2)),

in the so-called Hexagrammum Mysticum of Pascal (15 Salmon
points and 20 Cayley lines).

Three distinct views of Cayley-Salmon configuration:

One is as three pairwise-disjoint triangles that are in perspective from
a line, in which case the centers of perspectivity are guaranteed by
Desargues’ theorem to also lie on a line; these two lines form a
geometric hyperplane of type one;

The other view of the figure takes any point of the configuration to
be the center of perspectivity of two quadrangles whose six pairs of
corresponding sides meet necessarily in the points of a Pasch
configuration; the point and the associated Pasch configuration form
a geometric hyperplane of type two;

The incidence sum of a Desargues configuration and three triangles
on a commmon side.
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2N-nions and a
((

N+1
2

)
N−1

,

(
N+1
3

)
3

)
-configuration

If one also includes the trivial cases of complex numbers (N = 1), where the relevant geometry
is just a single point i. e. the (10, 03)-configuration, and quaternions (N = 2), whose geometry is
a single line i. e. the (31, 13)-configuration, we obtain the following nested sequence of
configurations whose Veldkamp spaces capture the stratification/partition of the point- and
line-sets of the 2N -nionic PG(N − 1, 2), N being a positive integer,

(10, 03),

(31, 13),

(62, 43),

(103, 103),

(154, 203),

(215, 353),

. . . ,

((N + 1

2

)

N−1
,
(N + 1

3

)

3

)
,

. . . .
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2N-nions and a
((

N+1
2

)
N−1

,

(
N+1
3

)
3

)
-configuration

32S

OHC

64 ...

Figure: A nested hierarchy of finite
((

N+1
2

)
N−1

,
(
N+1
3

)
3

)
-configurations of

2N -nions for 1 ≤ N ≤ 5 when embedded in the Cayley-Salmon configuration
(N = 5).
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2N-nions and combinatorial grassmannians

A combinatorial Grassmannian Gk(|X |), where k is a positive integer
and X is a finite set, is a point-line incidence structure whose points
are k-element subsets of X and whose lines are (k + 1)-element
subsets of X , incidence being inclusion.

If |X | = N + 1 and k = 2, G2(N + 1) is nothing but our binomial((
N+1
2

)
N−1

,

(
N+1
3

)
3

)
-configuration.
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2N-nions and combinatorial grassmannians

12

23 2434

13 14

15

35 45

16

36 46

26

56

25

A diagrammatical proof of the isomorphism between C5 and G2(6). The points of C5 are labeled
by pairs of elements from the set {1, 2, . . . , 6} in such a way that each line of the configuration
is indeed of the form {{a, b}, {a, c}, {b, c}}, a 6= b 6= c 6= a.
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Slight digression: labeled Fano planes and...

A Fano plane can be labeled by integers from 1 to 7 in 30 different ways, which fall into eight
distinct types shown above. (Here, a defective line is drawn bold and a point colored red, blue,
green or yellow is of order three, two, one or zero, respectively; the order of a point is the
number of defective lines passing through it.)
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Slight digression: ...their Veldkamp spaces
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Slight digression: ...their Veldkamp spaces
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...Dynkin diagrams
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Dynkin diagrams

Dynkin diagrams were introduced in the theory of Lie groups/algebras to describe
particular sets of elements in lattices possessing integer quadratic forms –
so-called root systems. Given a root systems and its basis S , the vertices/nodes
of its Dynkin diagram are the roots of S and two nodes are not connected if the
corresponding roots are orthogonal.

In addition, a Dynkin diagram also encodes the lengths of roots. That is done by
marking the edge connecting two vertices whose corresponding roots are of
different length with an arrow pointing to the shorter root.

Given a simple Lie algebra with its highest root γ, an extended root system is
obtained by adding −γ to the set of simple roots, which leads to the notion the
extended Dynkin diagram of the algebra in question. We will only be dealing with
a particularly simple type of extended Dynkin diagrams, namely D̃n (4 ≤ n),
depicted in the next figure.
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D̃n

n

n-1

n-2n-332

1

0

An illustration of the extended Dynkin diagram of type D̃n, 4 ≤ n, with its vertices labeled by
integers from 0 to n.
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Veldkamp Spaces of D̃n and Two-Qubit Pauli Group

D̃n, like any other graph, can be viewed/interpreted as a particular

point-line incidence structure, C(D̃n), whose points and lines are,

respectively, vertices and edges of D̃n; it thus features n + 1 points
and n lines, where, for 5 ≤ n, four points are of order one, two of
order three and the remaining n − 5 points being of order two.

Let us adopt this view and have a detailed look at properties of the

Veldkamp space of C(D̃n).

We shall carry out this task step by step for 4 ≤ n ≤ 8 in order to see
how naturally the two-qubit (and, at the end, also three-qubit) Pauli
group enters the stage.
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Case n = 4: geometric hyperplanes

C(D̃4) features altogether 16 different geometric hyperplanes as listed below and
portrayed in the next figure.

We see that each hyperplane except for the last one contains point ‘2’; moreover,
H15 consists solely of this particular point and is thus contained in all preceding
14 hyperplanes. We further note that any other point of C(D̃4) is located in eight
hyperplanes.

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

0 + + + + + + + +
1 + + + + + + + +
2 + + + + + + + + + + + + + + +
3 + + + + + + + +
4 + + + + + + + +

The composition of 16 geometric hyperplanes Hi , 1 ≤ i ≤ 16, of C(D̃4). The ‘+’

symbol indicates which point of C(D̃4) lies in a given hyperplane.

M. Saniga (Astro-Inst SAV) Finite Geometries Bratislava, February 2018 77 / 113



Case n = 4: geometric hyperplanes
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A diagrammatical representation of geometric hyperplanes of C(D̃4). Here, and in the sequel, a
point of a hyperplane is represented by a filled circle and a line is drawn heavy if both of its
points lie in the hyperplane.

M. Saniga (Astro-Inst SAV) Finite Geometries Bratislava, February 2018 78 / 113



Case n = 4: 35 three-point Veldkamp lines
H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

1 + + +
2 + + +
3 + + +
4 + + +
5 + + +
6 + + +
7 + + +
8 + + +
9 + + +
10 + + +
11 + + +
12 + + +
13 + + +
14 + + +
15 + + +
16 + + +
17 + + +
18 + + +
19 + + +
20 + + +
21 + + +
22 + + +
23 + + +
24 + + +
25 + + +
26 + + +
27 + + +
28 + + +
29 + + +
30 + + +
31 + + +
32 + + +
33 + + +
34 + + +
35 + + +
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Case n = 4: PG(3, 2) and two-qubit Pauli group

One sees that no such Veldkamp line contains H16, the latter being
thus regarded as an exceptional Veldkamp point of the geometry; the
remaining 15 hyperplanes and all 35 Veldkamp lines form the
projective space PG(3, 2).
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Case n = 4: PG(3, 2) and two-qubit Pauli group

Let us now return back to our D̃4 and label its five vertices by five
distinct elements of the two-qubit Pauli group, P2.

One can take any five elements requiring only that their product
equals II ; this constraint is necessary to ensure that the induced
labeling of the points the associated Veldkamp space has the property
that the product of any three collinear elements is also equal to II .

Given the symmetry of D̃4, one of the most natural choices is (A⊗ B

is shorthanded to AB in the sequel)

0 → XI , 1 → IX , 2 → YY , 3 → ZI , 4 → IZ .
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Case n = 4: PG(3, 2) and two-qubit Pauli group

Assume further that each hyperplane acquires the label that is the
product of the group elements attached to the points it consists of;
thus, for example, H1, comprising points 0 and 2, will bear the label
(XI ).(YY ) = ZY .

Hence, we arrive at a particular one-to-one correspondence between

the 15 Veldkamp points of C(D̃4) and the 15 elements of P2: note
that the ‘exceptional’ hyperplane H16 corresponds to the same group
element as H15, because the two hyperlanes are complementary.

C(D̃4) H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16

P2 ZY YZ YX XY XI IX IZ ZI IY ZX ZZ XX XZ YI YY YY
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Case n = 4: PG(3, 2) and two-qubit Pauli group

It is easy to check that not only is the product of three elements on
each Veldkamp line equal to the identity element of the group, but –
as handy rendered by the figure below – the three elements that lie on
a line of the selected copy of W (3, 2) our PG(3, 2) was built around
pairwise commute.
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Case n = 5: geometric hyperplanes

C(D̃5) features 23 geometric hyperplanes:

23

21

19

22

20

18

1716
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They can be split into two disjoint families, namely {H1,H2, . . . ,H8} and {H9,H10, . . . ,H23}
according as they do not or do contain the line {2, 3}, respectively.

The former family can further be divided into two subfamilies, {H1,H2,H3,H4} and
{H5,H6,H7,H8}, depending on whether a hyperplane misses, respectively, point ‘2’ or point ‘3’.

These splittings have a deep geometrical meaning once we see all 47 three-point Veldkamp lines
C(D̃5) is found to possess.
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Case n = 5: 12 Veldkamp lines
Twelve of them are generated by hyperplanes of the first family and they are given in the
following table:

H1 H2 H3 H4 H5 H6 H7 H8 H13 H14 H15 H16 H20 H21

1 + + +
2 + + +
3 + + +
4 + + +
5 + + +
6 + + +
7 + + +
8 + + +
9 + + +
10 + + +
11 + + +
12 + + +

As it is obvious from this table, the four hyperplanes of either subfamily define PG(2, 2), the
Fano plane, with one line omitted; the latter being line {H14,H16,H20} for the first and
{H13,H15,H21} for the second subfamily. We see that the Veldkamp points of the first/second
Fano plane are those seven hyperplanes that contain H1/H5, and the two ‘missing’ lines consist
of those three hyperplanes that contain H20/H21.
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Case n = 5: 35 Veldkamp lines

The remaining 15 Veldkamp points (that are all geometric hyperplanes
incorporating H17, and 35 Veldkamp lines define a projective space isomorphic to
PG(3, 2); this space also contains two ‘missing’ lines (marked in italics in the next
table) of the above-described Fano planes.
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Case n = 5: 35 Veldkamp lines
H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23

13 + + +
14 + + +
15 + + +
16 + + +
17 + + +
18 + + +
19 + + +
20 + + +
21 + + +
22 + + +
23 + + +
24 + + +
25 + + +
26 + + +
27 + + +
28 + + +
29 + + +
30 + + +
31 + + +
32 + + +
33 + + +
34 + + +
35 + + +
36 + + +
37 + + +
38 + + +
39 + + +
40 + + +
41 + + +
42 + + +
43 + + +
44 + + +
45 + + +
46 + + +
47 + + +
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Case n = 5: full subgeometry
Summing up, the subgeometry of the Veldkamp space of C(D̃5) with lines of size three
comprises the projective space PG(3, 2) and a couple of disjoint Fano planes, each sharing a line
with this PG(3, 2). (It is also worth adding that in this case we have no exceptional Veldkamp
point(s) since there is no geometric hyperplane lacking line {2, 3}.)
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The central inset depicts those geometric hyperplanes each of which fully encodes all Veldkamp
points of a particular subgeometry, namely of the PG(3, 2) (H17, top), the two Fano planes (H1

and H5, middle) as well as of the two shared lines (H20 and H21, bottom).
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Case n = 5: two-qubit Pauli group

Next, pursuing the strategy of the preceding case, one labels six vertices of D̃5 by
elements of the two-qubit Pauli group as

0 → ZI , 1 → XI , 2 → YI , 3 → IY , 4 → IZ , 5 → IX ,

and gets the following bijection between the elements of the group and the points
of the PG(3, 2); this table also shows which elements of the two-qubit Pauli group
are ascribed to the remaining eight points of the two Fano planes.

P2 XY YX ZY YZ ZI IZ XI IX YY XX ZZ IY YI XZ ZX

PG(3, 2) H9 H10 H11 H12 H13 H14 H15 H16 H17 H18 H19 H20 H21 H22 H23

1st Fano H2 H3 H1 H4

2nd Fano H6 H7 H5 H8
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Case n = 5: two-qubit Pauli group
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A general view of the projective subgeometries of the Veldkamp space of C(D̃5) in terms of the
elements of the two-qubit Pauli group.
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Case n = 5: two-qubit Pauli group

The bijection is of similar nature as the one of the n = 4 case: that is, a line of
the PG(3, 2) entails three group elements whose product is II , and a line of the
distinguished copy of W (3, 2) gathers a triple of mutually commuting elements.

Yet, it also features an interesting novelty due to the fact that our PG(3, 2) has
two distinguished lines that it shares with the two Fano planes. If we forget about
the six group elements located on these two lines (highlighted by light shading in
the previous figure) we shall find that the remaining nine elements form within
the W (3, 2) nothing but a 3× 3 grid (or, what amounts to the same, a copy of
the generalized quadrangle GQ(2, 1)).

Physical importance of this observation lies, as we saw before, with the fact that
any such grid with the labeling inherited from that of its parent W (3, 2)
represents the so-called Mermin magic square.
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Case n = 6: geometric hyperplanes
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40 geometric hyperplanes of C(D̃6); an ellipse marks the (single) exceptional hyperplane.
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Case n = 6: projective stratification of Veldkamp space

A detailed inspection of the previous figure leads to the following observations:

The smallest hyperplane, H39, is contained in other 30 hyperplanes, which together yield 155
three-point Veldkamp lines and form the projective space isomorphic to PG(4, 2).

This projective space also contains a distinguished copy of PG(3, 2) that is defined by H38 and
the other 14 hyperplanes containing it.

Then we have a pair of complementary Fano planes, one defined by seven hyperplanes containing
H17, the other by seven hyperplanes comprising H21. Either of the two Fano planes shares a line
with the distinguished copy of PG(3, 2) (and, hence, also with the parent PG(4, 2)); it is the line
defined by three hyperplanes containing H36 in the former and H31 in the latter case.

This already accounts for 155 + (2× 6) = 167 Veldkamp lines. The remaining Veldkamp line is
{H20,H24,H37}, the joint of the two Fano planes, which is the only size-three Veldkamp line
passing through the exceptional Veldkamp point H37.
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Case n = 6: projective stratification of Veldkamp space

A symbolic structure of the Veldkamp space of C(D̃6). Each projective space (starting with the
PG(4, 2) at the top and ending with the ‘exceptional’ PG(1, 2) at the bottom) is represented by
a single hyperplane, viz. the one that fully determines the remaining hyperplanes defining the
space in question. Marked by ellipses are those spaces that are not properly contained in any
other space.
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Case n = 6: projective stratification of Veldkamp space
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The two Fano planes and the exceptional Veldkamp line interconnecting them. The lines that
also belong to the distinguished PG(3, 2) are drawn in boldface. (As before, the inset shows the
representative hyperplanes for these projective geometries).
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Case n = 6: two-qubit Pauli group

An interesting thing here happens when it comes to the relation with the two-qubit Pauli group,
as we have now at our disposal two natural labelings of the vertices of D̃6, both featuring, unlike
the previous two cases, also the identity element; in particular,

0 → ZI , 1 → XI , 2 → YI , 3 → II , 4 → IY , 5 → IZ , 6 → IX ,

and
0 → ZI , 1 → XI , 2 → II , 3 → YY , 4 → II , 5 → IZ , 6 → IX .

These two labelings give

the same labeling of the points of the distinguished PG(3, 2), but

different ones when the two interconnected Fano planes are concerned;

this difference is most pronounced for the exceptional Veldkamp line, as in the second case its
three points acquire the same label, this being the identity element at that.
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Case n = 6: two-qubit Pauli group
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The pair of interconnected Fano planes in light of the two distinct two-qubit labelings.
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Case n = 7: projective stratification of Veldkamp space

C(D̃7) is found to accommodate 64 geometric hyperplanes and 332 Veldkamp lines of size three,
with the following hierarchical projective structure

Figure: Stratification of the Veldkamp space of C(D̃7) in terms of projective
spaces it contains.
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Case n = 7: projective stratification of Veldkamp space
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The left and right PG(3, 2)s connected by the exceptional Veldkamp line. The seven points in
either of these spaces that are numbered in boldface represent the Fano plane lying also in the
corresponding PG(4, 2); the line of this Fano plane that also belongs to the distinguished
PG(3,2) is drawn thick. (As before, the inset depicts the representative hyperplane for each of
the projective spaces mentioned.)
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Case n = 7: two-qubit Pauli group

Regarding a relation with the two-qubit Pauli group, we again see close
parallels with the n = 6 case. For not only do we have again two natural
labellings of the vertices of D̃7,

0 → ZI , 1 → XI , 2 → YI , 3 → II , 4 → II , 5 → IY , 6 → IZ , 7 → IX ,

and

0 → ZI , 1 → XI , 2 → II , 3 → YI , 4 → IY , 5 → II , 6 → IZ , 7 → IX ,

but these also give identical labellings of the distinguished PG(3, 2),
furnishing the same prominent copy of the Mermin magic square; in
addition, as illustrated in the next figure, the two labelings of the
exceptional Veldkamp line are the same as those of its n = 6 counterpart.
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Case n = 7: two-qubit Pauli group
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The interconnected left and right PG(3, 2)s in terms of the two two-qubit labelings.
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Case n = 8: projective layering
The Veldkamp space of C(D̃8) has 105 points and 876 size-three lines, exhibiting the following
projective layering:

From the figure we find out that this Veldkamp space includes one PG(5, 2) (1st row) and one
PG(4, 2) (2nd row), the two having the distinguished PG(3, 2) in common (3rd row, middle).
Next, we have here other four PG(3, 2)s (3rd row, left- and right-hand side), forming two
complementary pairs. As before, there are two special, disjoint lines in the distinguished
PG(3, 2), which the latter shares with either of PG(3, 2)s in both complementary pairs.
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Case n = 8: exceptional Fano plane
However, the most interesting object for us is here the Fano plane represented by the hyperplane
depicted in the middle of the 4th row of the figure.
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The explicit structure of the unique Fano plane whose two points are represented by the two
exceptional hyperplanes of C(D̃8) and the associated three-qubit labeling of its points. The four
heavy lines and the six points on them form a Pasch configuration.
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Case n = 8: three qubit-labeling
This case is remarkable in that the most natural labeling of the (nine) vertices of D̃8 employs
elements of the three-qubit Pauli group, in particular

0 → XII , 1 → ZII , 2 → YII , 3 → IXI , 4 → IYI , 5 → IZI , 6 → IIY , 7 → IIX , 8 → IIZ .

It represents no difficulty to verify that this labeling yields a one-to-one correspondence between
63 elements of the three-qubit Pauli group and 63 points of the PG(5, 2). Under this
correspondence, our distinguished PG(3, 2) acquires the three-qubit lettering as follows:
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One explicitly sees a bijection between 15 points of this PG(3, 2) and 15 elements of a two-qubit
subgroup of the three-qubit Pauli group, the geometry of the subgroup encoded in the selected
copy of W (3, 2) and a three-qubit version of the Mermin magic square.
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Pseudo-Veldkamp spaces
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GQ(2,2): tricentric triads (form complementary pairs)
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On pseudo-Veldkamp spaces: Pasch configuration

Points of the Pasch configuration are the 6 ovoids of GQ(2,2). Three ovoids forming a line are
such that they have the same tricentric triad of GQ(2,2) in their complements. As tricentric
triads come in complementary pairs, we get this way two twin Pasch configurations that
originate from each other by a Pasch switch/trade.
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On pseudo-Veldkamp spaces: complete five-lateral

Points of the five-lateral are the 10 grids of GQ(2,2). Four grids forming a line are such that
there is only one point of GQ(2,2) that does not belong to any of them, the five single points
forming an ovoid of GQ(2,2).
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On pseudo-Veldkamp spaces: complete six-lateral

Points of the six-lateral are the 15 perps of GQ(2,2). Five perps forming a line are such that
their deep points form an ovoid of GQ(2,2).
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On pseudo-Veldkamp spaces: Steiner-Plücker twins

Points of the SP configuration are the 10 grids of GQ(2,2), two antipodal points being
represented by the same grid. Four grids forming a line are such that there is only one point of
GQ(2,2) that does not belong to any of them; the three single points that correspond to three
concurrent lines of the SP configuration form a tricentric triad of GQ(2,2).
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Thank you for your attention!
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