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We point out an explicit connection between graphs drawn on compact Riemann sur-
faces defined over the field Q̄ of algebraic numbers — the so-called Grothendieck’s dessins
d’enfants — and a wealth of distinguished point-line configurations. These include sim-
plices, cross-polytopes, several notable projective configurations, a number of multipar-
tite graphs and some “exotic” geometries. Among them, remarkably, we find not only
those underlying Mermin’s magic square and magic pentagram, but also those related
to the geometry of two- and three-qubit Pauli groups. Of particular interest is the occur-
rence of all the three types of slim generalized quadrangles, namely GQ(2, 1), GQ(2, 2)
and GQ(2, 4), and a couple of closely related graphs, namely the Schläfli and Clebsch
ones. These findings seem to indicate that dessins d’enfants may provide us with a new
powerful tool for gaining deeper insight into the nature of finite-dimensional Hilbert
spaces and their associated groups, with a special emphasis on contextuality.
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1. Introduction

If one draws a (connected) graph — a particular set of vertices and edges —
on a smooth surface, then such graph inherits extra local/combinatorial and
global/topological features from the surface. If the latter is, for example, a (com-
pact) complex one-dimensional surface — a Riemann surface, then the combi-
natorics of edges is encapsulated by a two-generator permutation group and the
Riemann surface happens to be definable over the field Q̄ of algebraic numbers.
This observation is central to the concept of dessins d’enfants (or child’s drawings)
as advocated by Grothendieck in his Esquisse d’un programme (made available in
1984 following his Long March written in 1981) in the following words: In the form
in which Belyi states it, his result essentially says that every algebraic curve defined
over a number field can be obtained as a covering of the projective line ramified
only over the points 0, 1 and ∞. The result seems to have remained more or less
unobserved. Yet it appears to me to have considerable importance. To me, its essen-
tial message is that there is a profound identity between the combinatorics of finite
maps on the one hand, and the geometry of algebraic curves defined over number
fields on the other. This deep result, together with the algebraic interpretation of
maps, opens the door into a new, unexplored world — within reach of all, who pass
by without seeing it [1, 2].

Our aim is to show that Grothendieck’s dessins d’enfants (see, e.g. [3, 4] as well
as [5]) have, as envisaged in [6], great potential to become a proper language for a
deeper understanding of various types of sets of Hermitian operators/observables
that appear in finite-dimensional quantum mechanical settings and for furnishing
a natural explanation why eigenvalues of these operators are regarded as the only
available tracks in associated measurements. The main justification of our aim is
provided by the fact that dessins lead very naturally to already-discovered finite
geometries underlying quantum contextuality (like the grid, GQ(2, 1), behind Mer-
min’s magic square and/or an ovoid of PG(3, 2) behind Mermin’s magic pentagram)
and also to those underlying commutation relations between elements of the two-
qubit Pauli group (the generalized quadrangle of order two, GQ(2, 2), its geometric
hyperplanes and their complements, see, e.g. [7]).

The paper is organized as follows. Section 2 gathers some basic knowledge about
dessins d’enfants, their permutation group and topology, their isomorphism with
conjugacy classes of subgroups of finite index of the cartographic group C+

2 , as well
as about associated Belyi functions. Section 3 focuses on a rather elementary appli-
cation of our ideas by interpreting Bell’s theorem about nonlocality in terms of the
geometry as simple as a square/quadrangle, which is found to be generated by four
distinct dessins defined over the field Q[

√
2]. Section 4, the core one, starts with a

complete catalog of all connected geometries induced by dessins having up to 12
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edges and a sketch of important ones with more edges. In the subsequent subsec-
tions, we analyze in detail the non-trivial cases by selecting, whenever possible, a
dessin of genus zero and having the smallest number of faces. As in most cases the
edges of dessins dealt with admit labeling by two- or three-qubit observables, on our
way we not only encounter already recognized quantum-relevant finite geometries
like the Fano plane, the grid GQ(2, 1), the Petersen graph, the Desargues configura-
tion and the generalized quadrangle GQ(2, 2), but find a bunch of novel ones, some
already surmised from different contexts, starting from the Pappus 93-configuration
and the Hesse (94, 123)-configuration (also known as the affine plane AG(2, 3)) to
arrive at the generalized quadrangle GQ(2, 4) — and its close siblings, the Clebsch
and Schläfli graphs — known to play a role in the context of the black-hole–qubit
correspondence [8]. Section 5 is reserved for concluding remarks.

2. Dessins d’Enfants and the Belyi Theorem

2.1. Dessins d’enfants and their symmetry groups

A map is a graph drawn on a surface — a smooth compact orientable variety of
dimension two — such that its vertices are points, its edges are non-intersecting arcs
connecting the vertices, and the connected components of its complement, called
faces, are homeomorphic to open disks of R2. There may exist multiple edges as well
as loops, but the graph has to be connected. Denoting the number of vertices, edges
and faces by V , E and F , respectively, the genus g of the map follows from Euler’s
formula V − E + F = 2 − 2g. A map can be generalized to a bicolored map. The
latter is a map whose vertices are colored in black and white in such a way that the
adjacent vertices have always the opposite color; the corresponding segments are the
edges of the bicolored map. The Euler characteristic now reads 2−2g = B+W+F−
n, where B, W and n stand for the number of black vertices, the number of white
vertices and the number of edges, respectively. Given a bicolored map with n edges
labeled from 1 to n, one can associate with it a permutation group P = 〈α, β〉 on the
set of labels such that a cycle of α (respectively, β) contains the labels of the edges
incident to a black vertex (respectively, white vertex), taken, say, in the clockwise
direction around this vertex; thus, there are as many cycles in α (respectively, β)
as there are black vertices (respectively, white vertices), and the degree of a vertex
is equal to the length of the corresponding cycle. An analogous cycle structure for
the faces follows from the permutation γ satisfying αβγ = 1 [11, 12].

Bicolored maps (allowed to have any valency for their vertices) are in one-to-
one correspondence with hypermaps [14]. They correspond to the conjugacy classes
of subgroups of finite index of the free group on two generators H+

2 = 〈ρ0, ρ1〉.
The number of hypermaps with n half-edges is given by the sequence A057005 in
the OEIS [10]. For n = 1, . . . , 7 these numbers are 1, 3, 7, 26, 97, 624 and 4163.
Hypermaps are, of course, allowed to have any valency for their vertices.

We consider bicolored maps where the valency of white vertices is ≤2. They
correspond to hypermaps of the so-called pre-clean type. As already observed by
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Grothendieck himself, who called them dessins d’enfants (child’s drawings) [2–13],
these bicolored maps on connected oriented surfaces are unique in the sense that
they are in one-to-one correspondence with conjugacy classes of subgroups of finite
index of the triangle group, also called cartographic group

C+
2 = 〈ρ0, ρ1 | ρ2

1 = 1〉. (1)

The existence of associated dessins of prescribed properties can thus be straight-
forwardly checked from a systematic enumeration of conjugacy classes of C+

2 ; with
the increasing n > 0 the number of such dessins grows quite rapidly

1, 3, 3, 10, 15, 56, 131, 482, 1551, 5916, 22171, 90033, 370199, . . . .

A dessin D can be ascribed a signature s = (B,W,F, g) and the full information
about it can be recovered from the structure of the generators of its permutation
group P (also named the passport in [4, 12]) in the form [Cα, Cβ , Cγ ], where the
entry Ci, i ∈ {α, β, γ} has factors lni

i , with li denoting the length of the cycle and
ni the number of cycles of length li.

2.2. Belyi ’s theorem

Given f(x), a rational function of the complex variable x, a critical point of f is
a root of its derivative and a critical value of f is the value of f at the critical
point. Let us define a so-called Belyi function corresponding to a dessin D as a
rational function f(x) of degree n if D may be embedded into the Riemann sphere
Ĉ in such a way that: (i) the black vertices are the roots of the equation f(x) = 0
with the multiplicity of each root being equal to the degree of the corresponding
(black) vertex, (ii) the white vertices are the roots of the equation f(x) = 1 with
the multiplicity of each root being equal to the degree of the corresponding (white)
vertex, (iii) the bicolored map is the preimage of the segment [0, 1], that is D =
f−1([0, 1]), (iv) there exists a single pole of f(x), i.e. a root of the equation f(x) =
∞, at each face, the multiplicity of the pole being equal to the degree of the face,
and, finally, (v) besides 0, 1 and ∞, there are no other critical values of f [12].

It can be shown that to every D there corresponds a Belyi function f(x) and
that this function is, up to a linear fractional transformation of the variable x,
unique. It is, however, a highly non-trivial task to find/calculate the Belyi function
for a general dessin.

2.3. Finite geometries from dessins d’enfants

An issue of central importance for us is the fact that one can associate with a
dessin D a point-line incidence geometry, GD, in the following way. A point of GD
corresponds to an edge of D. Given a dessin D, we want its permutation group
P to preserve the collineation of the geometry GD. We first ask that every pair
of points on a line shares the same stabilizer in P . Then, given a subgroup S of
P which stabilizes a pair of points, we define the point-line relation on GD such
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that two points on the same line share the same stabilizer. The lines on a geometry
are distinguished by their (isomorphic) stabilizers acting on different G-sets. This
construction allows to assign finite geometries GDi to a dessin D, i = 1, . . . ,m with
m being the number of non-isomorphic subgroups S of P that stabilize a pair of
elements.a As a slight digression we mention that, presumably, this action of the
group P of a dessin D on the associated geometry GD is intricately linked with
the properties of the absolute Galois group Γ = Gal(Q̄/Q), which is the group of
automorphisms of the field Q̄ of algebraic numbers. Although Γ is known to act

Table 1. A catalog of connected point-line incidence geometries induced by dessins
d’enfants of small index ≤12. For each geometry, when represented by its collinear-
ity graph, we list the number of points, edges (line-segments joining two points),
triangles and squares it contains. Here, A-simplices should be regarded as trivial
because their dessins are star-like and associated Belyi functions are of a simple
form f(x) = xA, where A is the multiplicity of the singular point at x = 0.

Index Name Vertices Edges Triangles Squares

3 2-simplex (triangle) 3 3 1 0
4 3-simplex (tethahedron) 4 6 4 0

square/quadrangle 4 4 0 1
5 4-simplex (5-cell) 5 10 10 0
6 5-simplex 6 15 20 0

3-orthoplex (octahedron) 6 12 8 3
bipartite graph K(3, 3) 6 9 0 9

7 6-simplex 7 21 35 0
Fano plane (73) 7 21 7 0

8 7-simplex 8 28 56 0
4-orthoplex (16-cell) 8 24 32 6

completed cube K(4, 4) 8 16 0 36
stellated octahedron 8 12 8 0

9 8-simplex 9 36 84 0
Hesse (94123) 9 36 12 0
three-partite graph K(3, 3, 3) 9 27 27 27
Pappus (93) 9 27 9 27
(3 × 3)-grid 9 18 6 9

10 9-simplex 10 45 120 0
5-orthoplex 10 40 80 10
bipartite graph K(5, 5) 10 25 0 100
Mermin’s pentagram 10 30 30 15
Petersen graph 10 15 0 0
Desargues (103) 10 30 10 15

11 10-simplex 11 55 165 0
12 11-simplex 12 66 220 0

6-orthoplex 12 60 160 15
bipartite graph K(6, 6) 12 36 0 255
three-partite graph K(4, 4, 4) 12 48 64 108
four-partite graph K(3, 3, 3, 3) 12 54 0 54

aOur definition follows an example of the action on the Fano plane of a permutation group of
order |PSL(2, 7)| = 168 associated with a tree-like dessin (of the relevant cycle structure) given in
[2, (a), Vol. 2, pp. 17 and 50].
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Table 2. A few (non-trivial) connected point-line incidence geometries induced by dessins
d’enfants of index greater than 12. The spectra of (collinearity) graphs, denoted as sp(. . . , ab, . . .)
where an eigenvalue a is of multiplicity b, are also displayed. IG(ν, k, λ) means the incidence
graph of a symmetric 2 − (ν, k, λ) design and L(· · · ) stands for the line graph.

Index Name Vertices Edges Triangles Squares

15 Cremona-Richmond (153) (alias GQ(2, 2)) 15 45 15 90

16 Clebsch graph CG: sp(101, 25,−210) 16 80 0 60
Shrikhande graph SG: sp(61, 26,−29) 16 48 32 12

18 sp(81, 09,−44, 24) 18 72 48 306
20 sp(010,−81, 81,−24, 24) 20 80 0 740
21 Kneser graph KG(7,2): sp(101, 36,−214) 21 105 35 630

L(IG(7, 3, 1)): sp(41,−28, (1 ±√
2)6) 21 42 14 0

22 IG(11, 5, 2): sp(±51,±√
3
10

) 22 55 0 55

27 GQ(2, 4): sp(101, 120,−56) 27 135 45 1080

Schläfli graph SHG: sp(161, 46,−220) 27 216 720 270
sp(161, 116,−28,−82) 27 216 504 3024
sp(161, 42, 112,−28,−54) 27 216 612 1674

faithfully on D [2, 13], its action on GD must be rather non-trivial because the map
from D to GD is non-injective. Further work is necessary along this line of thoughts
to clarify the issue.

Using a computer program, we have been able to completely catalogize incidence
geometries associated with dessins featuring up to 12 edges, and also found several
dessins of higher rank that produce distinguished geometries. The results of our
calculations are succinctly summarized in Tables 1 and 2. The subsequent sections
provide a detailed account of a variety of dessins computed, their corresponding
point-line incidence geometries, and, what is perhaps most important, how these
relate to the physics of quantum observables of multiple-qubit Pauli groups and
related quantum paradoxes. In other words, we shall give a more exhaustive and
rigorous elaboration of the ideas first outlined in a short essay-like treatise [6].

3. The Square Geometry of Bell’s Theorem and
the Corresponding Dessins

In a theory in which parameters are added to quantum mechanics to determine the
results of individual measurements, without changing the statistical predictions,
there must be a mechanism whereby the setting of one measuring device can influ-
ence the reading of another instrument, however remote [9].

3.1. The square geometry of Bell ’s theorem

Suppose we have four observables σi, i = 1, 2, 3, 4, taking values in {−1, 1}, of which
Bob can measure (σ1, σ3) and Alice (σ2, σ4). The Bell-CHSH approach to quantum
contextuality/nonlocality consists of defining the number

C = σ2(σ1 + σ3) + σ4(σ3 − σ1) = ±2
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and observing the (so-called Bell-CHSH) inequality [18, p. 164]:

|〈σ1σ2〉 + 〈σ2σ3〉 + 〈σ3σ4〉 − 〈σ4σ1〉| ≤ 2,

where 〈 〉 here means that we are taking averages over many experiments. This
inequality holds for any dichotomic random variables σi that are governed by a joint
probability distribution. Bell’s theorem states that the aforementioned inequality
is violated if one considers quantum observables with dichotomic eigenvalues. An
illustrative example is the following set of two-qubit observables

σ1 = IX , σ2 = XI , σ3 = IZ , σ4 = ZI . (2)

Here and below we use the notationX , Y and Z for the ordinary Pauli spin matrices
and, e.g. IX is a short-hand for I ⊗X (used also in the sequel). We find that

C2 = 4 ∗ I + [σ1, σ3][σ2, σ4] = 4




1 · · 1
· 1 1̄ ·
· 1̄ 1 ·
1 · · 1




has eigenvalues 0 and 8, both with multiplicity 2 (1̄ ≡ −1). Taking the norm
of the bounded linear operator A as ‖A‖ = sup(‖Aψ‖/‖ψ‖), ψ ∈ H (H being the
corresponding Hilbert space), one arrives at the maximal violation of the Bell-CHSH
inequality [18, p. 174], namely ‖C‖ = 2

√
2.

The point-line incidence geometry associated with our four observables is one
of the simplest, that of a square — Fig. 1(a); each observable is represented by
a point and two points are joined by a segment if the corresponding observables
commute. It is worth mentioning here that there are altogether 90 distinct squares
among two-qubit observables and as many as 30240 when three-qubit labeling is
employed [16], each yielding a maximal violation of the Bell-CHSH inequality.

3.2. Dessins d’enfants for the square and their Belyi functions

As it is depicted in Fig. 1, the geometry of square can be generated by four dif-
ferent dessins, b1, . . . , b4, associated with permutations groups P isomorphic to the
dihedral group D4 of order eight.

The first dessin (b1) has the signature s = (B,W,F, g) = (3, 2, 1, 0) and the
permutation group P = 〈(2, 3), (1, 2)(3, 4)〉whose cycle structure reads [2112, 22, 41],
i.e. one black vertex is of degree two, two black vertices have degree one, the two
white vertices have degree two and the face has degree four. The corresponding
Belyi function reads f(x) = x2(2−x2). Its critical points are x ∈ {−1, 1, 0} and the
corresponding critical values are {1, 1, 0}. The preimage of the value 0 (the solutions
of the equation f(x) = 0) corresponds to the black vertices of the dessin positioned
at x ∈ {−√

2,
√

2, 0} and the preimage of the value 1 (the solutions of the equation
f(x) = 1) corresponds to the white vertices at x = ±1. The second dessin (b2) has
s = (2, 3, 1, 0), P = 〈(1, 2)(3, 4), (2, 3)〉 with [22, 2112, 41], and the Belyi function of
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(a)

(b1)

(b2)

(b3)

(b4)

Fig. 1. A simple observable proof of Bell’s theorem is embodied in the geometry of a (properly
labeled) square (a) and four associated dessins d’enfants, (b1) to (b4). For each dessin an explicit
labeling of its edges in terms of the four two-qubit observables is given. The (real-valued) coordi-
nates of black and white vertices stem from the corresponding Belyi functions as explained in the
main text.

the form f(x) = (x2 − 1)2. The third dessin (b3) is characterized by s = (1, 2, 3, 0)
and its P = 〈(1, 2, 4, 3), (1, 2)(3, 4)〉 has the cycle structure [41, 22, 2112]. The Belyi

function may be written as f(x) = (x−1)4

4x(x−2) . As f ′(x) = (x−1)3(x2−2x−1)
2(x−2)2x2 , its critical

points lie at x = 1 (where f(1) = 0) and at x = 1 ± √
2 (where f(1 ± √

2) =
1). Finally, the fourth dessin (b4) has P = 〈(1, 2, 4, 3), (2, 3)〉, the signature s =
(1, 3, 2, 0) and cycle structure [41, 2112, 22]. The Belyi function reads f(x) = (x−1)4

16x2 ;

hence, f ′(x) = (x−1)3(x+1)
8x3 . The critical points are at x = −1 (with critical value

1) and x = 1 (with critical value 0), the preimage of 0 is the black vertex at x = 1
and the preimage of 1 consists of the white vertices at x ∈ {−1, 3±√

8}.
Summing up, one of the simplest observable proofs of Bell’s theorem is found

to rely on the geometry of a square and four distinct dessins associated with it.
Although we still do not know how these dessins are related to each other, it is
quite intriguing to see that all critical points live in the extension field Q(

√
2) ∈ Q̄

of the rational field Q. Hence, a better understanding of the properties of the group
of automorphisms of this field (which is itself a subgroup of the absolute Galois
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group Γ) may lead to fresh insights into the nature of this important theorem of
quantum physics.

4. A Wealth of Other Notable Point-Line Geometries Relevant
to Contextuality

It is also appealing to see the failure of the EPR reality criterion emerge quite
directly from the one crucial difference between the elements of reality (which, being
ordinary numbers, necessarily commute) and the precisely corresponding quantum
mechanical observables (which sometimes anti-commute) [15].

4.1. Two geometries of index six : The octahedron and the

bipartite graph K(3, 3)

As the geometries of index five are only trivial simplices (see Table 1), we have to
move to index six in order to encounter non-trivial ones, namely the octahedron
and the bipartite graph of type K(3, 3).

The octahedron can be labeled by three-qubit observables, and one such labeling
is given in Fig. 2(a). The figure also illustrates one of the associated dessins (b),
whose Belyi function of is f(x) = 27

32x
2(2−x2)2. The function has critical points at

x = 0 and x = ±√
2 (these being also the preimage of 0), and the white vertices of

the dessin correspond to x = ±√
2/3 and x = ±√

8/3 (the preimage of 1).
A remarkable property of the graph K(3, 3) is that it lives in the generalized

quadrangle GQ(2, 2), disguised there as a generalized quadrangle of type GQ(1, 2)
[19]. And since GQ(2, 2) was found to mimic the commutation relations between
elements of the two-qubit Pauli group [7], K(3, 3) thus naturally lends itself, like the
above-discussed square, to a labeling in terms of two-qubit observables — as, for
example, depicted in Fig. 3(a). One of the associated dessins (Fig. 3(b)) possesses
the Belyi function of the form f(x) = ax4(x − 1)2, where a = 36

24 = 729
16 . Since

(a) (b)

Fig. 2. The octahedron with vertices labeled by three-qubit observables (a) and an associated
dessin (b).

1550067-9
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(a) (b)

Fig. 3. The bipartite graph K(3, 3) with one of its two-qubit labelings (a) and its generating
dessin (b).

f ′(x) = ax3(x− 1)(3x− 2) the critical points are at x = 2/3, x = 0 and x = 1. The
black vertices of the dessin correspond to x = 0 and x = 1; out of its five white
vertices three answer to real-valued variable, namely x = − 1

3 , x = 2
3 and x ≈ 1.118

(the latter being denoted as x1 in Fig. 3(b)), and the remaining two — denoted
as x2 and x3 in the figure in question — have imaginary, complex-conjugate one:
x ≈ 0.36 exp(±iφ), with φ ≈ 99.4◦.

4.2. The Fano plane (everywhere)

The only non-trivial geometry of index seven is the projective plane of order two, the
Fano plane (Fig. 4(a)). This plane plays a very prominent role in finite-dimensional
quantum mechanics, being, for example, intricately related — through the prop-
erties of the split Cayley hexagon of order two [19] — to the structure of the
three-qubit Pauli group [20]. A quick computer search for all permutation sub-
groups of C+

2 isomorphic to the group PSL(2, 7), the automorphism group of the
Fano plane, shows that this plane can be recovered from 10 distinct dessins. One
choice is depicted schematically in Fig. 4(b); it corresponds to passport 8 (the
fourth dessin) in the catalog of Bétréma and Zvonkin [17]. The corresponding per-
mutation group is P = 〈(2, 7, 6, 5)(3, 4), (1, 2)(3, 5)〉 and the Belyi function reads

f(x) =
√

8x4(x − 1)2(x − a), with a = − 1
4 (1 + i

√
7); its critical points are located

at x = 0 and x = 1 (yielding critical value 0) and at x = a (yielding 1).

(a) (b)

Fig. 4. The Fano plane portrayed in its most frequent rendering (a) and one of its 10 stabilizing
dessins (b).

1550067-10
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(a) (b)

Fig. 5. The 16-cell (a) and an associated dessin (b).

4.3. The 16-cell, stellated octahedron and the completed cube

When moving to index eight, we encounter an appealing 16-cell on the one hand,
and the remarkably “twinned” stellated octahedron and completed cube on the
other hand.

The 16-cell (Fig. 5(a)) arises from a “straight-line” dessin with the signature
(5, 4, 1, 0) and the permutation group isomorphic to D8. Its Belyi function is the
fourth order of the map x→ x2 − 2, that is f(x) = 8x(x2 − 2)(x4 − 4x2 + 2), with

critical points located at x− 0, x = ±√
2 and x = ±

√
2 ±√

2.
The dessin with signature s = (2, 6, 2, 0), illustrated in Fig. 6(c), has the permu-

tation group P = 〈(1, 2, 4, 3)(5, 7, 6, 8), (2, 5)(3, 7)〉, which is isomorphic to Z3
2 � Z2

and endowed with the cycle structure of the form [42, 2214, 42]. The stabilizer of
a pair of its edges is either the group Z2, leading to the geometry of a stellated
octahedron (Fig. 6(a)), or the trivial single element group Z1, in which case we get
the geometry of a (triangle-free) completed cube, i.e. the ordinary cube where pairs

(a) (b) (c)

Fig. 6. The stellated octahedron (a), the completed cube (b), and their common stabilizing
dessin (c).
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of opposite points are joined (Fig. 6(b)). The latter configuration also appears in a
recent paper [21, pp. 33–34 as well as Conjecture 6.1] as an 8-face Kepler–Poinsot
quadrangulation of the torus. Note that, in addition the six faces shared with the
ordinary cube, the completed cube contains also eight non-planar faces of which
four are self-intersecting. The completed cube can also be viewed as the bipartite
graph K(4, 4). The Belyi function of the dessin has the form

f(x) = K
(x− 1)4(x− a)4

x3
, a =

8
√

10 − 37
27

, K ≈ −0.4082,

from where we find the positions of “critical” white vertices to be x ≈ 0.0566 ±
0.506i, with the other four white vertices being located at x = −1.069, x = −0.162
and x = 1.634± 0.6109i.

4.4. Geometries of index nine: Grid (Mermin’s square), Pappus

and Hesse

In the realm of index nine we meet, in addition to our old friend, a 3 × 3-grid
(alias generalized quadrangle GQ(2, 1)), also other distinguished finite geometries
like the Pappus 93-configurations and the Hesse 94123-configuration (also known as
the affine plane of order three, AG(2, 3)).

As already mentioned, the grid lives (as a geometric hyperplane) in GQ(2, 2)
and underlies a Mermin “magic” square array of observables furnishing a simple
two-qubit proof of the Kochen–Specker theorem [6, 22]. A Mermin square built
around Bell’s square of Fig. 1(a) is shown in Fig. 7(a). It needs a genus one dessin,
with signature (2, 5, 2, 1), to be recovered, as shown in Fig. 7(b). The corresponding
permutation group is P = 〈(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ∼= Z2

3 � Z2
2,

having the cycle structure [6131, 2411, 6131]. This dessin lies on a Riemann surface
that is a torus (not a sphere Ĉ), being thus represented by an elliptic curve. The
topic is far more advanced and we shall not pursue it in this paper (see, e.g. [13]
for details). The stabilizer of a pair of edges of the dessin is either the group Z2,
yielding Mermin’s square M1 shown in Fig. 7(a), or the group Z1, giving rise to
a different square M2 from the maximum sets of mutually non-collinear pairs of
points of M1. The union of M1 and M2 is nothing but the Hesse configuration.

(a) (b)

Fig. 7. A 3× 3 grid with points labeled by two-qubit observables (also known as a Mermin magic
square) (a) and a stabilizing dessin drawn on a torus (b).
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(a) (b)

Fig. 8. The Hesse configuration (a) and an associated genus-zero dessin (b).

The Hesse configuration (Fig. 8(a)), of its own, can be obtained from a genus-
zero dessin shown in Fig. 8(b) (also reproduced in [6, Fig. 3(b)]). This configuration
was already noticed to be of importance in the derivation of a Kochen–Specker
inequality in [23].

The Pappus configuration, illustrated in Fig. 9(a), comprises three copies of the
already discussed K(3, 3)-configuration (Fig. 3(a)); the three copies are represented
by the point-sets {1, 3, 5, 6, 7, 8}, {2, 3, 4, 5, 8, 9} and {1, 2, 4, 6, 7, 9}, which pairwise
overlap in distinct triples of points. A dessin d ’enfants for the Pappus configuration
is exhibited in Fig. 9(b). It is important to point out here a well-known fact that the
Pappus configuration is obtained from the Hesse one by removing three mutually
skew lines from it (for example, the three lines that are represented in Fig. 8(a) by
three concentric circles).

4.5. Realm of index 10: Mermin ’s pentagram, Petersen

and Desargues

Apart from the two plexes (see Table 1), the only connected configurations gener-
ated by 10-edge dessins are Mermin’s pentagram, the Petersen graph, the Desargues
configuration and the bipartite graph K(5, 5).

(a) (b)

Fig. 9. The Pappus configuration (a) and a stabilizing dessin (b).
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(a) (b) (c)

Fig. 10. The Mermin pentagram (a), the Petersen graph (b), and their generating dessin (c).

The dessin sketched in Fig. 10(c), having s = (4, 6, 2, 0) and the alternating
group A5 with cycle structure [3211, 2412, 52], induces either the geometry of Mer-
min’s pentagram (Fig. 10(a)) or that of the Petersen graph (Fig. 10(b)) according
as the group stabilizing pairs of its edges is isomorphic to Z1 or Z2, respectively.
A particular three-qubit realization leading to a proof of the Kochen–Specker the-
orem is explicitly shown (see, e.g. [16, 22] for more details on importance of these
geometries in quantum theory).

The dessin depicted in Fig. 11(b) also gives rise to a couple of geometries, one
being again the Petersen graph (with the stabilizer group of a pair of edges isomor-
phic to Z2

2) and the other being (Fig. 11(a)) the famous Desargues 103 configuration
(with the group Z2). The labeling is compatible with that in Fig. 10, which means
that the Desargues configuration represents another way of encoding a three-qubit
proof of contextuality; in particular, a line of Mermin’s pentagram corresponds to
a complete graph K4 within the Desargues configuration as well as to a maximum
set of mutually disjoint vertices in the Petersen graph.

4.6. The Cremona–Richmond 153-configuration, alias GQ(2, 2),
or W(3, 2)

We now come to a perhaps most exciting, and encouraging as well, finding that
there exists a dessin generating the configuration of a central importance for any

(a) (b)

Fig. 11. The Desargues configuration (a) and its generating dessin (b).
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(a) (b)

Fig. 12. The Cremona–Richmond 153-configuration (a) with its points labeled by the elements of
the two-qubit Pauli group and a stabilizing dessin (b).

quantum physical reasoning involving two-qubit observables, namely the configu-
ration (illustrated in Fig. 12(a)) known as 153 Cremona–Richmond configuration,
or the generalized quadrangle of order two, GQ(2, 2), or the symplectic polar space
of rank two and order two, W (3, 2). That this configuration indeed is one of the
corner-stones of finite-dimensional quantum mechanics is also illustrated by the fact
that many of the already discussed geometries, in particular the K(3, 3) graph, the
3 × 3 grid, the Pappus and Desargues configurations and the Petersen graph, are
intricately tied to its structure, as explained in detail in [7, 24–26]. The associated
dessin (Fig. 12(b)) is of signature (5, 9, 3, 0) and its permutation group has the

cycle structure [61322111, 2613, 6231]. Unfortunately, the complexity of this dessin
is already so high that with our current computer power we have not been able
to find the corresponding Belyi function. Finding this function thus remains one
important challenge of our dessin d ’enfants programme.

4.7. The generalized quadrangle GQ(2, 4), the Schläfli graph and

the Clebsch graph

As already mentioned, the generalized quadrangle of type GQ(2, 4) is a prominent
finite geometry in the context of the so-called black-hole–qubit correspondence [8],
as it completely underlies the E6-symmetric entropy formula describing black holes
and black strings in D = 5. We were thus very pleased to find a dessin that leads
to the collinearity graphs of this geometry, and to its complement — the famous
Schläfli graph — as well (Fig. 13). Moreover, GQ(2, 4) is also notable by the fact
it contains (altogether 27) copies of the Clebsch graph, each such copy being the
complement of a geometric hyperplane of particular type. And since the Clebsch
graph is also a dessin-generated one (see Table 2), we will not be surprised if our
dessin’s formalism is also found of relevance for getting conceptual insights into
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Fig. 13. The dessin for both the collinearity graph of the generalized quadrangle of type GQ(2, 4)
and its complement, the Schläfli graph.

the still-mysterious formal link between stringy black hole entropy formulas and
properties of multi-qubits (for a recent review, see [28]).

5. Conclusion

We have demonstrated, substantially boosting the spirit of [6], that Grothendieck’s
dessins d’enfants (child’s drawings) — that is graphs where at each vertex is given
a cyclic ordering of the edges meeting it and each vertex is also assigned one of the
two colors, conventionally black and white, with the two ends of every edge being
colored differently — and their associated permutation groups/Belyi functions give
rise to a wealth of finite geometries relevant for quantum physics. We have made a
complete catalog of these geometries for dessins featuring up to 12 edges, highlighted
distinguished geometries for some higher-index dessins, and briefly elaborated on
quantum physical meaning for each non-trivial geometry encountered. We are aston-
ished to see that a majority of dessin-generated geometries have already been found
to have a firm footing in finite-dimensional quantum mechanical setting, like the
K(3, 3) and Petersen graphs, the Fano plane, the 3 × 3 grid (Mermin’s square),
the Desargues configuration, Mermin’s pentagram and the generalized quadrangles
GQ(2, 2) and GQ(2, 4). We have also found a wealth of geometries, among them the
Hesse 94123-configuration, the Reye 124163-configuration [27], the 3 × 3 × 3-grid,
the Kneser graph KG(7,2) and many others, that still await their time to enter the
game. Our findings may well be pointing out that properties of dessins, as well as
the Galois group G = Gal(Q̄/Q) acting on them, may be vital for getting deeper
insights into foundational aspects of quantum mechanics. To this end in view, we
aim to expand in a systematic way our catalog of finite geometries generated by
higher-index dessins in order to reveal finer traits of the quantum pattern outlined
above.
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[20] P. Lévay, M. Saniga and P. Vrana, Three-qubit operators, the split Cayley hexagon
of order two and black holes, Phys. Rev. D 78 (2008) 124022.
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