BALANCED TRIPARTITE ENTANGLEMENT, THE ALTERNATING GROUP A_{4} AND THE LIE ALGEBRA $s l(3, \mathbb{C}) \oplus u(1)$

Michel Planat*
Institut FEMTO-ST, CNRS,
32 Avenue de l’Observatoire, F-25044 Besançon, France
(e-mail: michel.planat@femto-st.fr)
PÉTER LÉVAY
Departement of Theoretical Physics, Institute of Physics, Budapest University of Technology and Economics, H-1521 Budapest, Hungary
(e-mail: levay@neumann.phy.bme.hu)
and
Metod Saniga
Astronomical Institute, Slovak Academy of Sciences, SK-05960 Tatranskà Lomnica, Slovak Republic
(e-mail: msaniga@ta3.sk)
(Received April 26, 2010 — Revised September 14, 2010)

We discuss three important classes of three-qubit entangled states and their encoding into quantum gates, finite groups and Lie algebras. States of the $G H Z$ and W-type correspond to pure tripartite and bipartite entanglement, respectively. We introduce another generic class B of three-qubit states, that have balanced entanglement over two and three parties. We show how to realize the largest cristallographic group $W\left(E_{8}\right)$ in terms of three-qubit gates (with real entries) encoding states of type $G H Z$ or W. Then, we describe a peculiar "condensation" of $W\left(E_{8}\right)$ into the four-letter alternating group A_{4}, obtained from a chain of maximal subgroups. Group A_{4} is realized from two B-type generators and found to correspond to the Lie algebra $\operatorname{sl}(3, \mathbb{C}) \oplus u(1)$. Possible applications of our findings to particle physics and the structure of genetic code are also mentioned.

Keywords: entanglement, Lie algebras, quantum computation.

1. Introduction

Tripartite aggregates and interactions frequently occur in the natural world. Our work is motivated by three physical phenomena from the area of particle physics,

[^0]biophysics and quantum information, where triplet-type structures occur in a natural way.

As a first example, it is well known that ordinary matter consists of atoms whose nuclei are made of protons and neutrons, which are themselves made of the lightest quarks u and d. A proton consists of a triplet $u u d$ and a neutron consists of a triplet $d d u$. Thus, our present universe is made of three types of stable particles, of spin $\frac{1}{2}$, i.e. electrons e and u and d quarks. According to the standard model, there also exist four heavier quarks (among them the strange spin $\frac{1}{2}$ quark s), that combine to form unstable composite particles called hadrons, in quark-antiquark pairs (mesons) or three-quark states (baryons). Mathematically, these composite particles are described using the representations of the Lie algebra $s u(3)$, in a model named the eightfold way by Gell-Mann and Ne'eman [1]. An old instance goes back to the beginning of chemistry. Among the numerous precursors of Mendeleev, Döbereiner was the first to classify chemical elements into triads [2].

A second relevant example is the genetic code (or amino acid code), that refers to the system of passing from DNA and RNA into the synthesis of proteins. It was discovered in 1961 by Crick et al. that the genetic code is a triplet code, made of elementary units of information called codons. There are 64 codons made of four building block bases A, U, G and C that encode 20 aminoacids. A chain of subalgebras of the Lie algebra $s p(6)$ was proposed for explaining the high degeneracy of the code [3]. See also the modeling of the genetic code based on quantum groups in [4] and related papers.

Our third example is quantum information theory. The term black hole analogy has been coined for featuring the relationship between some stringy black hole solutions and three-qubit states [5-7]. Presumably, this analogy stems from the structure of the largest cristallographic group $W\left(E_{8}\right)$, of cardinality 696729600 , which one of the authors succeeded in representing in terms of several three-qubit gates [8].

Our goal is not to unify these three topics but suggest that tripartite quantum entanglement may well be considered a common denominator in future work.

Among the various forms of three-qubit entanglement, a first classification based on SLOCC (stochastic local operations and classical communications) leads to entangled states of the type GHZ and W. The former possess pure (and maximal) three-qubit entanglement and any tracing out about one party destroys all the entanglement. The latter possess equally distributed (and maximal) bipartite entanglement, but no tripartite entanglement. A finer classification is based on local unitary equivalence [9]. The relation between group theory and entanglement is investigated in [10]. In this paper, we are especially interested in a class of entangled three-qubit states displaying equally distributed entanglement about three and two parties. Such states were already encountered in the context of CPT symmetry [11]. Here, they occur when one "condenses" the three-qubit representation of $W\left(E_{8}\right)$ to the alternating group A_{4}, through an appropriate chain of maximal subgroups. The Lie subalgebra of rationals obtained from the generators of A_{4} is found to be $\operatorname{sl}(3, \mathbb{C}) \oplus u(1)$. Going
upstream in the group sequence, one arrives at a representation of the symmetric group S_{4}, with attached Lie algebra $s l(3, \mathbb{C}) \oplus s l(2, \mathbb{C}) \oplus u(1) \oplus u(1)$, that may play a role in the understanding of elementary particles [12, 13].

In this paper, we expose our new findings about B-type entanglement, the generation of $W\left(E_{8}\right)$ with entangling matrices and the embedding of specific permutation groups S_{4} and A_{4}. A novel three-qubit realization of $s l(3, \mathbb{C}) \oplus u(1)$ and its generalization is described.

Many calculations are performed by using the abstract algebra software Magma [14]. A few papers relating Lie algebras and quantum information theory have already been published [15-20].

2. B-type three-qubit quantum entanglement

One efficient measure of two-qubit entanglement is the tangle $\tau=C^{2}$, where the concurrence reads $C(\psi)=|\langle\psi \mid \tilde{\psi}\rangle|$. The flipped transformation $\tilde{\psi}=\sigma_{y}\left|\psi^{*}\right\rangle$ applies to each individual qubit and the spin-flipped density matrix $\tilde{\rho}=\left(\sigma_{y} \otimes \sigma_{y}\right) \rho^{*}\left(\sigma_{y} \otimes \sigma_{y}\right)$ follows [21]. Explicitly,

$$
\begin{equation*}
C(\rho)=\max \left\{0, \sqrt{\lambda_{1}}-\sqrt{\lambda_{2}}-\sqrt{\lambda_{3}}-\sqrt{\lambda_{4}}\right\}, \tag{1}
\end{equation*}
$$

where the λ_{i} are (nonnegative) eigenvalues of the product $\rho \tilde{\rho}$, ordered in the decreasing order.

Roughly speaking, two pure multiparticle quantum states may be considered as equivalent if both of them can be obtained from the other by means of stochastic local operations and classical communication (the SLOCC group) [22]. There are essentially two inequivalent classes of three-qubit entangled states, with representative $|G H Z\rangle=\frac{1}{\sqrt{2}}(|000\rangle+|111\rangle)$ (for the $G H Z$ class) and $|W\rangle=\frac{1}{\sqrt{3}}(|001\rangle+|010\rangle+|100\rangle$) (for the W-class). For measuring the entanglement of a triple of quantum systems A, B and C, one may calculate the amount of true three-qubit entanglement from the SLOCC invariant three-tangle [24]

$$
\begin{gather*}
\tau^{(3)}=4\left|d_{1}-2 d_{2}+4 d_{3}\right| \\
d_{1}=\psi_{000}^{2} \psi_{111}^{2}+\psi_{001}^{2} \psi_{110}^{2}+\psi_{010}^{2} \psi_{101}^{2}+\psi_{100}^{2} \psi_{011}^{2} \\
d_{2}=\psi_{000} \psi_{111}\left(\psi_{011} \psi_{100}+\psi_{101} \psi_{010}+\psi_{110} \psi_{001}\right) \\
+\psi_{011} \psi_{100}\left(\psi_{101} \psi_{010}+\psi_{110} \psi_{001}\right)+\psi_{101} \psi_{010} \psi_{110} \psi_{001} \\
d_{3}=\psi_{000} \psi_{110} \psi_{101} \psi_{011}+\psi_{111} \psi_{001} \psi_{010} \psi_{100} \tag{2}
\end{gather*}
$$

as well as the amount of two-qubit entanglement between two parties, by tracing out over partial subsystems $A B, B C$ and $A C$.

For a two-qubit state $|\psi\rangle=\alpha|00\rangle+\beta|01\rangle+\gamma|10\rangle+\delta|11\rangle$, the concurrence is $C=2|\alpha \delta-\beta \gamma|$, and thus satisfies the relation $0 \leq C \leq 1$, with $C=0$ for a separable state and $C=1$ for a maximally entangled state.

The three-qubit entangled state $|G H Z\rangle$ is maximally entangled, with three-tangle $\tau^{(3)}=1$ and all two-tangles vanishing; that is, whenever one of the qubits is traced out, the remaining two are completely unentangled. On the other hand, the entangled state $|W\rangle$ has $\tau^{(3)}=0$, but it maximally retains bipartite entanglement [22].

Refinements on the above classification may be obtained if one classifies the three-qubit state up to local unitary equivalence (the LU group) [9]. Thus, if one singles out the first party A, a generic state of three qubits depends, up to LU , on five parameters:

$$
\begin{gather*}
|\psi\rangle=\lambda_{0}|000\rangle+\lambda_{1} e^{i \phi}|100\rangle+\lambda_{2}|101\rangle+\lambda_{3}|110\rangle+\lambda_{4}|111\rangle \\
\lambda_{i}>0, \quad \sum_{j=0}^{4} \lambda_{i}^{2}=1 \text { and } 0 \leq \phi \leq \pi \tag{3}
\end{gather*}
$$

In the sequel, we are interested in entangled states of the B-class, where $\lambda_{1}=0$, with a representative

$$
\begin{equation*}
|B\rangle=\frac{1}{2}(|000\rangle+|101\rangle+|110\rangle+|111\rangle) . \tag{4}
\end{equation*}
$$

The three-tangle of the B-state is $\tau^{(3)}=\frac{1}{4}$ and the density matrices of the bipartite subsystems are

$$
\begin{gather*}
\rho_{B C}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right), \quad \rho_{A B}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right), \\
\rho_{A C}=\frac{1}{4}\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 2
\end{array}\right) . \tag{5}
\end{gather*}
$$

The set of eigenvalues $\left\{\frac{1}{16}(3+2 \sqrt{2}), \frac{1}{16}(3-2 \sqrt{2}), 0,0\right\}$ is uniform over the subsystems with two-tangles $\tau_{A B}=\tau_{A C}=\tau_{B C}=\frac{1}{4}$. Similarly, the linear entropies $\tau_{A(B C)}=\tau_{B(A C)}=\tau_{C(A B)}=\frac{3}{4}$ are the same (see [21] for the meaning of linear entropies such as $\tau_{A(B C)}=\tau^{(3)}+\tau_{A B}+\tau_{A C}$). Thus, the entanglement measure for two parties equals the entanglement measure for three parties. This equal balance of the entanglement for two or three parties justifies our notation for the B-class*.

3. Three-qubit entanglement and the crystallographic group $W\left(E_{8}\right)$

Recently, by studying the Clifford group on two and three qubits, we discovered several eight-dimensional orthogonal realizations of the largest crystallographic group

[^1]$W\left(E_{8}\right)$, and of its relevant subgroups. As described in papers [8, 11], these representations find their kernel in two-qubit entanglement and the following orthogonal matrix
\[

S_{2}=\frac{1}{2}\left($$
\begin{array}{cccc}
1 & -1 & 1 & 1 \tag{6}\\
1 & 1 & -1 & 1 \\
1 & -1 & -1 & -1 \\
1 & 1 & 1 & -1
\end{array}
$$\right), \quad\left(\begin{array}{lll}

+ \& - \& -

- \& + \& -

- \& - \& +

+ \& + \& +
\end{array}\right),
\]

that encodes the joint eigenstates of the triple of observables,

$$
\begin{equation*}
\left\{\sigma_{x} \otimes \sigma_{z}, \sigma_{z} \otimes \sigma_{x}, \sigma_{y} \otimes \sigma_{y}\right\} \tag{7}
\end{equation*}
$$

Rows of the second matrix contain the sign of eigenvalues ± 1 of the triple of observables, and a row of the first matrix corresponds to a joint eigenstate [e.g. the first row corresponds to the state $\frac{1}{2}(|00\rangle-|01\rangle+|10\rangle+|11\rangle$ with eigenvalues ($1,-1-1$)].

To abound in this claim, let us consider the following triple of three-qubit observables

$$
\begin{equation*}
\sigma_{z} \otimes\left\{\sigma_{x} \otimes \sigma_{z}, \sigma_{z} \otimes \sigma_{x}, \sigma_{y} \otimes \sigma_{y}\right\} \tag{8}
\end{equation*}
$$

that follows from (7) by adjoining the tensor product σ_{z} at the left-hand side. Eigenstates of (8) may be used for encoding the rows of the following orthogonal matrix,

$$
S_{3}=\frac{1}{2}\left(\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 1 & -1 \tag{9}\\
1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & -1 & 1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 1 & 1 \\
0 & 0 & 0 & 0 & -1 & 1 & 1 & 1
\end{array}\right),
$$

and to generate the derived subgroup $W^{\prime}\left(E_{8}\right) \cong O^{+}(8,2)$ of order 348364800 [recall that $O^{+}(8,2)$ is the general eight-dimensional orthogonal group over $G F(2)$],

$$
\begin{equation*}
W^{\prime}\left(E_{8}\right) \cong\left\langle\sigma_{x} \otimes S_{2}, S_{3}\right\rangle \tag{10}
\end{equation*}
$$

Replacing the S_{3} state by the GHZ-type generator b whose explicit form is given by Eq. (18) of [8], one gets $W^{\prime}\left(E_{7}\right) \cong\left\langle\sigma_{x} \otimes S_{2}, b\right\rangle$. Indeed many important subgroups of $W\left(E_{8}\right)$ may be realized by means of the appropriate orthogonal generators ${ }^{1}$.

Here one focuses on a sequence of subgroups leading to a specific representation of the four-letter alternating group A_{4} (as well as the symmetric group S_{4}) and a representation of the Lie algebra $\operatorname{sl}(3, \mathbb{C})$ (as well as its more general parent).

[^2]The relevant sequence is

$$
\begin{equation*}
W^{\prime}\left(E_{8}\right) \supset W^{\prime}\left(E_{7}\right) \supset W^{\prime}\left(E_{6}\right) \supset G_{648} \supset S_{4} \supset A_{4} . \tag{11}
\end{equation*}
$$

Starting from $W^{\prime}\left(E_{8}\right)$ [as in (10)], one looks at the maximal subgroups. One of the three subgroups of the largest cardinality is isomorphic to $W\left(E_{7}\right)$, of order ${ }^{2}$ 2903 040. Then, in the derived subgroup $W^{\prime}\left(E_{7}\right)$, one takes the largest maximal subgroup $W\left(E_{6}\right)$, of order 51840 . Among the five maximal subgroups of $W^{\prime}\left(E_{6}\right)$, two of them have the cardinality 648 ; one selects the one isomorphic to the semidirect product ${ }^{3} G_{648}=\mathbb{Z}_{2}^{7} \rtimes S_{4}$. Finally, one is interested in the subgroup S_{4} of G_{648}, as well as in its derived subgroup A_{4}.

The alternating group A_{4} may be realized by means of two orthogonal generators $x_{A_{4}}$ and $y_{A_{4}}$, whose rows are similar up to a permutation, and encode three-qubit states (4) of the B-type, with similar two- and three-tangles as it results from straightforward calculations,

$$
\begin{align*}
& x_{A_{4}}=\frac{1}{2}\left(\begin{array}{cccccccc}
0 & 1 & -1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & 1 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\
-1 & 0 & 0 & 0 & -1 & 1 & 0 & 1 \\
-1 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\
0 & 1 & -1 & 1 & 0 & 0 & -1 & 0
\end{array}\right), \\
& y_{A_{4}}=\frac{1}{2}\left(\begin{array}{cccccccc}
0 & -1 & 1 & -1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & -1 & 0 & 0 & -1 & 0 \\
-1 & 0 & 0 & 0 & 1 & 1 & 0 & -1 \\
-1 & 0 & 0 & 0 & 1 & -1 & 0 & 1 \\
-1 & 0 & 0 & 0 & -1 & 1 & 0 & 1 \\
-1 & 0 & 0 & 0 & -1 & -1 & 0 & -1 \\
0 & -1 & 1 & 1 & 0 & 0 & -1 & 0
\end{array}\right) . \tag{12}
\end{align*}
$$

Entangled states shared by mutually commuting sets of 3-qubit (or 7-qubit) observables may only be of the $G H Z$ - or W-type [6, 8]. The B-states encoded in the rows of matrices (12), or similar B-type matrices (8) in [11], are of a different character, to be investigated further in the future. The relationship between the finite group A_{4} and the Lie algebra $\operatorname{sl}(3, \mathbb{C})$ is established in the next section.

[^3]
4. The Lie algebra of $s l(3, \mathbb{C})$: old and new

Group operations we considered in our earlier papers were finite group operations [25-27]. We are now interested in group operations which are smooth, yet still compatible with the finite symmetries. This is where the concept of a Lie group, endowed with its Lie algebra of commutation relations, enters the game.

Let G be a matrix Lie group, the Lie algebra \mathfrak{g} of G is real and defined as the set of all matrices X such that $e^{t X}$ is in G for all real numbers t. There is an important property that

$$
\begin{equation*}
\text { for any } X \in \mathfrak{g}, \text { and for } A \in G, \operatorname{Ad}_{A}(X)=A X A^{-1} \in \mathfrak{g} \tag{13}
\end{equation*}
$$

i.e. conjugation of an element of the Lie algebra by an element of the Lie group preserves the algebra. The above map from the Lie algebra to itself is called the adjoint mapping.

This definition is reminiscent of the definition of the Clifford group \mathcal{C}, that is defined as the normalizer of the Pauli group \mathcal{P} within the unitary group $U(n)$, i.e. denoting X an arbitrary error arising from the Pauli group, and A an element of the Clifford group [8, 25, 26]

$$
\begin{equation*}
\text { for any } X \in \mathcal{P} \text {, and for } A \in \mathcal{C} \subset U(n), A X A^{-1} \in \mathcal{P} \text {. } \tag{14}
\end{equation*}
$$

In some sense, Lie groups and algebras are a smooth (continuous) formulation of quantum error correction.

The adjoint endomorphism "Ad" can be reformulated in terms of commutators by the linear map "ad" as follows $\operatorname{ad}_{X}: \mathfrak{g} \rightarrow \mathfrak{g}$ defined by $\operatorname{ad}_{X}(Y)=[X, Y]$. Thus, the map "ad" from X to ad_{X} is a linear map from \mathfrak{g} to the space $g l(\mathfrak{g})$ of linear operators from \mathfrak{g} to \mathfrak{g}, and there exists a Lie algebra homomorphism \mathfrak{g} to $g l(\mathfrak{g})$ by the relation $\operatorname{ad}_{[X, Y]}=\left[\operatorname{ad}_{X}, \operatorname{ad}_{Y}\right]$. Selecting a basis X_{1}, \ldots, X_{n} of the n-dimensional Lie algebra, for each i and j one obtains

$$
\begin{equation*}
\left[X_{i}, X_{j}\right]=c_{i j}^{k} X_{k}, \tag{15}
\end{equation*}
$$

in which the structure constants $c_{i j}^{k}$ (with respect to the basis) define the bracket operation on \mathfrak{g}. For a simple real or complex Lie algebra there exists a basis, called the Chevalley basis, for which the structure constants are relative integers. For more details about Lie groups and Lie algebras see [28-31].

In quantum mechanics, the favourite Lie group is the matrix Lie group $S L(n, \mathbb{C})$. It is well know that $\operatorname{sl}(3, \mathbb{C})$ occurs in the context of particle physics for representing quark states. It is part of the standard model of elementary particles $s u(3) \oplus s u(2) \oplus u(1)$ [1]. Remarkably, one arrives at a form reminiscent of the standard model in representing the Lie algebra attached to groups A_{4} and S_{4}.

A Chevalley basis for the algebra $\operatorname{sl}(3, \mathbb{C})$ may be written as

$$
\begin{gather*}
x_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad x_{2}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad x_{3}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \\
y_{1}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad y_{2}=\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad y_{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
h_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad h_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right), \tag{16}
\end{gather*}
$$

and the corresponding table of commutators reads
$\left(\begin{array}{c|ccc|ccc|cc}{[., .]} & x_{1} & x_{2} & x_{3} & y_{1} & y_{2} & y_{3} & h_{1} & h_{2} \\ \hline x_{1} & \cdot & -x_{3} & \cdot & h_{1} & \cdot & y_{2} & -2 x_{1} & x_{1} \\ x_{2} & & \cdot & \cdot & \cdot & h_{2} & -y_{1} & x_{2} & -2 x_{2} \\ x_{3} & & & \cdot & x_{2} & -x_{1} & h_{1}+h_{2} & -x_{3} & -x_{3} \\ \hline y_{1} & & & \cdot & y_{3} & \cdot & 2 y_{1} & -y_{1} \\ y_{2} & & & & & \cdot & \cdot & -y_{2} & 2 y_{2} \\ y_{2} & & & & & \cdot & y_{3} & y_{3} \\ \hline h_{1} & & & & & & \cdot & \cdot \\ h_{2} & & & & & & & & \cdot\end{array}\right)$.

Using this table, the positive roots relative to the pair of generators $H=\left(h_{1}, h_{2}\right)$ are easily discerned as $\alpha_{1}=(2,-1), \alpha_{2}=(-1,2)$ and $\alpha_{3}=(1,1)$, corresponding to the root vectors x_{1}, x_{2} and x_{3}, respectively (see [28] for details ${ }^{4}$). Negative roots have opposite signs. The Killing matrix is

Let us now go back to tripartite quantum entanglement and show how the B-states (4) are related to a new representation of $s l(3, \mathbb{C})$. Using Magma, we created a (real) subalgebra of the matrix Lie algebra defined over the rational field,

[^4]that is obtained from the generators of the finite group A_{4} described in (12). The algebra is found to be isomorphic to the Lie algebra $\mathfrak{g}_{A_{4}}$ of type $\operatorname{sl}(3, \mathbb{C}) \oplus u(1)$, and the derived algebra $\mathfrak{g}_{A_{4}}^{\prime}=\left[\mathfrak{g}_{A_{4}}, \mathfrak{g}_{A_{4}}\right]$ turns out to be isomorphic to $\operatorname{sl}(3, \mathbb{C})$. A Chevalley basis of the algebra $\mathfrak{g}_{A_{4}}^{\prime}$ is as follows,
\[

$$
\begin{align*}
& y_{2}=\frac{1}{4}\left(\begin{array}{ccccccc}
. & . & . & . & . & . & . \\
1 & . & . & . & . & & . \\
-1 & . & . & . & . & . & 1 \\
. & . & . & . & . & . & -1 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & .
\end{array}\right), \quad y_{3}=\frac{1}{8}\left(\begin{array}{cccccccc}
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
1 & . & . & . & . & . & . & 1 \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
1 & . & . & . & . & . & . & 1 \\
. & . & . & . & . & . & . & .
\end{array}\right), \\
& h_{1}=\frac{1}{2}\left(\begin{array}{cccccccc}
. & . & . & . & . & . & . & . \\
. & 1 & -1 & . & . & . & . & . \\
. & -1 & 1 & . & . & . & . & . \\
. & . & . & -1 & . & . & -1 & . \\
. & . & . & . & . & . & . & . \\
. & . & . & . & . & . & . & . \\
. & . & . & -1 & . & . & -1 & .
\end{array}\right), \quad h_{2}=\frac{1}{2}\left(\begin{array}{cccccccc}
1 & . & . & . & . & . & . & 1 \\
. & -1 & 1 & . & . & . & . & \\
. & 1 & -1 & & . & . & . & . \\
. & . & . & . & . & . & . & .
\end{array}\right) \tag{18}
\end{align*}
$$
\]

and its elements are readily seen to fit into the table of commutators (17) of $\operatorname{sl}(3, \mathbb{C})$. As a result, the roots relative to a new pair of generators (h_{1}, h_{2}) given above are the α_{i} given before. This may be a useful feature of the new representation, in contrast to the adjoint one, for subsequent applications to the physics of elementary particles.

Going upstream in the group sequence (11) one arrives at a three-qubit realization of the symmetric group S_{4}. The group A_{4}, with generators as in (12), is the derived subgroup of S_{4}. The corresponding Lie algebra, of dimension 13, may be decomposed as a direct sum of simple Lie algebra as follows

$$
\begin{equation*}
\mathfrak{g}_{S_{4}}=\operatorname{sl}(3, \mathbb{C}) \oplus \operatorname{sl}(2, \mathbb{C}) \oplus u(1) \oplus u(1) \tag{19}
\end{equation*}
$$

in which the algebra $\operatorname{sl}(3, \mathbb{C}) \oplus u(1)$ is embedded.
A basis for the representation of $\operatorname{sl}(2, \mathbb{C})$ in (19) is as follows,

$$
\begin{align*}
& \left(\begin{array}{cccccccc}
1 & \cdot & -1 & . & 1 & -1 & \cdot & \cdot \\
\cdot & -1 & \cdot & \cdot & -1 & 1 & \cdot & 1 \\
-1 & \cdot & 1 & \cdot & -1 & 1 & \cdot & \cdot \\
\cdot & \cdot \\
1 & -1 & -1 & \cdot & \cdot & \cdot & \cdot & 1 \\
-1 & 1 & 1 & \cdot & \cdot & \cdot & . & -1 \\
\cdot & \cdot \\
\cdot & 1 & \cdot & . & 1 & -1 & . & -1
\end{array}\right), \\
& \left(\begin{array}{cccccccc}
. & 1 & . & . & 1 & -1 & . & -1 \\
. & -\frac{1}{2} & \cdot & . & -\frac{1}{2} & \frac{1}{2} & . & \frac{1}{2} \\
. & -1 & . & . & -1 & 1 & . & 1 \\
. & . & \cdot & . & . & . & . & \cdot \\
. & \frac{1}{2} & \cdot & \cdot & \frac{1}{2} & -\frac{1}{2} & . & -\frac{1}{2} \\
. & -\frac{1}{2} & . & . & -\frac{1}{2} & \frac{1}{2} & . & \frac{1}{2} \\
. & \cdot & \cdot & . & . & . & . & \cdot \\
. & \frac{1}{2} & . & . & \frac{1}{2} & -\frac{1}{2} & . & -\frac{1}{2}
\end{array}\right), \\
& \left(\begin{array}{cccccccc}
. & \cdot & . & . & . & . & \cdot & . \\
1 & -\frac{1}{2} & -1 & \cdot & \frac{1}{2} & -\frac{1}{2} & \cdot & \frac{1}{2} \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & . & . & \cdot & \cdot \\
1 & -\frac{1}{2} & -1 & \cdot & \frac{1}{2} & -\frac{1}{2} & \cdot & \frac{1}{2} \\
-1 & \frac{1}{2} & 1 & . & -\frac{1}{2} & \frac{1}{2} & . & -\frac{1}{2} \\
\cdot & \cdot & \cdot & . & . & \cdot & . & \cdot \\
-1 & \frac{1}{2} & 1 & . & -\frac{1}{2} & \frac{1}{2} & . & -\frac{1}{2}
\end{array}\right) . \tag{20}
\end{align*}
$$

The Killing matrix of the representation may be diagonalized as $24\left(\begin{array}{lll}4 & 1 & 1 \\ 1 & . & 2 \\ 1 & 2 & .\end{array}\right):=$ $T D T^{-1} \quad$ with $D=96\left(\begin{array}{ccc}1 & . & \cdot \\ . & -1 & 0 \\ . & . & 3\end{array}\right)$ and $T:=\left(\begin{array}{ccc}1 & \cdot & \cdot \\ -1 & 4 & \cdot \\ 2 & -7 & -1\end{array}\right)$, corresponding to the representation $\operatorname{su}(1,1)$ of $\operatorname{sl}(2, \mathbb{C})$, with signature $^{5}(2,1)$.

5. Conclusion

We have found a new intricate relation between finite group theory, Lie algebras and three-qubit quantum entanglement. In particular, the connection between balanced tripartite entanglement and the eight-dimensional representation of the Lie algebra $\operatorname{sl}(3, \mathbb{C})$ is put forward. Earlier papers of one of the authors focused on the three-qubit realization of Coxeter groups, such as the largest one $W\left(E_{8}\right)$, together with its most relevant subgroups comprising the three-qubit Clifford group $\mathcal{C}_{3}^{+}, W\left(E_{7}\right), W\left(E_{6}\right), W\left(F_{4}\right)$ and other subgroups [8, 11]. Here, one discovers that the two-qubit real entangling gate S_{2} [see Eq. (6)] and its three-qubit parent, the gate S_{3} [see Eq. (9)] are building stones of the realization of $W^{\prime}\left(E_{8}\right)$. An appropriate reduction of $W^{\prime}\left(E_{8}\right)$ to the four-letter alternating group A_{4} [see (11)] is used to represent the algebra $\mathfrak{g}_{A_{4}}=\operatorname{sl}(3, \mathbb{C}) \oplus u(1)$. The parent of A_{4} is the symmetric group S_{4} and the corresponding Lie algebra is $\mathfrak{g}_{S_{4}}=\operatorname{sl}(3, \mathbb{C}) \oplus \operatorname{sl}(2, \mathbb{C}) \oplus u(1) \oplus u(1)$, which reminds us of the standard model of particles [12]. From a mathematical point of view, the relation to algebraic surfaces is worthwhile to be investigated in the future [32].

Although our current findings rest on the extensive use of the Magma package, in the future we also aim at considering more analytically solvable examples in order to properly illustrate not only all the underlying mathematics but also potentially interesting physics. As an interesting implication for biosciences, the four letters occurring in the permutation groups A_{4} and S_{4} suggest to consider $\mathfrak{g}_{S_{4}}$ algebra as a new candidate for a deeper insight into the degeneracies of genetic code.

Acknowledgements

This work was supported by the New Hungary Development Plan (Project ID:TÁMOP-4.2.1/B-09/1/KMR-2010-002).

[^5]
REFERENCES

[1] P. A. Carruthers: Introduction to Unitary Symmetry, Wiley, New York, 1966.
[2] M. R. Kibler: From the Mendeleev periodic table to particle physics, Found. Chem. 9 (2007), 221.
[3] J. E. M. Hornos and Y. M. M. Hornos: Algebraic model for the evolution of the genetic code, Phys. Rev. Lett. 71 (1993), 4401.
[4] L. Frappat and P. Sorba: A crystal base for the genetic code, Phys. Lett. A 250 (1998), 214.
[5] M. J. Duff: String triality, black-hole entropy and Cayley's hyperdeterminant, Phys. Rev. D 76 (2007), 025017.
[6] P. Lévay, M. Saniga and P. Vrana: Three-qubit operators, the split Cayley hexagon of order two, and black holes, Phys. Rev. D 78 (2008), 124022.
[7] P. Lévay, M. Saniga and P. Vrana: Black hole entropy and finite geometry, Phys. Rev. D 79 (2009), 084036
[8] M. Planat: Clifford group dipoles and the enactment of Weyl/Coxeter group $W(E 8)$ by entangling gates. Preprint 0904.3691 (quant-ph), 2009.
[9] A. Acin, A. Andrianov, L. Costa, E. Jané, J. I. Lattorre and R. Tarrach: Generalized Schmidt decomposition and classification of three-quantum bit states, Phys. Rev. Lett. 85 (2000), 1560.
[10] J. K. Korbicz and M. Lewenstein: Group-theoretical approach to entanglement, Phys. Rev. A 74 (2006), 022318.
[11] M. Planat: Three-qubit entangled embeddings of CPT and Dirac groups within E8 Weyl group, Int. J. Theor. Phys. 49 (2009), 1044.
[12] E. Ma: Particle dichotomy and left-right decomposition of E6 superstring models, Phys. Rev. D 36 (1987), 274.
[13] E. Ma, H. Sawanaka and M. Tanimoyo: Quark masses and mixing with $A 4$ family symmetry, Phys. Lett. B 641 (2006), 301.
[14] W. Bosma, J. Cannon and C. Playoust: The Magma algebra system, J. Symbolic Comput. 24 (1997), 235.
[15] P. 0. Boykin, M. Sitharam, P. Huu and P. Wocjan: Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. \& Comp. 7, 371.
[16] M. Kibler: An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, unitary group and Pauli group, J. Phys. A: Math. Theor. 42 (2009), 253001.
[17] A. Vourdas: $S U(2)$ and $S U(1,1)$ phase states, Phys. Rev. A 41 (1990), 1653.
[18] C. Brif, A. Mann and M. Rezven: Generalized coherent states are unique Bell states of quantum systems with Lie-group symmetries, Phys. Rev. A 57 (2009), 742.
[19] P. Dömötor and M. G. Benedict: Global entanglement and coherent states in an N-partite system, Eur. Phys. J. D 53 (2009), 237.
[20] D. M. Appleby, S. T. Flammia and C. A. Fuchs: The Lie algebraic significance of symmetric informationaly complete measurements. Preprint 1001.0004 (quant-ph).
[21] V. Coffman, J. Kundu and W. K. Wootters: Distributed entanglement, Phys. Rev. A 61 (2000), 052306.
[22] W. Dür, G. Vidal and J. J. Cirac: Three qubits can be entangled in two inequivalent ways, Phys. Rev. A 62 (2000), 062314.
[23] S. K. Choudhary, S. Ghosh, G. Kar and R. Rahaman: Complete proof of Gisin's theorem for three qubits. Preprint 0901.1669 (quant-ph), 2009.
[24] V. Coffman, J. Kundu and W. K. Wootters: Distributed entanglement, Phys. Rev. A 61 (2000), 052306.
[25] M. Planat and P. Jorrand: Group theory for quantum gates and quantum coherence, J. Phys.A: Math. Theor. 41 (2008), 182001.
[26] M. Planat and P. Solé: Clifford groups of quantum gates, BN-pairs and smooth cubic surfaces, J. Phys. A: Math. Theor. 41 (2008), 182001.
[27] M. Planat and M. Kibler: Unitary reflection groups for quantum fault tolerance, J. Comp. Theor. Nanosc. 7 (2010), 1759.
[28] B. C. Hall: Lie Groups, Lie Algebras, and Represention: an Elementary Introduction, Springer, New York 2003.
[29] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces, American Mathematical Society, Providence, Rhode Island, 1978.
[30] R. N. Cahn: Semi-simple Lie Algebras and Their Representations, The Benjamin/Cummings Publishing Company, Menlo Park, California, Also avalaible on-line, 1984.
[31] L. Frappat, A. Sciarrino and P. Sorba: Dictionnary on Lie Algebras and Superalgebras, Academic Press, London, p. 260, 2000.
[32] L. Yang: Hessian polyhedra, invariant theory and Appell hypergeometric partial differential equations. Preprint math/0412065, 2004.

[^0]: *Part of this work was carried out within the framework of the Cooperation Group "Finite Projective Ring Geometries: An Intriguing Emerging Link Between Quantum Information Theory, Black-Hole Physics and Chemistry of Coupling" at the Center for Interdisciplinary Research (ZiF), University of Bielefeld, Germany.

[^1]: *The B-states are denoted CPT states in our previous work [11]. Choudhary and coworkers [23] computed the local realistic violation of the inequality (given in Eq. (3) of their paper) for the generic state $|B\rangle$ and found the value 0.608723 , a big violation compared to 0.175459 for the generic $G H Z$ state and 0.192608 for the generic W state.

[^2]: ${ }^{1}$ The proof of (10) is easily established in Magma by checking the isomorphism between the derived subgroup of the Coxeter group $W\left(E_{8}\right)$ (in its permutation realization) and the matrix group with generators $\sigma_{x} \otimes S_{2}$ and S_{3}. At the moment, we are not able to provide an analytic proof.

[^3]: ${ }^{2}$ The second largest subgroup of $W\left(E_{8}\right)$ is the real Clifford group \mathcal{C}_{3}^{+}, of order 2580480 studied in [8, 11].
 ${ }^{3}$ The maximal subgroup of the largest cardinality in $W^{\prime}\left(E_{6}\right)$ is isomorphic to the perfect group $M_{20}=Z_{2}^{4} \rtimes A_{5}$ of order 960 , and is described in $[25,26]$.

[^4]: ${ }^{4}$ For instance, since $\left[h_{1}, x_{1}\right]=2 x_{1}$ and $\left[h_{2}, x_{1}\right]=-x_{1}$, one gets the first root $\alpha_{1}=(2,-1)$ corresponding to the root vector x_{1}.

[^5]: ${ }^{5}$ A real form is a real Lie algebra \mathfrak{g}_{0} whose complexification is a complex Lie algebra \mathfrak{g} [29]. Let us define the signature of a real Lie algebra as a pair $\left(a_{1}, a_{2}\right)$, that counts the number of positive $\left(a_{1}\right)$ and negative $\left(a_{2}\right)$ entries in the diagonal form of B. In particular, a real Lie algebra \mathfrak{g} is called compact if its Killing form is negative definite. It is also known that a compact Lie algebra corresponds to a compact Lie group. As an illustrative example, the special linear algebra $\operatorname{sl}(2, \mathbb{C})$ has two real forms, the so-called (noncompact) split real form $\operatorname{sl}(2, \mathbb{R}) \cong s u(1,1)$ of signature $(2,1)$ and the compact real form $\operatorname{su}(2)$ of signature $(0,3)$.

