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We discuss three important classes of three-qubit entangled states and their encoding into
quantum gates, finite groups and Lie algebras. States of the GHZ and W -type correspond to
pure tripartite and bipartite entanglement, respectively. We introduce another generic class B of
three-qubit states, that have balanced entanglement over two and three parties. We show how to
realize the largest cristallographic group W(E8) in terms of three-qubit gates (with real entries)
encoding states of type GHZ or W . Then, we describe a peculiar “condensation” of W(E8) into
the four-letter alternating group A4, obtained from a chain of maximal subgroups. Group A4 is
realized from two B-type generators and found to correspond to the Lie algebra sl(3,C)⊕u(1).
Possible applications of our findings to particle physics and the structure of genetic code are
also mentioned.
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1. Introduction

Tripartite aggregates and interactions frequently occur in the natural world. Our
work is motivated by three physical phenomena from the area of particle physics,

*Part of this work was carried out within the framework of the Cooperation Group “Finite Projective Ring
Geometries: An Intriguing Emerging Link Between Quantum Information Theory, Black-Hole Physics and
Chemistry of Coupling” at the Center for Interdisciplinary Research (ZiF), University of Bielefeld, Germany.
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biophysics and quantum information, where triplet-type structures occur in a natural
way.

As a first example, it is well known that ordinary matter consists of atoms
whose nuclei are made of protons and neutrons, which are themselves made of the
lightest quarks u and d. A proton consists of a triplet uud and a neutron consists of
a triplet ddu. Thus, our present universe is made of three types of stable particles,
of spin 1

2 , i.e. electrons e and u and d quarks. According to the standard model,
there also exist four heavier quarks (among them the strange spin 1

2 quark s), that
combine to form unstable composite particles called hadrons, in quark-antiquark pairs
(mesons) or three-quark states (baryons). Mathematically, these composite particles
are described using the representations of the Lie algebra su(3), in a model named
the eightfold way by Gell-Mann and Ne’eman [1]. An old instance goes back to the
beginning of chemistry. Among the numerous precursors of Mendeleev, Döbereiner
was the first to classify chemical elements into triads [2].

A second relevant example is the genetic code (or amino acid code), that refers
to the system of passing from DNA and RNA into the synthesis of proteins. It
was discovered in 1961 by Crick et al. that the genetic code is a triplet code,
made of elementary units of information called codons. There are 64 codons made
of four building block bases A, U , G and C that encode 20 aminoacids. A chain
of subalgebras of the Lie algebra sp(6) was proposed for explaining the high
degeneracy of the code [3]. See also the modeling of the genetic code based on
quantum groups in [4] and related papers.

Our third example is quantum information theory. The term black hole analogy
has been coined for featuring the relationship between some stringy black hole
solutions and three-qubit states [5–7]. Presumably, this analogy stems from the
structure of the largest cristallographic group W(E8), of cardinality 696 729 600,
which one of the authors succeeded in representing in terms of several three-qubit
gates [8].

Our goal is not to unify these three topics but suggest that tripartite quantum
entanglement may well be considered a common denominator in future work.

Among the various forms of three-qubit entanglement, a first classification based on
SLOCC (stochastic local operations and classical communications) leads to entangled
states of the type GHZ and W. The former possess pure (and maximal) three-qubit
entanglement and any tracing out about one party destroys all the entanglement.
The latter possess equally distributed (and maximal) bipartite entanglement, but no
tripartite entanglement. A finer classification is based on local unitary equivalence
[9]. The relation between group theory and entanglement is investigated in [10]. In
this paper, we are especially interested in a class of entangled three-qubit states
displaying equally distributed entanglement about three and two parties. Such states
were already encountered in the context of CPT symmetry [11]. Here, they occur
when one “condenses” the three-qubit representation of W(E8) to the alternating
group A4, through an appropriate chain of maximal subgroups. The Lie subalgebra
of rationals obtained from the generators of A4 is found to be sl(3,C)⊕u(1). Going
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upstream in the group sequence, one arrives at a representation of the symmetric
group S4, with attached Lie algebra sl(3,C)⊕ sl(2,C)⊕ u(1)⊕ u(1), that may play
a role in the understanding of elementary particles [12, 13].

In this paper, we expose our new findings about B-type entanglement, the
generation of W(E8) with entangling matrices and the embedding of specific
permutation groups S4 and A4. A novel three-qubit realization of sl(3,C) ⊕ u(1)
and its generalization is described.

Many calculations are performed by using the abstract algebra software Magma
[14]. A few papers relating Lie algebras and quantum information theory have
already been published [15–20].

2. B-type three-qubit quantum entanglement

One efficient measure of two-qubit entanglement is the tangle τ = C2, where the
concurrence reads C(ψ) = |〈ψ |ψ̃〉|. The flipped transformation ψ̃ = σy |ψ∗〉 applies
to each individual qubit and the spin-flipped density matrix ρ̃ = (σy⊗σy)ρ∗(σy⊗σy)
follows [21]. Explicitly,

C(ρ) = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (1)

where the λi are (nonnegative) eigenvalues of the product ρρ̃, ordered in the
decreasing order.

Roughly speaking, two pure multiparticle quantum states may be considered as
equivalent if both of them can be obtained from the other by means of stochastic
local operations and classical communication (the SLOCC group) [22]. There are
essentially two inequivalent classes of three-qubit entangled states, with representative
|GHZ〉 = 1√

2
(|000〉+|111〉) (for the GHZ class) and |W 〉 = 1√

3
(|001〉+|010〉+|100〉)

(for the W -class). For measuring the entanglement of a triple of quantum systems
A, B and C, one may calculate the amount of true three-qubit entanglement from
the SLOCC invariant three-tangle [24]

τ (3) = 4 |d1 − 2d2 + 4d3| ,
d1 = ψ2

000ψ
2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

100ψ
2
011,

d2 = ψ000ψ111(ψ011ψ100 + ψ101ψ010 + ψ110ψ001)

+ ψ011ψ100(ψ101ψ010 + ψ110ψ001)+ ψ101ψ010ψ110ψ001,

d3 = ψ000ψ110ψ101ψ011 + ψ111ψ001ψ010ψ100, (2)

as well as the amount of two-qubit entanglement between two parties, by tracing
out over partial subsystems AB, BC and AC.

For a two-qubit state |ψ 〉 = α |00 〉+β |01 〉+γ |10 〉+δ |11 〉, the concurrence
is C = 2 |αδ − βγ |, and thus satisfies the relation 0 ≤ C ≤ 1, with C = 0 for
a separable state and C = 1 for a maximally entangled state.
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The three-qubit entangled state |GHZ〉 is maximally entangled, with three-tangle
τ (3) = 1 and all two-tangles vanishing; that is, whenever one of the qubits is traced
out, the remaining two are completely unentangled. On the other hand, the entangled
state |W 〉 has τ (3) = 0, but it maximally retains bipartite entanglement [22].

Refinements on the above classification may be obtained if one classifies the
three-qubit state up to local unitary equivalence (the LU group) [9]. Thus, if one
singles out the first party A, a generic state of three qubits depends, up to LU, on
five parameters:

|ψ〉 = λ0 |000〉 + λ1e
iφ |100〉 + λ2 |101〉 + λ3 |110〉 + λ4 |111〉 ,

λi > 0,
∑4

j=0 λ
2
i = 1 and 0 ≤ φ ≤ π. (3)

In the sequel, we are interested in entangled states of the B-class, where λ1 = 0,
with a representative

|B〉 = 1

2
(|000〉 + |101〉 + |110〉 + |111〉). (4)

The three-tangle of the B-state is τ (3) = 1
4 and the density matrices of the

bipartite subsystems are

ρBC =
1

4

⎛
⎜⎝

1 0 0 0

0 1 1 1

0 1 1 1

0 1 1 1

⎞
⎟⎠ , ρAB = 1

4

⎛
⎜⎝

1 0 0 1

0 0 0 0

0 0 1 1

1 0 1 2

⎞
⎟⎠ ,

ρAC =
1

4

⎛
⎜⎝

1 0 0 1

0 0 0 0

0 0 1 1

1 0 1 2

⎞
⎟⎠ . (5)

The set of eigenvalues
{

1
16(3+ 2

√
2), 1

16(3− 2
√

2), 0, 0
}

is uniform over the

subsystems with two-tangles τAB = τAC = τBC = 1
4 . Similarly, the linear entropies

τA(BC) = τB(AC) = τC(AB) = 3
4 are the same (see [21] for the meaning of linear

entropies such as τA(BC) = τ (3) + τAB + τAC). Thus, the entanglement measure for
two parties equals the entanglement measure for three parties. This equal balance
of the entanglement for two or three parties justifies our notation for the B-class*.

3. Three-qubit entanglement and the crystallographic group W(E8)

Recently, by studying the Clifford group on two and three qubits, we discovered
several eight-dimensional orthogonal realizations of the largest crystallographic group

*The B-states are denoted CPT states in our previous work [11]. Choudhary and coworkers [23] computed
the local realistic violation of the inequality (given in Eq. (3) of their paper) for the generic state |B〉 and
found the value 0.608723, a big violation compared to 0.175459 for the generic GHZ state and 0.192608 for
the generic W state.
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W(E8), and of its relevant subgroups. As described in papers [8, 11], these repre-
sentations find their kernel in two-qubit entanglement and the following orthogonal
matrix

S2 =
1

2

⎛
⎜⎝

1 −1 1 1

1 1 −1 1

1 −1 −1 −1

1 1 1 −1

⎞
⎟⎠ ,

⎛
⎜⎝
+ − −
− + −
− − +
+ + +

⎞
⎟⎠ , (6)

that encodes the joint eigenstates of the triple of observables,{
σx ⊗ σz, σz ⊗ σx, σy ⊗ σy

}
. (7)

Rows of the second matrix contain the sign of eigenvalues ±1 of the triple of
observables, and a row of the first matrix corresponds to a joint eigenstate [e. g.
the first row corresponds to the state 1

2(|00〉 − |01〉 + |10〉 + |11〉 with eigenvalues
(1,−1− 1)].

To abound in this claim, let us consider the following triple of three-qubit
observables

σz ⊗
{
σx ⊗ σz, σz ⊗ σx, σy ⊗ σy

}
, (8)

that follows from (7) by adjoining the tensor product σz at the left-hand side.
Eigenstates of (8) may be used for encoding the rows of the following orthogonal
matrix,

S3 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 1 1 −1

1 1 1 −1 0 0 0 0

0 0 0 0 1 1 −1 1

1 −1 1 1 0 0 0 0

1 1 −1 1 0 0 0 0

−1 1 1 1 0 0 0 0

0 0 0 0 1 −1 1 1

0 0 0 0 −1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (9)

and to generate the derived subgroup W ′(E8) ∼= O+(8, 2) of order 348 364 800
[recall that O+(8, 2) is the general eight-dimensional orthogonal group over GF(2)],

W ′(E8) ∼= 〈σx ⊗ S2, S3〉 . (10)

Replacing the S3 state by the GHZ-type generator b whose explicit form is given by
Eq. (18) of [8], one gets W ′(E7) ∼= 〈σx ⊗ S2, b〉. Indeed many important subgroups
of W(E8) may be realized by means of the appropriate orthogonal generators1.

Here one focuses on a sequence of subgroups leading to a specific representation
of the four-letter alternating group A4 (as well as the symmetric group S4) and
a representation of the Lie algebra sl(3,C) (as well as its more general parent).

1The proof of (10) is easily established in Magma by checking the isomorphism between the derived
subgroup of the Coxeter group W(E8) (in its permutation realization) and the matrix group with generators
σx ⊗ S2 and S3. At the moment, we are not able to provide an analytic proof.
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The relevant sequence is

W ′(E8) ⊃ W ′(E7) ⊃ W ′(E6) ⊃ G648 ⊃ S4 ⊃ A4. (11)

Starting from W ′(E8) [as in (10)], one looks at the maximal subgroups. One of
the three subgroups of the largest cardinality is isomorphic to W(E7), of order2

2 903 040. Then, in the derived subgroup W ′(E7), one takes the largest maximal
subgroup W(E6), of order 51 840. Among the five maximal subgroups of W ′(E6),
two of them have the cardinality 648; one selects the one isomorphic to the semi-
direct product3 G648 = Z

7
2 � S4. Finally, one is interested in the subgroup S4 of

G648, as well as in its derived subgroup A4.
The alternating group A4 may be realized by means of two orthogonal generators

xA4 and yA4 , whose rows are similar up to a permutation, and encode three-qubit
states (4) of the B-type, with similar two- and three-tangles as it results from
straightforward calculations,

xA4 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 −1 −1 0 0 1 0

0 1 1 −1 0 0 −1 0

0 1 1 1 0 0 1 0

−1 0 0 0 1 1 0 −1

−1 0 0 0 1 −1 0 1

−1 0 0 0 −1 1 0 1

−1 0 0 0 −1 −1 0 −1

0 1 −1 1 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

yA4 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 1 −1 0 0 1 0

0 1 1 1 0 0 1 0

0 1 1 −1 0 0 −1 0

−1 0 0 0 1 1 0 −1

−1 0 0 0 1 −1 0 1

−1 0 0 0 −1 1 0 1

−1 0 0 0 −1 −1 0 −1

0 −1 1 1 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

Entangled states shared by mutually commuting sets of 3-qubit (or 7-qubit)
observables may only be of the GHZ- or W -type [6, 8]. The B-states encoded in
the rows of matrices (12), or similar B-type matrices (8) in [11], are of a different
character, to be investigated further in the future. The relationship between the finite
group A4 and the Lie algebra sl(3,C) is established in the next section.

2The second largest subgroup of W(E8) is the real Clifford group C
+
3 , of order 2 580 480 studied in [8, 11].

3The maximal subgroup of the largest cardinality in W ′(E6) is isomorphic to the perfect group M20 = Z4
2 �A5

of order 960, and is described in [25, 26].
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4. The Lie algebra of sl(3,C): old and new

Group operations we considered in our earlier papers were finite group op-
erations [25–27]. We are now interested in group operations which are smooth,
yet still compatible with the finite symmetries. This is where the concept of
a Lie group, endowed with its Lie algebra of commutation relations, enters the
game.

Let G be a matrix Lie group, the Lie algebra g of G is real and defined as
the set of all matrices X such that etX is in G for all real numbers t . There is
an important property that

for any X ∈ g, and for A ∈ G, AdA(X) = AXA−1 ∈ g, (13)

i. e. conjugation of an element of the Lie algebra by an element of the Lie group
preserves the algebra. The above map from the Lie algebra to itself is called the
adjoint mapping.

This definition is reminiscent of the definition of the Clifford group C, that is
defined as the normalizer of the Pauli group P within the unitary group U(n), i.e.
denoting X an arbitrary error arising from the Pauli group, and A an element of
the Clifford group [8, 25, 26]

for any X ∈ P, and for A ∈ C ⊂ U(n), AXA−1 ∈ P . (14)

In some sense, Lie groups and algebras are a smooth (continuous) formulation of
quantum error correction.

The adjoint endomorphism “Ad” can be reformulated in terms of commutators
by the linear map “ad” as follows adX : g → g defined by adX(Y ) = [X, Y ].
Thus, the map “ad” from X to adX is a linear map from g to the space
gl(g) of linear operators from g to g, and there exists a Lie algebra ho-
momorphism g to gl(g) by the relation ad[X,Y ] = [adX, adY ]. Selecting a ba-
sis X1, . . . , Xn of the n-dimensional Lie algebra, for each i and j one ob-
tains

[Xi,Xj ] = ckijXk, (15)

in which the structure constants ckij (with respect to the basis) define the bracket
operation on g. For a simple real or complex Lie algebra there exists a basis, called
the Chevalley basis, for which the structure constants are relative integers. For more
details about Lie groups and Lie algebras see [28–31].

In quantum mechanics, the favourite Lie group is the matrix Lie group SL(n,C).
It is well know that sl(3,C) occurs in the context of particle physics for
representing quark states. It is part of the standard model of elementary par-
ticles su(3) ⊕ su(2) ⊕ u(1) [1]. Remarkably, one arrives at a form reminiscent
of the standard model in representing the Lie algebra attached to groups A4
and S4.
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A Chevalley basis for the algebra sl(3,C) may be written as

x1 =
(

0 0 0
0 0 1
0 0 0

)
, x2 =

(
0 1 0
0 0 0
0 0 0

)
, x3 =

(
0 0 1
0 0 0
0 0 0

)
,

y1 =
(

0 0 0
0 0 0
0 1 0

)
, y2 =

(
0 0 0
1 0 0
0 0 0

)
, y3 =

(
0 0 0
0 0 0
1 0 0

)
,

h1 =
(

0 0 0
0 1 0
0 0 −1

)
, h2 =

(
1 0 0
0 −1 0
0 0 0

)
, (16)

and the corresponding table of commutators reads⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[., .] x1 x2 x3 y1 y2 y3 h1 h2

x1 . −x3 . h1 . y2 −2x1 x1

x2 . . . h2 −y1 x2 −2x2

x3 . x2 −x1 h1 + h2 −x3 −x3

y1 . y3 . 2y1 −y1

y2 . . −y2 2y2

y2 . y3 y3

h1 . .

h2 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

Using this table, the positive roots relative to the pair of generators H = (h1, h2)
are easily discerned as α1 = (2,−1), α2 = (−1, 2) and α3 = (1, 1), corresponding
to the root vectors x1, x2 and x3, respectively (see [28] for details4). Negative roots
have opposite signs. The Killing matrix is

Kil = 6

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 . . . 1 . . .

. . . 1 . . . .

. . . . . . 1 .

. 1 . . . . . .

1 . . . 2 . . .

. . . . . . . 1

. . 1 . . . . .

. . . . . 1 . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let us now go back to tripartite quantum entanglement and show how the
B-states (4) are related to a new representation of sl(3,C). Using Magma, we
created a (real) subalgebra of the matrix Lie algebra defined over the rational field,

4For instance, since [h1, x1] = 2x1 and [h2, x1] = −x1, one gets the first root α1 = (2,−1) corresponding
to the root vector x1.
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that is obtained from the generators of the finite group A4 described in (12). The
algebra is found to be isomorphic to the Lie algebra gA4 of type sl(3,C)⊕ u(1),
and the derived algebra g

′
A4
= [gA4, gA4] turns out to be isomorphic to sl(3,C).

A Chevalley basis of the algebra g
′
A4

is as follows,

x1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

. . . 1 . . 1 .

. . . −1 . . −1 .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, x2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. 1 −1 . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. 1 −1 . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

x3 = 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 1 . . 1 .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . 1 . . 1 .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, y1 =

1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

. . . . . . . .

. . . . . . . .

. 1 −1 . . . . .

. . . . . . . .

. . . . . . . .

. 1 −1 . . . . .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

y2 =
1

4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

1 . . . . . 1

−1 . . . . . −1

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, y3 =

1

8

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

. . . . . . .

. . . . . . .

1 . . . . . . 1

. . . . . . . .

. . . . . . . .

1 . . . . . . 1

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

h1 =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

. 1 −1 . . . . .

. −1 1 . . . . .

. . . −1 . . −1 .

. . . . . . . .

. . . . . . . .

. . . −1 . . −1 .

. . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, h2 =

1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . . . . 1

. −1 1 . . . .

. 1 −1 . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

1 . . . . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(18)
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and its elements are readily seen to fit into the table of commutators (17) of sl(3,C).
As a result, the roots relative to a new pair of generators (h1, h2) given above are
the αi given before. This may be a useful feature of the new representation, in
contrast to the adjoint one, for subsequent applications to the physics of elementary
particles.

Going upstream in the group sequence (11) one arrives at a three-qubit realization
of the symmetric group S4. The group A4, with generators as in (12), is the derived
subgroup of S4. The corresponding Lie algebra, of dimension 13, may be decomposed
as a direct sum of simple Lie algebra as follows

gS4 = sl(3,C)⊕ sl(2,C)⊕ u(1)⊕ u(1), (19)

in which the algebra sl(3,C)⊕ u(1) is embedded.
A basis for the representation of sl(2,C) in (19) is as follows,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . −1 . 1 −1 . .

. −1 . . −1 1 . 1

−1 . 1 . −1 1 . .

. . . . . . . .

1 −1 −1 . . . . 1

−1 1 1 . . . . −1

. . . . . . . .

. 1 . . 1 −1 . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. 1 . . 1 −1 . −1

. − 1
2 . . − 1

2
1
2 . 1

2

. −1 . . −1 1 . 1

. . . . . . . .

. 1
2 . . 1

2 − 1
2 . − 1

2

. − 1
2 . . − 1

2
1
2 . 1

2

. . . . . . . .

. 1
2 . . 1

2 − 1
2 . − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . .

1 − 1
2 −1 . 1

2 − 1
2 . 1

2

. . . . . . . .

. . . . . . . .

1 − 1
2 −1 . 1

2 − 1
2 . 1

2

−1 1
2 1 . − 1

2
1
2 . − 1

2

. . . . . . . .

−1 1
2 1 . − 1

2
1
2 . − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(20)
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The Killing matrix of the representation may be diagonalized as 24

⎛
⎜⎝4 1 1

1 . 2

1 2 .

⎞
⎟⎠ :=

TDT −1 with D = 96

⎛
⎜⎝1 . .

. −1 0

. . 3

⎞
⎟⎠ and T :=

⎛
⎜⎝ 1 . .

−1 4 .

2 −7 −1

⎞
⎟⎠, corresponding to the

representation su(1, 1) of sl(2,C), with signature5 (2, 1).

5. Conclusion

We have found a new intricate relation between finite group theory, Lie algebras
and three-qubit quantum entanglement. In particular, the connection between balanced
tripartite entanglement and the eight-dimensional representation of the Lie algebra sl(3,C)
is put forward. Earlier papers of one of the authors focused on the three-qubit realization
of Coxeter groups, such as the largest one W(E8), together with its most relevant
subgroups comprising the three-qubit Clifford group C

+
3 , W(E7), W(E6), W(F4) and

other subgroups [8, 11]. Here, one discovers that the two-qubit real entangling gate S2

[see Eq. (6)] and its three-qubit parent, the gate S3 [see Eq. (9)] are building stones
of the realization of W ′(E8). An appropriate reduction of W ′(E8) to the four-letter
alternating group A4 [see (11)] is used to represent the algebra gA4 = sl(3,C) ⊕ u(1).
The parent of A4 is the symmetric group S4 and the corresponding Lie algebra is
gS4 = sl(3,C) ⊕ sl(2,C) ⊕ u(1) ⊕ u(1), which reminds us of the standard model of
particles [12]. From a mathematical point of view, the relation to algebraic surfaces is
worthwhile to be investigated in the future [32].

Although our current findings rest on the extensive use of the Magma package, in
the future we also aim at considering more analytically solvable examples in order to
properly illustrate not only all the underlying mathematics but also potentially interesting
physics. As an interesting implication for biosciences, the four letters occurring in the
permutation groups A4 and S4 suggest to consider gS4 algebra as a new candidate for
a deeper insight into the degeneracies of genetic code.
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5A real form is a real Lie algebra g0 whose complexification is a complex Lie algebra g [29]. Let us define
the signature of a real Lie algebra as a pair (a1, a2), that counts the number of positive (a1) and negative
(a2) entries in the diagonal form of B. In particular, a real Lie algebra g is called compact if its Killing form
is negative definite. It is also known that a compact Lie algebra corresponds to a compact Lie group. As an
illustrative example, the special linear algebra sl(2,C) has two real forms, the so-called (noncompact) split
real form sl(2,R) ∼= su(1, 1) of signature (2, 1) and the compact real form su(2) of signature (0, 3).
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