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Introduction

The thesis comprises 25 selected papers focusing on the role of finite ring
geometry in quantum theory of information and certain stringy black-hole
entropy formulas.

These papers represent an outcome of six-year research that started with
the topics of MUBs; this was the topic where we realized that ordinary
projective spaces, i.e. spaces defined over fields, are too rigid a framework
to tackle the problem properly and found out that completely new vistas
open up if one considers projective geometries defined over rings that are
not fields.
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Introduction

The next subject of our theoretical explorations was the so-called Mermin
“magic” square, i. e. a 3× 3 array of nine two-qubit observables
commuting pairwise in each row and each column and arranged such that
their product properties contradict those of the assigned eigenvalues (and
which furnishes a proof of the Kochen-Specker theorem).

The geometry behind such an array was originally surmised to be a
subgeometry of the projective line over the factor ring GF (2)[x ]/〈x3 − x〉,
but, in fact, it turned out to be a little simpler, namely that of the
projective line over GF (2)× GF (2).
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Introduction

This observation was a key for us to discover that the generalized Pauli
groups associated with multi-qubits are underlined by the geometry of
symplectic polar spaces of order two.

Here, the two-qubit case was analyzed in exhaustive detail, given the fact
that the corresponding symplectic polar space is also the smallest
non-trivial generalized quadrangle GQ(2, 2) — the “doily” — which also
lives in the projective line over the full 2× 2 matrix ring over GF (2).

Using the well-known bijection between the 35 points of this latter line
and the 35 lines of the projective space PG(3, 2), we were also able to
unveil the perfect correspondence between three distinct types of
geometric hyperplanes of GQ(2, 2), and three different kinds of the
projective sub-lines over rings of order four of the line in question.
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Introduction

Focusing subsequent attention on general single-qudits, a breakthrough
followed with projective lines over modular rings coming into play and the
start of collaboration with Prof. Hans Havlicek (TUW, Vienna) and others.

The most distinguished achievement in this respect is, undoubtedly, the
unified algebraic-group-geometrical theory of the generalized Pauli group
of a single qudit in the Hilbert space of any finite dimension and a unifying
framework for geometry of generalized Pauli groups of a specific family of
multi-qudits.
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Introduction

It was at the time of recognition of finite symplectic polar spaces and
projective ring lines as a class of relevant geometries behind finite Hilbert
spaces, when I became familiar with the work of Péter Lévay (BUTE,
Budapest) on closely related topics.

Lévay was exploring some of the mathematical coincidences between
black-hole solutions in string theory and quantum entanglement and found
that some symmetry structures relevant to string theories are encoded into
the incidence structure of the simplest projective plane, the Fano plane.

In particular, he discovered that different types of black-hole solutions can
be neatly classified in terms of different types of entangled quantum states
attached to the points/lines of the Fano plane and that the black hole
entropy formula based on the Fano plane yields an entanglement measure
of seven qubits.
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Introduction

Knowing that the Fano plane is the smallest generalized triangle, we
employed its two closest allies within the family of finite generalized
polygons, namely

the split Cayley hexagon of order two and

the generalized quadrangle of type GQ(2, 4),

to reveal a fascinating finite-geometrical nature of

the E7-symmetric black hole entropy formula of N = 8, D = 4
supergravity and

the E6-symmetric entropy formula describing black holes and black
string in D = 5,

respectively.

In both the cases, the crucial element employed was the properties of
three-qubit Pauli group, and the associated symplectic polar space
W (5, 2).
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Introduction

As it is often the case, interesting physical applications entail important
findings of purely mathematical nature.

In our case this resulted in

giving the first, computer-free classification of projective lines up to
order 31,

discovery of the so-called “Fano-snowflake” and its
higher-dimensional analogues,

the first classification of geometric hyperplanes of the near-hexagon
L3× GQ(2, 2) and, finally, in

arriving at a deeper insight into the nature of the Veldkamp space of
the generalized quadrangle GQ(2, 4) and its dual, GQ(4, 2).
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Projective ring lines
and

Pauli groups
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Rings: a few generalities

In what follows the word “ring” will always mean a finite associative ring
with unity (“1”).

An element of such a ring is either

unit (invertible element), or

a (two-sided) zero-divisor.

A special role will be played by a local ring, i. e. a ring with the unique
maximal left ideal (which is also the unique maximal right ideal).
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Rings: illustrative examples

GF (4 = 22) ∼= GF (2)[x ]/〈x2 + x + 1〉: order 4, characteristic 2, a field

+ 0 1 x x + 1

0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1

0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1

x + 1 0 x + 1 1 x
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Rings: illustrative examples

GF (2)[x ]/〈x2〉: order 4, Characteristic 2, local ring

+ 0 1 x x + 1

0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1

0 0 0 0 0
1 0 1 x x + 1
x 0 x 0 x

x + 1 0 x + 1 x 1

A unique maximal (and also principal) ideal: I〈x〉 = {0, x}.
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Rings: illustrative examples

Z4: order 4, characteristic 4, local ring

+ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

× 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

A unique maximal (and also principal) ideal: I〈x〉 = {0, 2}.

Both Z4 and GF (2)[x ]/〈x2〉 have the same multiplication table.
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Rings: illustrative examples
GF (2)[x ]/〈x(x + 1)〉 ∼= GF (2)× GF (2): order 4, characteristic 2

+ 0 1 x x + 1

0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1

x + 1 x + 1 x 1 0

× 0 1 x x + 1

0 0 0 0 0
1 0 1 x x + 1
x 0 x x 0

x + 1 0 x + 1 0 x + 1

Two maximal (and principal as well) ideals: I〈x〉 = {0, x} and
I〈x+1〉 = {0, x + 1}.
Each element except 1 is a zero-divisor.
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Rings: illustrative examples

M2(GF (2)) and its subrings:

the full two-by-two matrix ring with coefficients in
the Galois field GF (2), i. e.,

R = M2(GF (2)) ≡
{(

a b
c d

)
| a, b, c , d ∈ GF (2)

}
.
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Rings: illustrative examples – M2(GF (2))

Units: (Matrices with non-zero determinant.) They are of two distinct
kinds: those which square to 1,

1 ≡
(

1 0
0 1

)
, 2 ≡

(
0 1
1 0

)
, 9 ≡

(
1 1
0 1

)
, 11 ≡

(
1 0
1 1

)
,

and those which square to each other,

12 ≡
(

0 1
1 1

)
, 13 ≡

(
1 1
1 0

)
.
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Rings: illustrative examples – M2(GF (2))

Zero-divisors: (Matrices with vanishing determinant.) These are also of
two different types: nilpotent, i. e. those which square to zero,

3 ≡
(

1 1
1 1

)
, 8 ≡

(
0 1
0 0

)
, 10 ≡

(
0 0
1 0

)
, 0 ≡

(
0 0
0 0

)
,

and idempotent, i. e. those which square to themselves,

4 ≡
(

0 0
1 1

)
, 5 ≡

(
1 0
1 0

)
, 6 ≡

(
0 1
0 1

)
, 7 ≡

(
1 1
0 0

)
,

14 ≡
(

0 0
0 1

)
, 15 ≡

(
1 0
0 0

)
.
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Rings: illustrative examples – M2(GF (2))

0

57

1514

46

1038

1312

1129

1

M (GF(2))2

zd

u

The subrings of M2(GF (2)): GF (4) (yellow), GF (2)[x ]/〈x2〉 (red),
GF (2)× GF (2) (pink), and the non-commutative ring of ternions (green).
(Dashes/dots – upper/lower triangular matrices.)
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Projective ring line: admissible pair

Consider a ring R and GL(2,R), the general linear group of invertible
two-by-two matrices with entries in R .

A pair (a, b) ∈ R2 is called admissible over R if there exist c , d ∈ R such
that (

a b
c d

)
∈ GL(2,R), (1)

which for commutative R reads

det

(
a b
c d

)
∈ R∗. (2)

A pair (a, b) ∈ R2 is called unimodular over R if there exist c , d ∈ R such
that ac + bd = 1.

For finite rings: admissible ⇔ unimodular.
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Projective ring line: free cyclic submodules

R(a, b), a (left) cyclic submodule of R2:
R(a, b) =

{
(αa, αb)|(a, b) ∈ R2, α ∈ R

}
.

A cyclic submodule R(a, b) is called free if the mapping α �→ (αa, αb) is
injective, i. e., if all (αa, αb) are distinct.

Crucial property: if (a, b) is admissible, then R(a, b) is free.

P(R), the projective line over R :
P(R) =

{
R(a, b) ⊂ R2|(a, b) admissible

}
.

However, there also exist rings yielding free cyclic submodules (FCSs)
containing no admissible pairs!
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Projective ring line: neighbour/distant relation

P(R) carries two non-trivial, mutually complementary relations of
neighbour and distant.

In particular, its two distinct points X :=R(a, b) and Y :=R(c , d)
are called neighbour (or, parallel) if

(
a b
c d

)
/∈ GL(2,R) (3)

and distant otherwise, i. e., if

(
a b
c d

)
∈ GL(2,R). (4)
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Projective ring line: neighbour/distant relation ctd.

The neighbour relation is
⇒ reflexive and
⇒ symmetric but, in general,
⇒ not transitive.

If R is local, then the neighbour relation is also transitive and, hence, an
equivalence relation.

Obviously, if R is a field, then neighbour simply reduces to identical.

Since any two distant points of P(R) have only the pair (0, 0) in common
and this pair lies on any cyclic submodule, then two distinct points
A =: R(a, b) and B =: R(c , d) of P(R) are
⇒ distant if |R(a, b) ∩ R(c , d)| = 1 and
⇒ neighbour if |R(a, b) ∩ R(c , d)| > 1.

Two different FCSs can only share a non-admissible vector.
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Projective ring line: two kinds of points

Type I: R(a, b) where at least one entry is a unit.
For a finite ring, their number is equal to the sum of the total number of
elements of the ring and the number of its zero-divisors.

Type II: R(a, b) where both entries are zero-divisors.
These points exist only if the ring has two or more maximal ideals.
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Projective ring line: illustrative examples

R = GF (4) (next figure, top):

the line contains 4 (total # of elements) + 1 (# of zero-divisors)
= 5 points (all type I):
R(1, 0) = {(0, 0), (1, 0), (x , 0), (x + 1, 0)},
R(1, 1) = {(0, 0), (1, 1), (x , x), (x + 1, x + 1)},
R(1, x) = {(0, 0), (1, x), (x , x + 1), (x + 1, 1)},
R(1, x + 1) = {(0, 0), (1, x + 1), (x , 1), (x + 1, x)},
R(0, 1) = {(0, 0), (0, 1), (0, x), (0, x + 1)}.

Any two of them are distant because this ring is a field.

M. Saniga (Astro-Inst SAV) Finite Ring Geometries 25/09/2012 25 / 89



Projective ring line: illustrative examples

R = GF (2)[x ]/〈x2〉 (next figure, middle):
the line contains 4 + 2 = 6 points (all type I),
R(1, 0) = {(0, 0), (1, 0), (x , 0), (x + 1, 0)},
R(1, 1) = {(0, 0), (1, 1), (x , x), (x + 1, x + 1)},
R(1, x) = {(0, 0), (1, x), (x , 0), (x + 1, x)},
R(1, x + 1) = {(0, 0), (1, x + 1), (x , x), (x + 1, 1)},
R(0, 1) = {(0, 0), (0, 1), (0, x), (0, x + 1)},
R(x , 1) = {(0, 0), (x , 1), (0, x), (x , x + 1)}.

They form three pairs of neighbours, namely:
R(1, 0) and R(1, x),
R(0, 1) and R(x , 1),
R(1, 1) and R(1, x + 1),
because this ring is local.

R = Z4: the line has the same structure as the previous one.
(Non-isomorphic rings can have isomorphic lines.)
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Projective ring line: illustrative examples

R = GF (2)× GF (2) (next figure, bottom):
the line has 9 points, of which 7 (= 4 + 3) are of the first kind, namely
R(1, 0) = {(0, 0), (1, 0), (x , 0), (x + 1, 0)},
R(1, 1) = {(0, 0), (1, 1), (x , x), (x + 1, x + 1)},
R(1, x) = {(0, 0), (1, x), (x , x), (x + 1, 0)},
R(1, x + 1) = {(0, 0), (1, x + 1), (x , 0), (x + 1, x + 1)},
R(0, 1) = {(0, 0), (0, 1), (0, x), (0, x + 1)},
R(x , 1) = {(0, 0), (x , 1), (x , x), (0, x + 1)},
R(x + 1, 1) = {(0, 0), (x + 1, 1), (0, x), (x + 1, x + 1)},
and
2 of the second kind, namely
R(x , x + 1) = {(0, 0), (x , x + 1), (x , 0), (0, x + 1)},
R(x + 1, x) = {(0, 0), (x + 1, x), (0, x), (x + 1, 0)}.
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Projective ring line: all rings of order 4
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Projective ring line: Pauli group of a single qudit

There exists a bijection between
↪→ vectors (a, b) of Z2

d and
↪→ elements ωcX aZ b of the generalized Pauli group of the d -dimensional
Hilbert space generated by the standard shift (X ) and clock (Z ) operators;

here ω is a fixed primitive d -th root of unity and X and Z can be taken in
the form

X =

⎛
⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎠

,Z =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 ω 0 . . . 0
0 0 ω2 . . . 0
...

...
...

. . .
...

0 0 0 . . . ωd−1

⎞
⎟⎟⎟⎟⎟⎠

.
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Projective ring line: Pauli group of a single qudit ctd.

Under this correspondence, the elements of the group commuting with a
given one form:

the set-theoretic union of the points of the projective line over Zd

which contain a given pair if d is a product of distinct primes (figure
for Z6), and

the span of the points for any other values of d (figure for Z12).
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Projective ring line: Pauli group of a single qudit ctd.

0,0

0,33,33,0

2,02,22,40,2

4,04,44,20,4

2,31,31,04,11,11,42,11,51,20,13,13,2

4,35,35,02,55,55,24,55,15,40,53,53,4

The projective line over Z6
∼= Z2 ×Z3; shown is the set-theoretic union of the

points through the vector (3, 3) (highlighted), which comprises all the vectors
joined by heavy line segments.
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Projective ring line: Pauli group of a single qudit ctd.

The projective line over Z12, underlying the commutation relations between the
elements of the generalized Pauli group of a single qu-12-it.
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Symplectic (orthogonal) polar
spaces and Pauli groups
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Finite classical polar spaces: definition

Given a d -dimensional projective space over GF (q), PG(d , q).

A polar space P in this projective space consists of
the projective subspaces that are totally isotropic/singular in respect to
a given non-singular sesquilinear form; PG(d , q) is called the ambient
projective space of P.

A projective subspace of maximal dimension in P is called a generator;
all generators have the same (projective) dimension r − 1.

One calls r the rank of the polar space.
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Finite classical polar spaces: relevant types

The symplectic polar space W (2N − 1, q), N ≥ 1,
this consists of all the points of PG(2N − 1, q) together with the
totally isotropic subspaces in respect to the standard symplectic form
θ(x , y) = x1y2 − x2y1 + · · ·+ x2N−1y2N − x2Ny2N−1;

The hyperbolic orthogonal polar space Q+(2N − 1, q), N ≥ 1,
this is formed by all the subspaces of PG(2N − 1, q) that lie on a
given nonsingular hyperbolic quadric, with the standard equation
x1x2 + . . .+ x2N−1x2N = 0.

In both cases, r = N.
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Generalized real N-qubit Pauli groups

The generalized real N-qubit Pauli groups, PN , are generated by N-fold
tensor products of the matrices

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −1
1 0

)
and Z =

(
1 0
0 −1

)
.

Explicitly,

PN = {±A1 ⊗ A2 ⊗ · · · ⊗ AN : Ai ∈ {I ,X ,Y ,Z}, i = 1, 2, · · · ,N}.

These groups are well known in physics and play an important role in the
theory of quantum error-correcting codes, with X and Z being,
respectively, a bit flip and phase error of a single qubit.

Here, we are more interested in their factor groups PN ≡ PN/Z(PN),
where the center Z(PN) consists of ±I(1) ⊗ I(2) ⊗ · · · ⊗ I(N).
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Polar spaces and N-qubit Pauli groups

For a particular value of N,
the 4N − 1 elements of PN\{I(1) ⊗ I(2) ⊗ · · · ⊗ I(N)} can be bijectively
identified with the same number of points of W (2N − 1, 2) in such a way
that:

two commuting elements of the group will lie on the same totally
isotropic line of this polar space;

those elements of the group whose square is +I(1) ⊗ I(2) ⊗ · · · ⊗ I(N),
i. e. symmetric elements, lie on a certain Q+(2N − 1, 2) of the
ambient space PG(2N − 1, 2); and

generators, of both W (2N − 1, 2) and Q+(2N − 1, 2), correspond to
maximal sets of mutually commuting elements of the group;

spreads of W (2N − 1, 2), i. e. sets of generators partitioning the point
set, underlie MUBs.
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Example – 2-qubits: W (3, 2) and the Q+(3, 2)

YX YZ

YI

XZZX

XY

XI

IX

XX YY ZZ

IZ

ZI

ZY

IY

W (3, 2): 15 points/lines; Q+(3, 2): 9 points/6 lines
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Example – 2-qubits: W (3, 2) and its distinguished subsets,
viz. grids (red), perps (yellow) and ovoids (blue)

Physical meaning:

ovoid (blue) ∼= P(GF (4)): maximum set of mutually non-commuting elements,

perp (yellow) ∼= P(GF (2)[x ]/〈x2〉): set of elements commuting with a given one,

grid (red) ∼= P(GF (2) × GF (2)): Mermin “magic” square (K-S theorem).
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Example – 2-qubits: important isomorphisms

W (3, 2) ∼=
GQ(2, 2), the smallest non-trivial generalized quadrangle,

a projective subline of P(M2(GF (2))),

the Cremona-Richmond 153-configuration,

the parabolic quadric Q(4, 2),

a quad of certain near-polygons.

Q+(3, 2) ∼=
GQ(2, 1), a grid,

P(GF (2)× GF (2)),

Mermin magic square.
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Example – 3-qubits: W (5, 2) and the Q+(5, 2)

W (5, 2) comprises:

63 points,

315 lines, and

135 generators (Fano planes).

Q+(5, 2) is the famous Klein quadric; there exists a bijection between

its 35 points and 35 lines of PG(3, 2), and

its two systems of generators and 15 points/planes of PG(3, 2).

Because PG(3, 2) is the ambient space of W (3, 2), this bijection furnishes
an important connection between the 2-qubit and 3-qubit Pauli groups.
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Example – 3-qubits: a subgeometry of W (5, 2)
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Split Cayley hexagon of order 2, smallest non-trivial generalized hexagon.
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Generalized polygons and
black-hole-qubit
correspondence
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Generalized polygons: definition and existence

A generalized n-gon G; n ≥ 2, is a point-line incidence geometry which
satisfies the following two axioms:

G does not contain any ordinary k-gons for 2 ≤ k < n.

Given two points, two lines, or a point and a line, there is at least one
ordinary n-gon in G that contains both objects.

A generalized n-gon is finite if its point set is a finite set.
A finite generalized n-gon G is of order (s, t); s, t ≥ 1, if

every line contains s + 1 points and

every point is contained in t + 1 lines.

If s = t, we also say that G is of order s.

If G is not an ordinary n-gon, and if it has an order, then
n = 3, 4, 6, and 8.
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Generalized polygons: smallest (i. e., s = 2) examples

n = 3: generalized triangles, aka projective planes
s = 2: the famous Fano plane (self-dual); 7 points/lines
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Generalized polygons: smallest (i. e., s = 2) examples

n = 4: generalized quadrangles
s = 2: our old friend W (3, 2), the doily (self-dual)
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Generalized polygons: smallest (i. e., s = 2) examples

n = 6: generalized hexagons
s = 2: split Cayley hexagon and its dual; 63 points/lines
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Generalized polygons: GQ(2, 4); 27 points, 45 lines
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Extremal black holes

Consider, for example, the Reissner-Nordström solution of the
Einstein-Maxwell theory

Extremality:

Mass = charge

Outer and inner horizons coincide

H-B temperature goes to zero

Entropy is finite and function of charges only
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Embedding in string theory

String theory compactified to D dimensions typically involves many more
fields/charges than those appearing in the Einstein-Maxwell Lagrangian.

We shall first deal with the E6-symmetric entropy formula describing black
holes and black strings in D = 5.
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E6, D = 5 black hole entropy and GQ(2, 4)

The corresponding entropy formula reads S = π
√
I3 where

I3 = DetJ3(P) = a3 + b3 + c3 + 6abc ,

and where

a3 =
1

6
εA1A2A3ε

B1B2B3aA1
B1a

A2
B2a

A3
B3,

b3 =
1

6
εB1B2B3εC1C2C3b

B1C1bB2C2bB3C3 ,

c3 =
1

6
εC1C2C3εA1A2A3cC1A1cC2A2cC3A3 ,

abc =
1

6
aABb

BCcCA.

I3 contains altogether 45 terms, each being the product of three charges.
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E6, D = 5 black hole entropy and GQ(2, 4)

A bijection between

the 27 charges of the black hole and

the 27 points of GQ(2,4):

{1, 2, 3, 4, 5, 6} = {c21, a21, b01, a01, c01, b21},
{1′, 2′, 3′, 4′, 5′, 6′} = {b10, c10, a12, c12, b12, a10},

{12, 13, 14, 15, 16, 23, 24, 25, 26} = {c02, b22, c00, a11, b02, a00, b11, c22, a02},
{34, 35, 36, 45, 46, 56} = {a20, b20, c11, c20, a22, b00}.
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E6, D = 5 black hole entropy and GQ(2, 4)
Full “geometrization” of the entropy formula by GQ(2, 4): the 27 charges
are identified with the points and 45 terms in the formula with the lines of
the quadrangle.
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Three distinct kinds of charges correspond to three different grids
(GQ(2, 1)s) partitioning the point set of GQ(2, 4).
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E6, D = 5 black hole entropy and GQ(2, 4)

Different truncations of the entropy formula with

15,

11, and

9

charges correspond to the following natural splits in the GQ(2, 4):

Doily-induced: 27 = 15 + 2 × 6

Perp-induced: 27 = 11 + 16

Grid-induced: 27 = 9 + 18
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E7, D = 4 bh entropy and split Cayley hexagon

The most general class of black hole solutions for the E7,D = 4 case is
defined by 56 charges (28 electric and 28 magnetic), and the entropy
formula for such solutions is related to the square root of the quartic
invariant

S = π
√

|J4|.
Here, the invariant depends on the antisymmetric complex 8× 8 central
charge matrix Z,

J4 = Tr(ZZ)2 − 1

4
(TrZZ)2 + 4(PfZ + PfZ),

where the overbars refer to complex conjugation and

PfZ =
1

24 · 4!ε
ABCDEFGHZABZCDZEFZGH .
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E7, D = 4 bh entropy and split Cayley hexagon

An alternative form of this invariant is

J4 = −Tr(xy)2 +
1

4
(Trxy)2 − 4(Pfx + Pfy).

Here, the 8× 8 matrices x and y are antisymmetric ones containing 28
electric and 28 magnetic charges which are integers due to quantization.

The relation between the two forms is given by

ZAB = − 1

4
√
2
(x IJ + iyIJ)(Γ

IJ)AB .

Here (ΓIJ)AB are the generators of the SO(8) algebra, where (IJ) are the
vector indices (I , J = 0, 1, . . . , 7) and (AB) are the spinor ones
(A,B = 0, 1, . . . , 7).
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E7, D = 4 bh entropy and split Cayley hexagon
The 28 independent components of 8× 8 antisymmetric matrices x IJ + iyIJ and
ZAB , or (Γ

IJ )AB , can be put – when relabelled in terms of the elements of the
three-qubit Pauli group – in a bijection with the 28 points of the Coxeter
subgeometry of the split Cayley hexagon of order two.

IYY

IZX

YYZ

ZXI

YYX

XIZ

YIY
YII

YZX

IXY ZIY

XYZ

IYI

YYY

IZI

ZZZ

ZII

ZZI

IIZ

ZIZ

IZZXIX

IXX

IIX

XXI

IXI

XXX

XII

IIY

ZYX

YIX

YZZXYX

IYZ

YXZ

YZY

ZXX

ZZX XXZ

ZXZ

XYY

XZI

XZX

ZYY

ZIX

YYI

IXZ

YXY

XZZIZY

XYI

ZYZ YXX

YZI

XIY

ZXYIYX

ZZY

YXI ZYI

XXY

YIZ

XZY

YII

YZX

IXY ZIY

XYZ

IYI

YYY

YXZ

IYZ
XYX

YZZ

YIX

ZYX

IIY

IZY

XYI

ZYZ YXX

YZI

XIY

ZXY

IYX

ZZY

YXI

ZYI

XXY

YIZ
XZY

M. Saniga (Astro-Inst SAV) Finite Ring Geometries 25/09/2012 59 / 89



E7, D = 4 bh entropy and split Cayley hexagon

The Coxeter graph fully underlies the PSL2(7) sub-symmetry of the
entropy formula.

A unifying agent behind the scene is, however, the Fano plane:
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. . . because its 7 points, 7 lines, 21 flags (incident point-line pairs) and 28
anti-flags (non-incident point-line pairs; Coxeter) completely encode the
structure of the split Cayley hexagon of order two.
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Link between E6, D = 5 and E7, D = 4 cases

One takes a (distance-3-)spread of the split Cayley hexagon of order two,
i. e., a set of 27 points located on 9 lines that are pairwise at maximum
distance from each other, and construct GQ(2, 4) as follows:

points are the 27 points of the spread;

lines are the 9 lines of the spread and another 36 lines each of which
comprises three points of the spread which are collinear with a
particular off-spread point of the hexagon.
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Link between E6, D = 5 and E7, D = 4 cases
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Math outcomes: non-unimodular
free cyclic submodules,

‘Fano-snowflakes,’ Veldkamp
spaces, . . .
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Math outcomes: non-unimodular FCS’s – ternions

The first order when they appear is the smallest ring of ternions R♦, i. e.
the ring isomorphic to the one of upper (or lower) triangular two-by-two
matrices over the Galois field of two elements:

R♦ ≡
{(

a b
0 c

)
| a, b, c ∈ GF (2)

}
.

Explicitly:

0 ≡
(

0 0
0 0

)
, 1 ≡

(
1 0
0 1

)
, 2 ≡

(
1 1
0 1

)
, 3 ≡

(
1 1
0 0

)
,

4 ≡
(

0 0
0 1

)
, 5 ≡

(
1 0
0 0

)
, 6 ≡

(
0 1
0 0

)
, 7 ≡

(
0 1
0 1

)
.
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Math outcomes: non-unimodular FCS’s – ternions

Table : Addition (left) and multiplication (right) in R♦.

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 6 7 5 4 2 3
2 2 6 0 4 3 7 1 5
3 3 7 4 0 2 6 5 1
4 4 5 3 2 0 1 7 6
5 5 4 7 6 1 0 3 2
6 6 2 1 5 7 3 0 4
7 7 3 5 1 6 2 4 0

× 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 1 3 7 5 6 4
3 0 3 5 3 6 5 6 0
4 0 4 4 0 4 0 0 4
5 0 5 3 3 0 5 6 6
6 0 6 6 0 6 0 0 6
7 0 7 7 0 7 0 0 7
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Math outcomes: non-unimodular FCS’s – ternions

36 unimodular vectors which generate 18 different FCS’s:

R♦(1, 0) = R♦(2, 0) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 0), (3, 0), (2, 0), (1, 0)},
R♦(1, 6) = R♦(2, 6) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 6), (3, 6), (2, 6), (1, 6)},
R♦(1, 3) = R♦(2, 3) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 3), (3, 3), (2, 3), (1, 3)},
R♦(1, 5) = R♦(2, 5) = {(0, 0), (6, 0), (4, 0), (7, 0), (5, 5), (3, 5), (2, 5), (1, 5)},
R♦(7, 3) = R♦(4, 3) = {(0, 0), (6, 0), (4, 0), (7, 0), (0, 3), (6, 3), (4, 3), (7, 3)},
R♦(7, 5) = R♦(4, 5) = {(0, 0), (6, 0), (4, 0), (7, 0), (0, 5), (6, 5), (4, 5), (7, 5)},
R♦(1, 7) = R♦(2, 4) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 6), (3, 0), (2, 4), (1, 7)},
R♦(1, 4) = R♦(2, 7) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 0), (3, 6), (2, 7), (1, 4)},
R♦(1, 1) = R♦(2, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 5), (3, 3), (2, 2), (1, 1)},
R♦(1, 2) = R♦(2, 1) = {(0, 0), (6, 6), (4, 4), (7, 7), (5, 3), (3, 5), (2, 1), (1, 2)},
R♦(4, 1) = R♦(7, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (0, 5), (6, 3), (7, 2), (4, 1)},
R♦(7, 1) = R♦(4, 2) = {(0, 0), (6, 6), (4, 4), (7, 7), (0, 3), (6, 5), (4, 2), (7, 1)},
R♦(3, 7) = R♦(3, 4) = {(0, 0), (0, 6), (0, 4), (0, 7), (3, 0), (3, 6), (3, 4), (3, 7)},
R♦(5, 7) = R♦(5, 4) = {(0, 0), (0, 6), (0, 4), (0, 7), (5, 0), (5, 6), (5, 4), (5, 7)},
R♦(5, 1) = R♦(5, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (5, 5), (5, 3), (5, 2), (5, 1)},
R♦(3, 1) = R♦(3, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (3, 5), (3, 3), (3, 2), (3, 1)},
R♦(6, 1) = R♦(6, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (6, 5), (6, 3), (6, 2), (6, 1)},
R♦(0, 1) = R♦(0, 2) = {(0, 0), (0, 6), (0, 4), (0, 7), (0, 5), (0, 3), (0, 2), (0, 1)},

and
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Math outcomes: non-unimodular FCS’s – ternions

6 non-unimodular vectors giving rise to 3 distinct FCS’s:

R♦(4, 6) = R♦(7, 6) = {(0, 0), (6, 0), (0, 6), (6, 6), (4, 0), (7, 0), (7, 6), (4, 6)},
R♦(4, 7) = R♦(7, 4) = {(0, 0), (6, 0), (0, 6), (6, 6), (4, 4), (7, 7), (7, 4), (4, 7)},
R♦(6, 4) = R♦(6, 7) = {(0, 0), (6, 0), (0, 6), (6, 6), (0, 4), (0, 7), (6, 7), (6, 4)}.
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Math outcomes: non-unimodular FCS’s – ternions
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Math outcomes: non-unimodular FCS’s – ternions
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Math outcomes: ‘Fano-snowflake’

Let’s now have a look at

free left cyclic submodules generated by

triples of

non-unimodular elements from R♦.

We find altogether

42 non-unimodular triples of elements generating

21 distinct free left cyclic submodules:
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Math outcomes: ‘Fano-snowflake’
R♦(4, 6, 7) = {(0, 0, 0), (4, 6, 7), (7, 6, 4), (6, 6, 0), (4, 0, 4), (0, 6, 6), (6, 0, 6), (7, 0, 7)},
R♦(4, 7, 6) = {(0, 0, 0), (4, 7, 6), (7, 4, 6), (6, 0, 6), (4, 4, 0), (0, 6, 6), (6, 6, 0), (7, 7, 0)},
R♦(6, 4, 7) = {(0, 0, 0), (6, 4, 7), (6, 7, 4), (6, 6, 0), (0, 4, 4), (6, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(4, 4, 7) = {(0, 0, 0), (4, 4, 7), (7, 7, 4), (6, 6, 0), (4, 4, 4), (0, 0, 6), (6, 6, 6), (7, 7, 7)},
R♦(4, 7, 4) = {(0, 0, 0), (4, 7, 4), (7, 4, 7), (6, 0, 6), (4, 4, 4), (0, 6, 0), (6, 6, 6), (7, 7, 7)},
R♦(7, 4, 4) = {(0, 0, 0), (7, 4, 4), (4, 7, 7), (0, 6, 6), (4, 4, 4), (6, 0, 0), (6, 6, 6), (7, 7, 7)},
R♦(4, 4, 6) = {(0, 0, 0), (4, 4, 6), (7, 7, 6), (6, 6, 6), (4, 4, 0), (0, 0, 6), (6, 6, 0), (7, 7, 0)},
R♦(4, 6, 4) = {(0, 0, 0), (4, 6, 4), (7, 6, 7), (6, 6, 6), (4, 0, 4), (0, 6, 0), (6, 0, 6), (7, 0, 7)},
R♦(6, 4, 4) = {(0, 0, 0), (6, 4, 4), (6, 7, 7), (6, 6, 6), (0, 4, 4), (6, 0, 0), (0, 6, 6), (0, 7, 7)},
R♦(6, 6, 7) = {(0, 0, 0), (6, 6, 7), (6, 6, 4), (6, 6, 0), (0, 0, 4), (6, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(6, 7, 6) = {(0, 0, 0), (6, 7, 6), (6, 4, 6), (6, 0, 6), (0, 4, 0), (6, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 6) = {(0, 0, 0), (7, 6, 6), (4, 6, 6), (0, 6, 6), (4, 0, 0), (6, 6, 6), (6, 0, 0), (7, 0, 0)},
R♦(0, 6, 7) = {(0, 0, 0), (0, 6, 7), (0, 6, 4), (0, 6, 0), (0, 0, 4), (0, 6, 6), (0, 0, 6), (0, 0, 7)},
R♦(0, 7, 6) = {(0, 0, 0), (0, 7, 6), (0, 4, 6), (0, 0, 6), (0, 4, 0), (0, 6, 6), (0, 6, 0), (0, 7, 0)},
R♦(0, 4, 7) = {(0, 0, 0), (0, 4, 7), (0, 7, 4), (0, 6, 0), (0, 4, 4), (0, 0, 6), (0, 6, 6), (0, 7, 7)},
R♦(6, 0, 7) = {(0, 0, 0), (6, 0, 7), (6, 0, 4), (6, 0, 0), (0, 0, 4), (6, 0, 6), (0, 0, 6), (0, 0, 7)},
R♦(7, 0, 6) = {(0, 0, 0), (7, 0, 6), (4, 0, 6), (0, 0, 6), (4, 0, 0), (6, 0, 6), (6, 0, 0), (7, 0, 0)},
R♦(4, 0, 7) = {(0, 0, 0), (4, 0, 7), (7, 0, 4), (6, 0, 0), (4, 0, 4), (0, 0, 6), (6, 0, 6), (7, 0, 7)},
R♦(6, 7, 0) = {(0, 0, 0), (6, 7, 0), (6, 4, 0), (6, 0, 0), (0, 4, 0), (6, 6, 0), (0, 6, 0), (0, 7, 0)},
R♦(7, 6, 0) = {(0, 0, 0), (7, 6, 0), (4, 6, 0), (0, 6, 0), (4, 0, 0), (6, 6, 0), (6, 0, 0), (7, 0, 0)},
R♦(4, 7, 0) = {(0, 0, 0), (4, 7, 0), (7, 4, 0), (6, 0, 0), (4, 4, 0), (0, 6, 0), (6, 6, 0), (7, 7, 0)}.
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Math outcomes: ‘Fano-snowflake’
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Math outcomes: ‘Fano-snowflake’
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Math outcomes: Veldkamp space – definition

Given a point-line incidence geometry Γ(P , L), a geometric hyperplane of
Γ(P , L) is a subset of its point set such that a line of the geometry is

either fully contained in the subset

or has with it just a single point in common.

The Veldkamp space of Γ(P , L), V(Γ), is the space in which

a point is a geometric hyperplane of Γ and

a line is the collection H ′H ′′ of all geometric hyperplanes H of Γ such
that H ′ ∩ H ′′ = H ′ ∩ H = H ′′ ∩ H or H = H ′,H ′′, where H ′ and H ′′

are distinct points of V(Γ).

For a Γ(P , L) with three points on a line, all Veldkamp lines are of the form
{H ′,H ′′,H ′ΔH ′′} where H ′ΔH ′′ is the complement of symmetric difference of H ′

and H ′′, i. e. they form a vector space over GF(2).
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Math outcomes: V(GQ(2, 2)) � PG(4, 2)

Its 31 points
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Math outcomes: V(GQ(2, 2)) � PG(4, 2)
And its 155 lines

M. Saniga (Astro-Inst SAV) Finite Ring Geometries 25/09/2012 77 / 89



Math outcomes: V(GQ(2, 2)) � PG(4, 2)

Table : A succinct summary of the properties of the five different types of the
lines of V(GQ(2, 2)) in terms of the core (i. e., the set of points common to all
the three hyperplanes forming a line) and the types of geometric hyperplanes
featured by a generic line of a given type. The last column gives the total number
of lines per each type.

Type Core Perps Ovoids Grids #

I Pentad 1 0 2 45
II Collinear Triple 3 0 0 15
III Tricentric Triad 3 0 0 20
IV Unicentric Triad 1 1 1 60
V Single Point 1 2 0 15
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Math outcomes: V(GQ(2, 4)) � PG(5, 2)

Its 63 points comprise 27 perps and 36 doilies.

Its 651 lines are of four distinct types:

Table : The properties of the four different types of the lines of V(GQ(2, 4)) in
terms of the common intersection and the types of geometric hyperplanes
featured by a generic line of a given type. The last column gives the total number
of lines per the corresponding type.

Type Intersection Perps Doilies (Ovoids) Total

I Line 3 0 (–) 45
II Ovoid 2 1 (–) 216
III Perp-set 1 2 (–) 270
IV Grid 0 3 (–) 120
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Math outcomes: V(GQ(2, 4)) � PG(5, 2)
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Conclusion – implications for future research

In addition to projective ring lines, generalized polygons, symplectic and
orthogonal polar spaces and their duals, it is also desirable to examine
Hermitian varieties H(d , q2) for certain specific values of dimension d and
order q.

Given the fact that the structure of extremal stationary spherically
symmetric black hole solutions in the STU model of D = 4, N = 2
supergravity can be described in terms of four-qubit systems, the H(3, 4)
variety is also notable, because its points can be identified with the images
of triples of mutually commuting operators of the generalized Pauli group
of four-qubits via a geometric spread of lines of PG(7, 2).

In this regard, we would also like to have a closer look at (the
spin-embedding of) the dual polar space DW(5, 2) (into PG(7, 2)), since
the points of this space are in a bijective correspondence with the points of
a hyperbolic quadric Q+(7, 2) and, so, with the set of symmetric operators
of the real four-qubit Pauli group.
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Conclusion – implications for future research

There is also an infinite family of tilde geometries associated with non-split
extensions of symplectic groups over a Galois field of two elements that
are worth a careful look at.

One of the simplest of them, ˜W (2), is the flag-transitive, connected triple

cover of the unique generalized quadrangle GQ(2, 2). ˜W (2) is remarkable
in that it can be, like the split Cayley hexagon of order two and GQ(2, 4),
embedded into PG(5, 2).
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Conclusion – implications for future research

The third aspect of prospective research is graph theoretical.

This aspect is very closely related to the above-discussed finite geometrical
one because both GQ(2, 2) and the split Cayley hexagon of order two are
bislim geometries, and in any such geometry the complement of a
geometric hyperplane represents a cubic graph.

A cubic graph is one in which every vertex has three neighbours and so, by
Vizing’s theorem, three or four colours are required for a proper edge
colouring of any such graph.

And there, indeed, exists a very interesting but somewhat mysterious
family of cubic graphs, called snarks, that are not 3-edge-colourable, i.e.
they need four colours.
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Conclusion – implications for future research

Why should we be bothered with snarks?

Well, because the smallest of all snarks, the Petersen graph, is isomorphic
to the complement of a particular kind of hyperplane (namely an ovoid) of
GQ(2, 2)!

There are only three distinct kinds of hyperplanes in GQ(2, 2), but as
many as 25 in the split Cayley hexagon of order two and as many as 14 in
its dual. So it is very likely that the complements of some of them are
snarks and it is desirable to see if this holds true and, if so, what the
properties of these snarks are.

If we do find some snarks here, or in any other relevant bislim geometry,
this could have at least two-fold bearing on the subject.
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Conclusion – implications for future research

On the one hand, there exists a noteworthy built-up principle of creating
snarks from smaller ones embodied in the (iterated) dot product operation
on two (or more) cubic graphs; given arbitrary two snarks, their dot
product is always a snark.

In fact, a majority of known snarks can be built this way from the Petersen
graph alone. Hence, the Petersen graph is an important “building block”
of snarks; in this light, it is not so surprising to see GQ(2, 2) playing a
similar role in QIT.
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Conclusion – implications for future research

On the other hand, the non-planarity of snarks immediately poses a
question on what surface a given snark can be drawn without crossings,
i. e. what its genus is.

The Petersen graph can be embedded on a torus and, so, is of genus one.

If other snarks emerge in the context of the so-called black-hole-qubit
correspondence, comparing their genera with those of manifolds occurring
in major compactifications of string theory will also be an insightful task.
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