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Slovak Republic

(msaniga@astro.sk)

Elizabethtown College, Elizabethtown (U.S.A.)
24 April 2017



Overview

Introduction

Part I: Symplectic/orthogonal polar spaces and Pauli groups

Part II: Generalized polygons and black-hole-qubit correspondence

Conclusion

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 2 / 71



Introduction

Quantum information theory, an important branch of quantum physics, is
the study of how to integrate information theory with quantum mechanics,
by studying how information can be stored in (and/or retrieved from) a
quantum mechanical system.

Its primary piece of information is the qubit, an analog to the bit (1 or 0)
in classical information theory.

It is a dynamically and rapidly evolving scientific discipline, especially in
view of some promising applications like quantum computing and quantum
cryptography.
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Introduction

Among its key concepts one can rank generalized Pauli groups (also known
as Weyl-Heisenberg groups). These play an important role in the following
areas:

tomography (a process of reconstructing the quantum state),

dense coding (a technique of sending two bits of classical information
using only a single qubit, with the aid of entanglement),

teleportation (a technique used to transfer quantum states to distant
locations without actual transmission of the physical carriers),

error correction (protect quantum information from errors due to
decoherence and other quantum noise), and

black-hole–qubit correspondence.
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Introduction

A central objective of this talk is to demonstrate that
these particular groups are intricately related to a variety
of finite geometries, most notably to

symplectic and orthogonal polar spaces, and

generalized polygons.

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 5 / 71



Part I:
Symplectic/orthogonal polar spaces

and
Pauli groups
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Finite classical polar spaces: definition

Given a d-dimensional projective space over GF (q), PG(d , q),
q being a power of a prime.

A polar space P in this projective space consists of
the projective subspaces that are totally isotropic/singular in respect to
a given non-singular sesquilinear form; PG(d , q) is called the ambient
projective space of P.

A projective subspace of maximal dimension in P is called a generator;
all generators have the same (projective) dimension r − 1.

One calls r the rank of the polar space.

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 7 / 71



Finite classical polar spaces: relevant types

The symplectic polar space W (2N − 1, q), N ≥ 1,

this consists of all the points of PG(2N − 1, q) together with the totally
isotropic subspaces in respect to the standard symplectic form
θ(x , y) = x1y2 − x2y1 + · · ·+ x2N−1y2N − x2Ny2N−1;

the hyperbolic orthogonal polar space Q+(2N − 1, q), N ≥ 1,

this is formed by all the subspaces of PG(2N − 1, q) that lie on a given
nonsingular hyperbolic quadric, with the standard equation
x1x2 + . . .+ x2N−1x2N = 0;

the elliptic orthogonal polar space Q−(2N − 1, q), N ≥ 1,

formed by all points and subspaces of PG(2N − 1, q) that lie on a given
nonsingular elliptic quadric, satisfying the standard equation
f (x1, x2) + x3x4 + · · ·+ x2N−1x2N = 0, where f is irreducible over GF(q).
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Generalized real N-qubit Pauli groups

The generalized real N-qubit Pauli groups, PN , are generated by N-fold
tensor products of the matrices

I =

(

1 0
0 1

)

, X =

(

0 1
1 0

)

, Y =

(

0 −1
1 0

)

and Z =

(

1 0
0 −1

)

.

Explicitly,

PN = {±A1 ⊗ A2 ⊗ · · · ⊗ AN : Ai ∈ {I ,X ,Y ,Z}, i = 1, 2, · · · ,N}.

Here, we are more interested in their factor groups PN ≡ PN/Z(PN),
where the center Z(PN) consists of ±I(1) ⊗ I(2) ⊗ · · · ⊗ I(N).
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Polar spaces and N-qubit Pauli groups

For a particular value of N,
the 4N − 1 elements of PN\{I(1) ⊗ I(2) ⊗ · · · ⊗ I(N)} can be bijectively
identified with the same number of points of W (2N − 1, 2) in such a way
that:

two commuting elements of the group will lie on the same totally
isotropic line of this polar space;

those elements of the group whose square is +I(1) ⊗ I(2) ⊗ · · · ⊗ I(N),
i. e. symmetric elements, lie on a certain Q+(2N − 1, 2) of the
ambient space PG(2N − 1, 2); and

generators, of both W (2N − 1, 2) and Q+(2N − 1, 2), correspond to
maximal sets of mutually commuting elements of the group.
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Example – 2-qubits: W (3, 2) and the Q+(3, 2)

YX YZ

YI

XZZX

XY

XI

IX

XX YY ZZ

IZ

ZI

ZY

IY

W (3, 2): 15 points/lines (AB ≡ A⊗ B); Q+(3, 2): 9 points/6 lines
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Example – 2-qubits: W (3, 2) and its distinguished subsets,
viz. grids (red), perps (yellow) and ovoids (blue)

Physical meaning:

ovoid (blue) ∼= Q−(3, 2): maximum set of mutually non-commuting elements,

perp (yellow) ∼= quadratic cone: set of elements commuting with a given one,

grid (red) ∼= Q+(3, 2): Mermin “magic” square (K-S theorem, ruling out
non-contextual/hidden-variables’ theories of QM).
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Example – 3-qubits: W (5, 2), Q+(5, 2) and Q−(5, 2)

W (5, 2) comprises:

63 points,

315 lines, and

135 generators (Fano planes).

Q+(5, 2) is the famous Klein quadric; there exists a bijection between

its 35 points and 35 lines of PG(3, 2), and

its two systems of 15 generators and 15 points/15 planes of PG(3, 2).

Q−(5, 2) features:

27 points (3 per line),

45 lines (5 through a point), and

36 copies of W (3, 2).
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Example – 3-qubits: Q−(5, 2)
A model of Q−(5, 2) built around W (3, 2)
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Example – 3-qubits: split Cayley hexagon
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Split Cayley hexagon of order two can be embedded into W (5, 2) in two
different ways, usually referred to as classical (left) and skew (right).
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Example – 3-qubits: Q+(5, 2) inside the “classical” sCh
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H_6

It is also an example of a geometric hyperplane, i. e., of a subset of the
point set of the geometry such that a line either lies fully in the subset or
shares with it just a single point.
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Example – 3-qubits: types of geom. hyperplanes of sCh

Class FJ Type Pts Lns DPts Cps StGr

I V2(21;21,0,0,0) 21 0 0 36 PGL(2, 7)
II V7(23;16,6,0,1) 23 3 1 126 (4 × 4) : S3
III V11(25;10,12,3,0) 25 6 0 504 S4

IV V1(27;0,27,0,0) 27 9 0 28 X+
27 : QD16

V8(27;8,15,0,4) 27 9 3+1 252 2 × S4
V13(27;8,11,8,0) 27 8+1 0 756 D16
V17(27;6,15,6,0) 27 6+3 0 1008 D12

V V12(29;7,12,6,4) 29 12 4 504 S4
V18(29;5,12,12,0) 29 12 0 1008 D12
V19(29;6,12,9,2) 29 12 2nc 1008 D12
V23(29;4,16,7,2) 29 12 2c 1512 D8

VI V6(31;0,24,0,7) 31 15 6+1 63 (4 × 4) : D12
V24(31;4,12,12,3) 31 15 2+1 1512 D8
V25(31;4,12,12,3) 31 15 3 2016 S3

VII V14(33;4,8,17,4) 33 18 2+2 756 D16
V20(33;2,12,15,4) 33 18 3+1 1008 D12

VIII V3(35;0,21,0,14) 35 21 14 36 PGL(2, 7)
V16(35;0,13,16,6) 35 21 4+2 756 D16
V21(35;2,9,18,6) 35 21 6 1008 D12

IX V15(37;1,8,20,8) 37 24 8 756 D16
V22(37;0,12,15,10) 37 24 6+3+1 1008 D12

X V10(39;0,10,16,13) 39 27 8+4+1 378 8 : 2 : 2
XI V9(43;0,3,24,16) 43 33 12+3+1 252 2 × S4

XII V5(45;0,0,27,18) 45 36 18 56 X+
27 : D8

XIII V4(49;0,0,21,28) 49 42 28 36 PGL(2, 7)
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Example – 3-qubits: classical vs. skews embeddings of sCh

Given a point (3-qubit observable) of the hexagon, there are 30 other
points (observables) that lie on the totally isotropic lines passing through
the point (commute with the given one).

The difference between the two types of embedding lies with the fact the
sets of such 31 points/observables are geometric hyperplanes:

of the same type (V6) for each point/observable in the former case,
and

of two different types (V6 and V24) in the latter case.
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Example – 3-qubits: sCh and its V6 (left) and V24 (right)
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Example – 3-qubits: the “magic” Mermin pentagram

A Mermin’s pentagram (furnishing an observable proof of the K-S
theorem) is a configuration consisting of ten three-qubit operators
arranged along five edges sharing pairwise a single point. Each edge

features four operators that are pairwise commuting and whose product is
+III or −III , with the understanding that the latter possibility occurs an

odd number of times.
IIX

XXZ

IZIIXI

ZZZ ZXX XZX

XII

IIZ

ZII

IIX

XZX

IZI

IXI

ZZZ

ZXX

XXZ

XII

IIZ

ZII

Figure: Left: — An illustration of the Mermin pentagram. Right: — A picture of
the finite geometric configuration behind the Mermin pentagram: the five edges
of the pentagram correspond to five copies of the affine plane of order two,
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Example – 3-qubits: the “magic” number 12 096

12 096 is:

the number of distinct automorphisms of the split Cayley hexagon of
order two,

also the number of distinct magic Mermin pentagrams within the
generalized three-qubit Pauli group,

also the number of distinct 4-faces of the Hess (aka 321) polytope,

. . . .

Is this a mere coincidence, or is there a deeper conceptual reason behind?
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Example – 3-qubits: the “magic” number 12 096
The latter seems to be the case, given the existence of a magic three-qubit
Veldkamp line, namely the line featuring an elliptic quadric, a hyperbolic quadric
and a quadratic cone of W (5, 2).

15+1

12 20

(par. quad. of PG(4,2)
with its nucleus)

(GQ(2,2),
Cayley-Salmon)

15

(dual of the
Schläfli double-six)

(Steiner-Plücker)

The “green” sector of this line contains 12 distinct Mermin pentagrams; as there
are 1 008 different copies of such line in W (5, 2), and no two copies have a
pentagram in common, we indeed get 12× 1 008 = 12 096 Mermin pentagrams in
total (Lévay and Szabó, J. Phys. A: Math. Theor. 50 (2017) 095201).
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Example – 4-qubits: W (7, 2) and the Q+(7, 2)
W (7, 2) comprises:

255 points,

. . . ,

. . . ,

2295 generators (Fano spaces, PG(3, 2)s).

Q+(7, 2), the triality quadric, possesses

135 points,

1575 lines,

2025 planes, and

2× 135 = 270 generators.

It exhibits a remarkably high degree of symmetry called a triality:
point → generator of 1st system → generator of 2nd system → point.
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Example – 4-qubits: Q+(7, 2) and H(17051)
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Example – 4-qubits: ovoids of Q+(7, 2)

An ovoid of a non-singular quadric is a set of points that has exactly one
point common with each of its generators.

An ovoid of Q−(2s − 1, q), Q(2s, q) or Q+(2s + 1, q) has qs + 1 points;
an ovoid of Q+(7, 2) comprises 23 + 1 = 9 points.

A geometric structure of the 4-qubit Pauli group can nicely be “seen
through” ovoids of Q+(7, 2).
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Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: Left: A diagrammatical illustration of the ovoid O∗. Right: The set of 36
skew-symmetric elements of the group that corresponds to the set of third points
of the lines defined by pairs of points of our ovoid.
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Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: Left: A partition of our ovoid into three conics (vertices of dashed
triangles) and the corresponding axis (dotted). Right: The tetrad of mutually
skew, off-quadric lines (dotted) characterizing a particular partition of O∗; also
shown in full are the three Fano planes associated with the partition.
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Example – 4-qubits: charting via ovoids of Q+(7, 2)

ZIIX

IZYY

ZZIZ IXXZ

ZXZZ

XZXI

ZYIX

IXYX ZZYI

YZXI

XIZI YYZX

XXXX
ZIII

XYYZ

YYIZXIXZ

YIZY

XZXX

Figure: A conic (doubled circles) of O∗ (thick circles), is located in another ovoid
(thin circles). The six lines through the nucleus of the conic (dashes) pair the
distinct points of the two ovoids (a double-six). Also shown is the ambient Fano
plane of the conic.
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Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: An example of the set of 27 symmetric operators of the group that can be
partitioned into three ovoids in two distinct ways. The six ovoids, including O∗

(solid nonagon), have a common axis (shown in the center).
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Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: A schematic sketch illustrating intersection, Q−(5, 2), of the Q+(7, 2) and
the subspace PG(5, 2) spanned by a sextet of points (shaded) of O∗; shown are
all 27 points and 30 out of 45 lines of Q−(5, 2). Note that each point outside the
double-six occurs twice; this corresponds to the fact that any two ovoids of
GQ(2, 2) have a point in common. The point ZYII is the nucleus of the conic
defined by the three unshaded points of O∗.
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Example – 4-qubits: charting via ovoids of Q+(7, 2)

YXIY XYYX ZZZX ZXZI XZXZ IIXX XIZI

IXZZ YIYZ YYYY IIIX XZIZ IZYY

XZII XXIX ZZYY YIYI ZIIX

ZIXX XYZY IXZI XXXX

XIZZ IZZX XZXI

YXXY ZXZZ

YYZX

Figure: A sketch of all the eight ovoids (distinguished by different colours) on the
same pair of points. As any two ovoids share, apart from the two points common
to all, one more point, they comprise a set of 28 + 2 points. If one point of the
28-point set is disregarded (fully-shaded circle), the complement shows a notable
15 + 2× 6 split (illustrated by different kinds of shading).

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 31 / 71



Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: A set of nuclei (hexagons) of the 28 conics of O∗ having a common point
(double-circle); when one nucleus (double-hexagon) is discarded, the set of
remaining 27 elements is subject to a natural 15 + 2× 6 partition (illustrated by
different types of shading).
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Example – 4-qubits: charting via ovoids of Q+(7, 2)
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Figure: An illustration of the seven nuclei (hexagons) of the conics on two
particular points of O∗ (left) and the set of 21 lines (dotted) defined by these
nuclei (right). This is an analog of a Conwell heptad of PG(5, 2) with respect to a
Klein quadric Q+(5, 2) — a set of seven out of 28 points lying off Q+(5, 2) such
that the line defined by any two of them is skew to Q+(5, 2).
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Example – 4-qubits: Q+(7, 2) and W (5, 2)

There exists an important bijection, furnished by Gr(3, 6), LGr(3, 6) and
entailing the fact that one works in characteristic 2, between

the 135 points of Q+(7, 2) of W (7, 2) (i. e., 135 symmetric elements
of the four-qubit Pauli group)

and

the 135 generators of W (5, 2) (i. e., 135 maximum sets of mutually
commuting elements of the three-qubit Pauli group).

This mapping, for example, seems to indicate that the above-mentioned
three distinct contexts for the number 12 096 are indeed intricately related.
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Example – N-qubits: Q+(2N − 1, 2) and W (2N − 1, 2)

In general (N ≥ 3), there exists a bijection, furnished by Gr(N, 2N),
LGr(N, 2N) and entailing the fact that one works in characteristic 2,
between

a subset of points of Q+(2N − 1, 2) of W (2N − 1, 2) (i. e., a subset of
symmetric elements of the 2N−1-qubit Pauli group)

and

the set of generators of W (2N − 1, 2) (i. e., the set of maximum sets
of mutually commuting elements of the N-qubit Pauli group).

Work in progress: a detailed analysis of the N = 4 case.
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Part II:
Generalized polygons

and
black-hole-qubit correspondence
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Generalized polygons: definition and existence
A generalized n-gon G; n ≥ 2, is a point-line incidence geometry which
satisfies the following two axioms:

G does not contain any ordinary k-gons for 2 ≤ k < n.

Given two points, two lines, or a point and a line, there is at least one
ordinary n-gon in G that contains both objects.

A generalized n-gon is finite if its point set is a finite set.
A finite generalized n-gon G is of order (s, t); s, t ≥ 1, if

every line contains s + 1 points and

every point is contained in t + 1 lines.

If s = t, we also say that G is of order s.

If G is not an ordinary (finite) n-gon, then n = 3, 4, 6, and 8.

J. Tits, 1959: Sur la trialité et certains groupes qui sen déduisent, Inst.
Hautes Etudes Sci. Publ. Math. 2, 14–60.
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Generalized polygons: smallest (i. e., s = 2) examples

n = 3: generalized triangles, aka projective planes
s = 2: the famous Fano plane (self-dual); 7 points/lines
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Gino Fano, 1892: Sui postulati fondamentali della geometria in uno spazio
lineare ad un numero qualunque di dimensioni, Giornale di matematiche
30, 106–132.
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Generalized polygons: smallest (i. e., s = 2) examples

n = 4: generalized quadrangles
s = 2: GQ(2, 2), alias our old friend W (3, 2), the doily (self-dual)
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Generalized polygons: smallest (i. e., s = 2) examples

n = 6: generalized hexagons
s = 2: split Cayley hexagon and its dual; 63 points/lines
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Generalized polygons: GQ(4, 2), aka H(3, 4)
It contains 45 points and 27 lines, and can be split into

a copy of GQ(2, 2) (black) and
famous Schläfli’s double-six of lines (red)

in 36 ways.

GQ(2, 2) is not a geometric hyperplane in GQ(4, 2).
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Generalized polygons: GQ(2, 4), aka Q−(5, 2)

The dual of GQ(4, 2), featuring 27 points and 45 lines.
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GQ(2, 2) is a geometric hyperplane in GQ(2, 4).
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Black holes

Black holes are, roughly speaking, objects of very large mass.

They are described as classical solutions of Einstein’s equations.

Their gravitational attraction is so large that even light cannot
escape them.
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Black holes

A black hole is surrounded by an imaginary surface – called the
event horizon – such that no object inside the surface can ever
escape to the outside world.

To an outside observer the event horizon appears completely
black since no light comes out of it.
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Black holes

However, if one takes into account quantum mechanics, this
classical picture of the black hole has to be modified.

A black hole is not completely black, but radiates as a black
body at a definite temperature.

Moreover, when interacting with other objects a black hole
behaves as a thermal object with entropy.

This entropy is proportional to the area of the event horizon.

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 47 / 71



Black holes

The entropy of an ordinary system has a microscopic statistical
interpretation.

Once the macroscopic parameters are fixed, one counts the
number of quantum states (also called microstates) each yielding
the same values for the macroscopic parameters.

Hence, if the entropy of a black hole is to be a meaningful
concept, it has to be subject to the same interpretation.
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Black holes

One of the most promising frameworks to handle this tasks is the
string theory.

Of a variety of black hole solutions that have been studied within
string theory, much progress have been made in the case of
so-called extremal black holes.
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Extremal black holes

Consider, for example, the Reissner-Nordström solution of the
Einstein-Maxwell theory

Extremality:

Mass = charge

Outer and inner horizons coincide

H-B temperature goes to zero

Entropy is finite and function of charges only
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Embedding in string theory

String theory compactified to D dimensions typically involves
many more fields/charges than those appearing in the
Einstein-Maxwell Lagrangian.

We shall first deal with the E6-symmetric entropy formula
describing black holes and black strings in D = 5.
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E6, D = 5 black hole entropy and GQ(2, 4)

The corresponding entropy formula reads S = π
√
I3 where

I3 = DetJ3(P) = a3 + b3 + c3 + 6abc ,

and where

a3 =
1

6
εA1A2A3ε

B1B2B3aA1
B1a

A2
B2a

A3
B3 ,

b3 =
1

6
εB1B2B3εC1C2C3b

B1C1bB2C2bB3C3 ,

c3 =
1

6
εC1C2C3εA1A2A3cC1A1cC2A2cC3A3 ,

abc =
1

6
aABb

BCcCA.

I3 contains altogether 45 terms, each being the product of three charges.
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E6, D = 5 black hole entropy and GQ(2, 4)

A bijection between

the 27 charges of the black hole and

the 27 points of GQ(2,4):

{1, 2, 3, 4, 5, 6} = {c21, a21, b01, a01, c01, b21},
{1′, 2′, 3′, 4′, 5′, 6′} = {b10, c10, a12, c12, b12, a10},

{12, 13, 14, 15, 16, 23, 24, 25, 26} = {c02, b22, c00, a11, b02, a00, b11, c22, a02},
{34, 35, 36, 45, 46, 56} = {a20, b20, c11, c20, a22, b00}.
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E6, D = 5 black hole entropy and GQ(2, 4)
Full “geometrization” of the entropy formula by GQ(2, 4):

27 charges are identified with the points and

45 terms in the formula with the lines.
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Three distinct kinds of charges correspond to three different grids
(GQ(2, 1)s) partitioning the point set of GQ(2, 4).
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E6, D = 5 bh entropy and GQ(2, 4): three-qubit labeling
(GQ(2, 4) ∼= Q−(5, 2) living in PG(5, 2)/W (5, 2))
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E6, D = 5 bh entropy and GQ(2, 4): two-qutrit labeling
(GQ(2, 4) as derived from symplectic GQ(3, 3))
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(Y ≡ XZ ,W ≡ X 2Z .)
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E6, D = 5 black hole entropy and GQ(2, 4)

Different truncations of the entropy formula with

15,

11, and

9

charges correspond to the following natural splits in the GQ(2, 4):

Doily-induced: 27 = 15 + 2 × 6

Perp-induced: 27 = 11 + 16

Grid-induced: 27 = 9 + 18
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E7, D = 4 bh entropy and split Cayley hexagon

The most general class of black hole solutions for the E7,D = 4 case is
defined by 56 charges (28 electric and 28 magnetic), and the entropy
formula for such solutions is related to the square root of the quartic
invariant

S = π
√

|J4|.
Here, the invariant depends on the antisymmetric complex 8× 8 central
charge matrix Z,

J4 = Tr(ZZ)2 − 1

4
(TrZZ)2 + 4(PfZ + PfZ),

where the overbars refer to complex conjugation and

PfZ =
1

24 · 4!ǫ
ABCDEFGHZABZCDZEFZGH .
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E7, D = 4 bh entropy and split Cayley hexagon

An alternative form of this invariant is

J4 = −Tr(xy)2 +
1

4
(Trxy)2 − 4(Pfx + Pfy).

Here, the 8× 8 matrices x and y are antisymmetric ones containing 28
electric and 28 magnetic charges which are integers due to quantization.

The relation between the two forms is given by

ZAB = − 1

4
√
2
(x IJ + iyIJ)(Γ

IJ)AB .

Here (ΓIJ)AB are the generators of the SO(8) algebra, where (IJ) are the
vector indices (I , J = 0, 1, . . . , 7) and (AB) are the spinor ones
(A,B = 0, 1, . . . , 7).
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E7, D = 4 bh entropy and split Cayley hexagon
The 28 independent components of 8× 8 antisymmetric matrices x IJ + iyIJ and
ZAB , or (Γ

IJ)AB , can be put – when relabelled in terms of the elements of the
three-qubit Pauli group – in a bijection with the 28 points of the Coxeter
subgeometry of the split Cayley hexagon of order two.
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E7, D = 4 bh entropy and split Cayley hexagon

The Coxeter graph fully underlies the PSL2(7) sub-symmetry of the
entropy formula.

A unifying agent behind the scene is, however, the Fano plane:
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. . . because its 7 points, 7 lines, 21 flags (incident point-line pairs) and 28
anti-flags (non-incident point-line pairs; Coxeter) completely encode the
structure of the split Cayley hexagon of order two.
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Coxeter graph and Fano plane

A vertex of the Coxeter graph is

an anti-flag of the Fano plane.

Two vertices are connected by an edge if

the corresponding two anti-flags cover the whole plane.
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Link between E6, D = 5 and E7, D = 4 cases

GQ(2, 4) derived from the split Cayley hexagon of order two:

One takes a (distance-3-)spread in the hexagon, i. e., a set of 27 points
located on 9 lines that are pairwise at maximum distance from each other
(which is also a geometric hyperplane, namely that of type
V1(27;0,27,0,0)), and construct GQ(2, 4) as follows:

its points are the 27 points of the spread;

its lines are
◮ the 9 lines of the spread and
◮ another 36 lines each of which comprises three points of the spread

which are collinear with a particular off-spread point of the hexagon.
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Link between E6, D = 5 and E7, D = 4 cases
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Saniga, M., Green, R. M., Lévay, P., Pracna, P., and Vrana, P.: 2010, The
Veldkamp Space of GQ(2, 4), International Journal of Geometric Methods
in Modern Physics 7(7), 1133–1145; (arXiv:0903.0715).

Lévay, P., Holweck, F., and Saniga, M.: 2017, The Magic Three-Qubit
Veldkamp Line: A Finite Geometric Underpinning for Form Theories of
Gravity and Black Hole Entropy, Physical Review D, submitted;
(arXiv:1704.01598).

M. Saniga (Astro-Inst SAV) Quantum Finite Geometries Elizabethtown, 24 April 2017 65 / 71



Conclusion – implications for future research

In addition to projective ring lines, generalized polygons, symplectic and
orthogonal polar spaces and their duals, it is also desirable to examine
Hermitian varieties H(d , q2) for certain specific values of dimension d and
order q.

Given the fact that the structure of extremal stationary spherically
symmetric black hole solutions in the STU model of D = 4, N = 2
supergravity can be described in terms of four-qubit systems, the H(3, 4)
variety is also notable, because its points can be identified with the images
of triples of mutually commuting operators of the generalized Pauli group
of four-qubits via a geometric spread of lines of PG(7, 2).
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Conclusion – implications for future research

There is also an infinite family of tilde geometries associated with non-split
extensions of symplectic groups over a Galois field of two elements that
are worth a careful look at.

One of the simplest of them, W̃ (2), is the flag-transitive, connected triple

cover of the unique generalized quadrangle GQ(2, 2). W̃ (2) is remarkable
in that it can be, like the split Cayley hexagon of order two and GQ(2, 4),
embedded into PG(5, 2).
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Conclusion – implications for future research

The third aspect of prospective research is graph theoretical.

This aspect is very closely related to the above-discussed finite geometrical
one because both GQ(2, 2) and the split Cayley hexagon of order two are
bislim geometries, and in any such geometry the complement of a
geometric hyperplane represents a cubic graph.

A cubic graph is one in which every vertex has three neighbours and so, by
Vizing’s theorem, three or four colours are required for a proper edge
colouring of any such graph.

And there, indeed, exists a very interesting but somewhat mysterious
family of cubic graphs, called snarks, that are not 3-edge-colourable, i.e.
they need four colours.
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Conclusion – implications for future research

Why should we be bothered with snarks?

Well, because the smallest of all snarks, the Petersen graph, is isomorphic
to the complement of a particular kind of hyperplane (namely an ovoid) of
GQ(2, 2)!

On the one hand, there exists a noteworthy built-up principle of creating
snarks from smaller ones embodied in the (iterated) dot product operation
on two (or more) cubic graphs; given arbitrary two snarks, their dot
product is always a snark.

In fact, a majority of known snarks can be built this way from the Petersen
graph alone. Hence, the Petersen graph is an important “building block”
of snarks; in this light, it is not so surprising to see GQ(2, 2) playing a
similar role in QIT.
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Conclusion – implications for future research

On the other hand, the non-planarity of snarks immediately poses a
question on what surface a given snark can be drawn without crossings,
i. e. what its genus is.

The Petersen graph can be embedded on a torus and, so, is of genus one.

If other snarks emerge in the context of the so-called black-hole-qubit
correspondence, comparing their genera with those of manifolds occurring
in major compactifications of string theory will also be an insightful task.
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