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It is shown that the E6ð6Þ symmetric entropy formula describing black holes and black strings in D ¼ 5

is intimately tied to the geometry of the generalized quadrangle GQ(2, 4) with automorphism group the

Weyl groupWðE6Þ. The 27 charges correspond to the points and the 45 terms in the entropy formula to the

lines of GQ(2, 4). Different truncations with 15, 11 and 9 charges are represented by three distinguished

subconfigurations of GQ(2, 4), well known to finite geometers; these are the ‘‘doily’’ [i.e. GQ(2, 2)] with

15, the ‘‘perp set’’ of a point with 11, and the ‘‘grid’’ [i.e. GQ(2, 1)] with nine points, respectively. In order

to obtain the correct signs for the terms in the entropy formula, we use a noncommutative labeling for the

points of GQ(2, 4). For the 40 different possible truncations with nine charges this labeling yields 120

Mermin squares—objects well known from studies concerning Bell-Kochen-Specker-like theorems.

These results are connected to our previous ones obtained for the E7ð7Þ symmetric entropy formula in

D ¼ 4 by observing that the structure of GQ(2, 4) is linked to a particular kind of geometric hyperplane of

the split Cayley hexagon of order 2, featuring 27 points located on nine pairwise disjoint lines (a distance-

3-spread). We conjecture that the different possibilities of describing the D ¼ 5 entropy formula using

Jordan algebras, qubits and/or qutrits correspond to employing different coordinates for an underlying

noncommutative geometric structure based on GQ(2, 4).
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I. INTRODUCTION

Recently, striking multiple relations have been estab-
lished between the physics of stringy black hole solutions
and quantum information theory [1–12]. Though this
‘‘black hole analogy’’ still begs for a firm physical basis,
the underlying correspondences have repeatedly proved to
be useful for obtaining new insights into one of these fields
by exploiting the methods established within the other. The
main unifying theme in these papers is the correspondence
between the Bekenstein-Hawking entropy formula [13,14]
for black hole and black string solutions inD ¼ 4 andD ¼
5 supergravities arising from string/M-theory compactifi-
cations and certain entanglement invariants of multiqubit/
multiqutrit systems. As a new unifying agent in some of
these papers [5,12] the role of discrete geometric ideas
have been emphasized. In particular it has been shown
[4,5] that the Fano plane with seven points and seven lines
with points conveniently labeled by seven 3-qubit states
can be used to describe the structure of the E7ð7Þ symmetric

black hole entropy formula of N ¼ 8, D ¼ 4 supergravity.
Moreover, this geometric representation based on the fun-
damental 56-dimensional representation of E7ð7Þ in terms

of 28 electric and 28 magnetic charges enabled a diagram-
matic understanding of the consistent truncations with 32,
24 and 8 charges as a restriction to quadrangles, lines and
points of the Fano plane [5]. Though the Fano plane turned

out to be a crucial ingredient also in later studies, this
geometric representation based on the tripartite entangle-
ment of seven qubits has a number of shortcomings [10]. In
order to eliminate these, in our latest paper [12] we at-
tempted to construct a new representation using merely
three-qubits. The basic idea was to use the central quotient
of the 3-qubit Pauli group [15], well known from studies
concerning quantum error correcting codes. This Abelian
group can be described by the 63 real operators of the Pauli
group with multiplication up to a sign. These 63 operators
can be mapped bijectively to the points of a finite geomet-
rical object called the split Cayley hexagon of order 2
having 63 points and 63 lines, with a subgeometry (the
complement of one of its geometric hyperplanes) being the
Coxeter graph with 28 points/vertices. This graph has been
related to the charge configurations of the E7 symmetric
black hole entropy formula [12]. The advantage of this
representation was a clear understanding of an automor-
phism of order 7 relating the seven STU subsectors of N ¼
8, D ¼ 4 supergravity and the explicit appearance of a
discrete PSLð2; 7Þ symmetry of the black hole entropy
formula. The permutation symmetry of the STU model
(triality) in this picture arises as a subgroup of PSLð2; 7Þ.
Encouraged by the partial success of finite geometric

ideas in the D ¼ 4 case the aim of the present paper is to
shed some light on a beautiful finite geometric structure
underlying also the E6ð6Þ symmetric entropy formula in
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D ¼ 5. We show that in this case the relevant finite geo-
metric objects are generalized quadrangles with lines of
size three. As it is well known, black holes in D ¼ 5 have
already played a special role in string theory, since these
objects provided the first clue how to understand the micro-
scopic origin of the Bekenstein-Hawking entropy [16].

As a first step, in Sec. II, we emphasize that according to
several well-known theorems [17–19] we have just four
(including also a ‘‘weak/degenerate’’ one made of all lines
passing through a fixed point [20]) such quadrangles,
which are directly related to the four possible division
algebras. It is well known that magic N ¼ 2, D ¼ 5 super-
gravities [10,21–23] coupled to 5, 8, 14 and 26 vector
multiplets with symmetries SLð3;RÞ, SLð3;CÞ, SU�ð6Þ
and E6ð�26Þ can be described by Jordan algebras of 3� 3

Hermitian matrices with entries taken from the real and
complex numbers, quaternions and octonions. It is also
known that in these cases we have black hole solutions
that have cubic invariants whose square roots yield the
corresponding black hole entropy [24]. Moreover, we can
also replace in these Jordan algebras the division algebras
by their split versions. For example, in this way in the case
of split octonions we arrive at the N ¼ 8, D ¼ 5 super-
gravity [25] with 27 Abelian gauge fields transforming in
the fundamental of E6ð6Þ. In this theory the corresponding

black hole solutions have an entropy formula having
E6ð6ÞðZÞ symmetry [10,26,27]. This analogy existing be-

tween division algebras, Jordan algebras and generalized
quadrangles with lines having three points leads us to a
conjecture that such finite geometric objects should be
relevant for a fuller geometrical understanding of black
hole entropy in D ¼ 5.

In Sec. III, by establishing an explicit mapping between
the 27 points and 45 lines of the generalized quadrangle
GQ(2, 4) and the 27 charges and the 45 terms in the cubic
invariant appearing in the entropy formula, we prove that
our conjecture is true. The crucial observation here is that
the automorphism group of GQ(2, 4) is the Weyl group
WðE6Þ with order 51840. Our labeling for the points of
GQ(2, 4) used here is a one directly related to the 2-qutrit
states of Duff and Ferrara [7]. By using the vocabulary of
Borsten et al. [10], this labeling directly relates to the usual
one featuring cubic Jordan algebras.

In Sec. IV, we observe that our geometric correspon-
dence merely gives the number and structure of the terms
in the cubic invariant. In the case of the E6ð6ÞðZÞ symmetric

black hole entropy in order to produce also the correct
signs of these terms we have to employ a noncommutative
labeling for the points of GQ(2, 4). To link these consid-
erations to our previous paper on the E7ð7ÞðZÞ symmetric

black hole entropy in D ¼ 4, we adopt the labeling by real
3-qubit operators of the Pauli group. We show that this
labeling scheme is connected to a certain type of geometric
hyperplane of the split Cayley hexagon of order 2 featuring
precisely 27 points that lie on nine pairwise disjoint lines.

There are 28 different hyperplanes of this kind in the
hexagon, giving rise to further possible labelings.
Next, we focus on special subconfigurations of GQ(2, 4)
which are called grids. These are generalized quadrangles
GQ(2, 1), featuring nine points and six lines that can be
arranged in the form of squares. There are 120 distinct
copies of them living within GQ(2, 4), grouped to 40 triples
such that each of them comprises all of the 27 points of
GQ(2, 4). Our noncommutative labeling renders these
grids to Mermin squares, which are objects of great rele-
vance for obtaining very economical proofs to Bell-
Kochen-Specker-like theorems. In order to complete the
paper, we also present the action of the Weyl group on the
noncommutative labels of GQ(2, 4). This also provides a
proof for the WðE6Þ invariance of the cubic invariant.
Finally, Sec. V highlights our main findings and presents

our conclusive remarks and conjectures. In particular, we
conjecture that the different possibilities of describing the
D ¼ 5 entropy formula using Jordan algebras, qubits and/
or qutrits correspond to employing different coordinates
for an underlying noncommutative geometric structure
based on GQ(2, 4).

II. JORDAN ALGEBRAS AND GENERALIZED
QUADRANGLES

A. Cubic Jordan algebras

As we remarked in the introduction, the charge configu-
rations of D ¼ 5 black holes/strings are related to the
structure of cubic Jordan algebras. An element of a cubic
Jordan algebra can be represented as a 3� 3 Hermitian
matrix with entries taken from a division algebra A, i.e.R,
C, H or O. (The real and complex numbers, the quatern-
ions and the octonions.) Explicitly, we have

J3ðQÞ ¼
q1 Qv �Qs

�Qv q2 Qc

Qs �Qc q3

0

B

@

1

C

A qi 2 R; Qv;s;c 2 A;

(1)

where an overbar refers to conjugation in A. These charge
configurations describe electric black holes of the N ¼ 2,
D ¼ 5 magic supergravities [10,21–23]. In the octonionic
case the superscripts of Q refer to the fact that the funda-
mental 27-dimensional representation of the U-duality
group E6ð�26Þ decomposes under the subgroup SOð8Þ to

three eight-dimensional representations (vector, spinor and
conjugate spinor) connected by triality and to three singlets
corresponding to the qi, i ¼ 1, 2, 3. Note that a general
element in this case is of the form Q ¼ Q0 þQ1e1 þ
. . .þQ7e7, where the ‘‘imaginary units’’ e1; e2; . . . ; e7
satisfy the rules of the octonionic multiplication table
[10]. The norm of an octonion is Q �Q ¼ ðQ0Þ2 þ . . .þ
ðQ7Þ2. The real part of an octonion is defined as ReðQÞ ¼
1
2 ðQþ �QÞ.
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The magnetic analogue of J3ðQÞ is

J3ðPÞ ¼
p1 Pv �Ps

�Pv p2 Pc

Ps �Pc p3

0

B

@

1

C

A pi 2 R; Pv;s;c 2 A;

(2)

describing black strings related to the previous case by the
electric-magnetic duality. The black hole entropy is given
by the cubic invariant

I3ðQÞ ¼ q1q2q3 � ðq1QcQc þ q2Q
sQs þ q3Q

vQvÞ
þ 2ReðQcQsQvÞ; (3)

as

S ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffi

I3ðQÞ
q

; (4)

and for the black string we get a similar formula with I3ðQÞ
replaced by I3ðPÞ. Recall that I3 is just the norm of the
cubic Jordan algebra and the norm-preserving group is
SLð3;AÞ and JA3 transforms under this group with respect

to the 3 dimAþ 3 dimensional representation, i.e. as the 6,
9, 15 and 27 of the groups SLð3;RÞ, SLð3;CÞ, SU�ð6Þ and
E6ð�26Þ.

We can also consider cubic Jordan algebras with C, H
and O replaced by the corresponding split versions. In the
octonionic case Os the ‘‘norm’’ is defined as

Q �Q ¼ ðQ0Þ2 þ ðQ1Þ2 þ ðQ2Þ2 þ ðQ3Þ2 � ðQ4Þ2 � ðQ5Þ2
� ðQ6Þ2 � ðQ7Þ2; (5)

and the group preserving the norm of the corresponding
Jordan algebra is E6ð6Þ, which decomposes similarly under

SOð4; 4Þ. This is the case of N ¼ 8 supergravity with
duality group E6ð6Þ [28]. Note that the groups E6ð�26Þ and
E6ð6Þ are the symmetry groups of the corresponding clas-

sical supergravity. In the quantum theory the black hole/
string charges become integer valued and the relevant 3�
3 matrices are defined over the integral octonions and
integral split octonions, respectively. Hence, the U-duality
groups are in this case broken to E6ð�26ÞðZÞ and E6ð6ÞðZÞ
accordingly. In all these cases, the entropy formula is given
by Eqs. (3) and (4), with the norm given by either the usual
one or its split analogue, Eq. (5).

It is also important to recall that the magic N ¼ 2 super-
gravities associated with the real and complex numbers and
the quaternions can be obtained as consistent reductions of
the N ¼ 8 one [24] which is based on the split octonions.
On the other hand, the N ¼ 2 supergravity based on the
division algebra of the octonions is exceptional since it is
the only one that cannot be obtained from the split octo-
nionic N ¼ 8 one by truncation.

B. Finite generalized quadrangles

Now we summarize the basic definitions on generalized
quadrangles that we will need later. A finite generalized
quadrangle of order ðs; tÞ, usually denoted GQðs; tÞ, is an
incidence structure S ¼ ðP; B; IÞ, where P and B are dis-
joint (nonempty) sets of objects, called, respectively, points
and lines, and where I is a symmetric point-line incidence
relation satisfying the following axioms [29]: (i) each point
is incident with 1þ t lines (t � 1) and two distinct points
are incident with at most one line; (ii) each line is incident
with 1þ s points (s � 1) and two distinct lines are inci-
dent with at most one point; and (iii) if x is a point and L is
a line not incident with x, then there exists a unique pair
ðy;MÞ 2 P� B for which xIMIyIL; from these axioms it
readily follows that jPj ¼ ðsþ 1Þðstþ 1Þ and jBj ¼ ðtþ
1Þðstþ 1Þ. It is obvious that there exists a point-line duality
with respect to which each of the axioms is self-dual.
Interchanging points and lines in S thus yields a general-
ized quadrangle SD of order ðt; sÞ, called the dual of S. If
s ¼ t, S is said to have order s. The generalized quadrangle
of order ðs; 1Þ is called a grid and that of order ð1; tÞ a dual
grid. A generalized quadrangle with both s > 1 and t > 1 is
called thick. In any GQðs; tÞ, sþ t divides both stð1þ stÞ
[17] and stðsþ 1Þðtþ 1Þ [18]; moreover, if s > 1 (dually,
t > 1) then t � s2 (dually, s � t2) [19].
Given two points x and y of S one writes x� y and says

that x and y are collinear if there exists a line L of S
incident with both. For any x 2 P denote x? ¼ fy 2
Pjy� xg and note that x 2 x?; obviously, x? ¼ 1þ sþ
st. Given an arbitrary subset A of P, the perp(set) of A, A?,
is defined as A? ¼ Tfx?jx 2 Ag and A?? :¼ ðA?Þ?. An
ovoid of a generalized quadrangle S is a set of points of S
such that each line of S is incident with exactly one point of
the set; hence, each ovoid contains stþ 1 points.
A geometric hyperplane H of a point-line geometry

�ðP; BÞ is a proper subset of P such that each line of �
meets H in one or all points [30]. For � ¼ GQðs; tÞ, it is
well known that H is one of the following three kinds:
(i) the perp set of a point x, x?; (ii) a (full) subquadrangle
of order ðs; t0Þ, t0 < t; and (iii) an ovoid.
In what follows, we shall be uniquely concerned with

generalized quadrangles having lines of size three,
GQð2; tÞ. From the above-given restrictions on parameters
of GQðs; tÞ one readily sees that these are of three distinct
kinds, namely, GQ(2,1), GQ(2,2) and GQ(2, 4), each
unique. They can uniformly be characterized as being
formed by the points and lines of a hyperbolic, a parabolic
and an elliptic quadric in three-, four- and five-dimensional
projective space over GF(2), respectively. GQ(2, 1) is a
grid of nine points on six lines, being the complement of
the lattice graph K3 � K3. It contains only ovoids (six;
each of size 3) and perp sets (nine; each of size 5).
GQ(2, 1) is obviously different from its dual, the complete
bipartite graph on six vertices. GQ(2, 2) is the smallest
thick generalized quadrangle, also known as the ‘‘doily.’’
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This quadrangle is endowed with 15 points/lines, with each
line containing three points and, dually, each point being
on three lines; moreover, it is a self-dual object, i.e., iso-
morphic to its dual. It is the complement of the triangular
graph Tð6Þ and features all the three kinds of geometric
hyperplanes, of the following cardinalities: 15 perp sets,
x?, seven points each; ten grids [i.e. GQ(2, 1)s], nine points
each; and six ovoids, five points each. One of its most
familiar constructions is in terms of synthemes and duads,
where the point set consists of all pairs of a six-element set
and the line set comprises all three-sets of pairs forming a

partition of the six-element set. The full group of auto-
morphisms of GQ(2, 2) is S6, of order 720. The last case in
the hierarchy is GQ(2, 4), which possesses 27 points and 45
lines, with lines of size 3 and five lines through a point. Its
full group of automorphisms is of order 51 840, being
isomorphic to the Weyl group WðE6Þ. GQ(2, 4) is obvi-
ously not a self-dual structure; its dual, GQ(4, 2), features
45 points and 27 lines, with lines of size 5 and three lines
through a point. Unlike its dual, which exhibits all the three
kinds of geometric hyperplanes, GQ(2, 4) is endowed
only with perp sets (27, of cardinality 11 each) and
GQ(2, 2)s(36), not admitting any ovoid. One of its con-
structions goes as follows. One starts with the above-
introduced syntheme-duad construction of GQ(2, 2), adds
12 more points labeled simply as 1, 2, 3, 4, 5, 6, 10, 20, 30, 40,
50, 60 and defines 30 additional lines as the three-sets
fa; b0; fa; bgg of points, where a, b 2 f1; 2; 3; 4; 5; 6g and
a � b—as diagrammatically illustrated, after Polster [31],
in Fig. 1. To conclude this section, we emphasize the fact
that GQ(2, 1) is a geometric hyperplane of GQ(2, 2), which
itself is a geometric hyperplane of GQ(2, 4).
Looking at the sequence of numbers 27, 15 and 9,

representing the number of points of these quadrangles,
one is immediately tempted to relate these numbers to the
dimensions of the representations of the norm-preserving
groups of the cubic Jordan algebras based on O (or Os),H
and C. After a quick glance at the structure of the corre-
sponding entropy formulas [24] constructed within the
context of magic supergravities one also recognizes that
the sequence 45, 15 and 6, representing the number of
lines, should correspond to the number of different terms
in the corresponding entropy formulas. (Thus, for example,
15 is the number of terms in the Pfaffian of a 6� 6
antisymmetric matrix giving rise to the quaternionic magic
entropy formula. Moreover, six is the number of terms in
the determinant of a 3� 3 matrix occurring in the entropy
formula of the complex case.) Indeed, using the nice label-
ing scheme developed by Duff and his coworkers [10] it is
not difficult to set up an explicit geometric correspondence
between the 45 lines of GQ(2, 4) and the terms in the cubic
invariant of Eq. (3). This is the task we now turn to.

III. THE CUBIC INVARIANTAND GQS WITH
LINES OF SIZE THREE

A. GQ(2, 4) and qutrits

Since except for the octonionic magic all the N ¼ 2
magic supergravities can be obtained as consistent trunca-
tions of the N ¼ 8 split-octonionic case, let us consider the
cubic invariant I3 of Eq. (3) with the U-duality group E6ð6Þ.
Let us consider the decomposition of the 27-dimensional
fundamental representation of E6ð6Þ with respect to its

SLð3;RÞ�3 subgroup. We have the decomposition

E6ð6Þ � SLð3;RÞA � SLð3;RÞB � SLð3;RÞC (6)

5’

5

56

25

1

45

4’

36

2’

12
5 14

5’

35

13

24

1’

16

3

56

6

46

2

34

3’

15

6’

26

4

23

FIG. 1. A diagrammatic illustration of the structure of the
generalized quadrangle GQ(2, 4) after Polster [31]. In both the
figures, each picture depicts all 27 points (circles). The top
picture shows only 19 lines (line segments and arcs of circles)
of GQ(2, 4), with the two points located in the middle of the
doily being regarded as lying one above and the other below the
plane the doily is drawn in. Sixteen out of the missing 26 lines
can be obtained by successive rotations of the figure through 72
degrees around the center of the pentagon. The bottom picture
shows a couple of lines which go off the doily’s plane; the
remaining 8 lines of this kind are again gotten by rotating the
figure through 72 degrees around the center of the pentagon.
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under which

27 ! ð30; 3; 1Þ � ð1; 30; 30Þ � ð3; 1; 3Þ: (7)

As it is known [7,10], the above-given decomposition is
related to the ‘‘bipartite entanglement of three-qutrits’’
interpretation of the 27 of E6ðCÞ. Neglecting the details,
all we need is three 3� 3 real matrices a, b and c with the
index structure

aAB; bBC; cCA; A; B; C ¼ 0; 1; 2; (8)

where the upper indices are transformed according to the
(contragredient) 30 and the lower ones by 3. Then accord-
ing to the dictionary developed in Borsten et al. [10], we
have

p1 ¼ �a00; p2 ¼ �a11; p3 ¼ �a33; (9)

2Pc ¼ �ða12 þ a21Þe0 � ðb00 þ c00Þe1 � ðb01 þ c10Þe2
� ðb02 þ c20Þe3 þ ða12 � a21Þe4 þ ðb00 � c00Þe5
þ ðb01 � c10Þe6 þ ðb02 � c20Þe7; (10)

2Ps ¼ �ða20 þ a02Þe0 � ðb10 þ c01Þe1 � ðb11 þ c11Þe2
� ðb12 þ c21Þe3 þ ða20 � a02Þe4 þ ðb10 � c01Þe5
þ ðb11 � c11Þe6 þ ðb12 � c21Þe7; (11)

2Pv ¼ �ða01 þ a10Þe0 � ðb20 þ c02Þe1 � ðb21 þ c12Þe2
� ðb22 þ c22Þe3 þ ða01 � a10Þe4 þ ðb20 � c02Þe5
þ ðb21 � c12Þe6 þ ðb22 � c22Þe7: (12)

We can express I3 of Eq. (3) in the alternative form as

I3 ¼ DetJ3ðPÞ ¼ a3 þ b3 þ c3 þ 6abc: (13)

Here

a3 ¼ 1

6
"A1A2A3

"B1B2B3aA1
B1
aA2

B2
aA3

B3
; (14)

b3 ¼ 1

6
"B1B2B3

"C1C2C3
bB1C1bB2C2bB3C3 ; (15)

c3 ¼ 1

6
"C1C2C3"A1A2A3cC1A1

cC2A2
cC3A3

; (16)

abc ¼ 1

6
aABb

BCcCA: (17)

Notice that the terms like c3 produce just the determinant
of the corresponding 3� 3 matrix. Since each determinant
contributes six terms, altogether we have 18 terms from the
first three terms in Eq. (13). Moreover, since it is easy to
see that the fourth term contains 27 terms, altogether I3
contains precisely 45 terms, i.e. the number which is equal
to that of lines in GQ(2, 4).

In order to set up a bijection between the points of
GQ(2, 4) and the 27 amplitudes of the 2-qutrit states of
Eq. (8), we use the basic ideas of the above-given con-
struction of GQ(2, 4) (see Fig. 1). Since the automorphism
group of the doily [GQ(2, 2)] is the symmetric group S6,
this construction is based on labeling the 15 points of the
doily by the 15 two-element subsets of the set
f1; 2; 3; 4; 5; 6g on which S6 acts naturally. The next step
consists of adding two six-element sets: the basic set
f1; 2; 3; 4; 5; 6g and an extra one f10; 20; 30; 40; 50; 60g accord-
ing to the rule as explained in Fig. 1. Hence, the duad
labeling is ðijÞ, i < j, ðiÞ and ðj0Þ, where i, j ¼ 1; 2; . . . ; 6.
We can easily relate the labeling of these 27 points to the

structure of two 8� 8 antisymmetric matrices with 28
independent components, each with one special compo-
nent removed. Let us label the rows and columns of such a
matrix by the letters I, J ¼ 0; 1; 2; . . . ; 7. (The reason for
this unusual labeling will be clarified in the next section.)
Let us choose the special component to be removed from
both of our 8� 8 matrices to be the element 01. Then we
choose a 6� 6 antisymmetric block in one of the 8� 8
matrices labeled by the row and column indices I < J, I,
J ¼ 2; 3; . . . ; 7. Its 15 components give rise to a duad
labeling of the doily. Now, from the other 8� 8 matrix
we choose the elements of the form 0J with J ¼ 2; . . . ; 7 to
correspond to the set f10; . . . ; 60g, and the ones of the form
1J to the one f1; . . . ; 6g. (Clearly, the row and column
indices are shifted by one unit with respect to the usual
duad indices, i.e. I ¼ iþ 1, J ¼ jþ 1.) Now, it is well
known that the cubic E6ð6Þ invariant for D ¼ 5 black hole

solutions is related to the quartic E7ð7Þ invariant for D ¼ 4
ones by a suitable truncation of the Freudenthal triple
system to the corresponding cubic Jordan algebra [32].
Recently, the Freudenthal triple description of the D ¼ 4
black hole entropy was related to the usual description due
to Cartan using two 8� 8 antisymmetric matrices [10],
corresponding to the 28 electric and 28 magnetic charges.
Using Table 32 of Ref. [10], giving a dictionary between
these descriptions, it is easy to realize that the 27 elements
of the cubic Jordan algebra J3ðPÞ split as 27 ¼ 15þ 12
between these two 8� 8 matrices. This automatically
defines a one-to-one mapping between the duad construc-
tion of GQ(2, 4) and the 27 elements of J3ðPÞ. As the last
step, using Eqs. (9)–(12) we can readily relate the arising
J3ðPÞ labeling of GQ(2, 4) to the one in terms of 2-qutrit
amplitudes of Eq. (8). The explicit relationship between
the duad labeling and the qutrit one is as follows:

f1; 2; 3; 4; 5; 6g ¼ fc21; a21; b01; a01; c01; b21g; (18)

f10; 20; 30; 40; 50; 60g ¼ fb10; c10; a12; c12; b12; a10g; (19)

f12; 13; 14; 15; 16; 23; 24; 25; 26g
¼ fc02; b22; c00; a11; b02; a00; b11; c22; a02g; (20)
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f34; 35; 36; 45; 46; 56g ¼ fa20; b20; c11; c20; a22; b00g:
(21)

This relationship is easily grasped by comparing Fig. 2,
which depicts the qutrit labeling, with Fig. 1 (top panel).

Next, notice that the lines of GQ(2, 4) are of two types.
They are either of the form ði; ij; j0Þ or ðij; kl; mnÞ, where
i; j; j0; . . . ¼ 1; . . . ; 6 and i, j, k, l, m, n are different. We
have 30 lines of the first and 15 lines of the second type.
The latter ones belong to the doily. Notice also that the
three 2-qutrit states of Eq. (8) partition the 27 points of
GQ(2, 4) to three disjoint grids, i.e. GQ(2, 1)s. The points
of these three grids are colored differently (in an online
version only). The 27 lines corresponding to the terms of
TrðabcÞ of Eq. (13) are of the type like the one a12b22c21,
and the 3� 6 ¼ 18 terms are coming from the three 3� 3
determinants a3, b3, c3. These terms are of the form like
the one b20b02b11. From Fig. 2 one can check that each of
45 lines of GQ(2, 4) corresponds to exactly one monomial
of Eq. (13).

We close this subsection with an important comment/
observation. It is well known that the automorphism group
of the generalized quadrangle GQ(2, 4) is the Weyl group
[29] WðE6Þ of order 51 840. Moreover, the cubic invariant
is also connected to the geometry of smooth (nonsingular)
cubic surfaces in CP3. It is a classical result that the
automorphism group of the configuration of 27 lines on a
cubic can also be identified with WðE6Þ. It is also known
that different configurations of lines are related to special
models of exceptional Lie algebras [33]. Indeed, it was Elie
Cartan who first realized [34] that the 45 monomials of our
cubic form stabilized by E6 are in correspondence with the
tritangent planes of the qubic. In the light of this fact, our

success in parametrizing the monomials of I3 using the
lines of GQ(2, 4) is not at all surprising.

B. Geometric hyperplanes and truncations

Let us focus now on the geometric hyperplanes of
GQ(2, 4). As already mentioned in Sec. II B, the only
type of hyperplanes featured by GQ(2, 4) are doilies (36)
and perp sets (27). Moreover, GQ(2, 4) also contains 3�
40 ¼ 120 grids; however, these are not its geometric hy-
perplanes [35]. [This is quite different from the GQ(2, 2)
case, where grids are geometric hyperplanes.] Though they
are not hyperplanes, they have an important property that
there exits 40 triples of them, each partitioning the point set
of GQ(2, 4).
It is easy to find a physical interpretation of the hyper-

planes of GQ(2, 4). The doily has 15 lines, hence we should
have a truncation of our cubic invariant which has 15
charges. Of course, we can interpret this truncation in
many different ways corresponding to the 36 different
doilies residing in our GQ(2, 4). One possibility is a
truncation related to the one which employs instead of
the split octonions, the split quaternions in our J3ðPÞ.
The other is to use ordinary quaternions inside our split
octonions, yielding the Jordan algebras corresponding to
the quaternionic magic. In all these cases the relevant
entropy formula is related to the Pfaffian of an antisym-
metric 6� 6 matrix Ajk, i; j ¼ 1; 2; . . . ; 6, defined as

Pf ðAÞ 	 1

3!23
"ijklmnA

ijAklAmn: (22)

The simplest way of finding a decomposition of E6ð6Þ
directly related to a doily sitting inside GQ(2, 4) is the
following one [10,36,37]:

E6ð6Þ � SLð2Þ � SLð6Þ (23)

under which

27 ! ð2; 6Þ 
 ð1; 15Þ: (24)

Clearly, this decomposition is displaying nicely its connec-
tion with the duad construction of GQ(2, 4). One can show
that under this decomposition I3 schematically factors as

I3 ¼ PfðAÞ þ uTAv; (25)

where u and v are two six-component vectors. We will
have something more to say about this decomposition in
the next section.
The next important type of subconfiguration of GQ(2, 4)

is the grid. As we have already remarked, grids are not
geometric hyperplanes of GQ(2, 4). The decomposition
underlying this type of subconfiguration is the one given
by Eq. (6). It is also obvious that the 40 triples of pairwise
disjoint grids are intimately connected to the 40 different
ways we can obtain a qutrit description of I3. Note that
there are ten grids which are geometric hyperplanes of a
particular copy of the doily of GQ(2, 4). This is related to
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FIG. 2 (color online). A qutrit labeling of the points of
GQ(2, 4). Three different colors (online only) are used to
illustrate a triple of grids partitioning the point set.
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the fact that the quaternionic magic case with 15 charges
can be truncated to the complex magic case with nine ones.

The second type of hyperplanes we should consider are
perp sets. As we already know, perp sets are obtained by
selecting an arbitrary point and considering all the points
collinear with it. Since we have five lines through a point,
any perp set has 1þ 10 ¼ 11 points. A decomposition
which corresponds to perp sets is thus of the form [10]

E6ð6Þ � SOð5; 5Þ � SOð1; 1Þ (26)

under which

27 ! 161 
 10�2 
 14: (27)

This is the usual decomposition of the U-duality group into
the T-duality and S-duality [10]. It is interesting to see that
the last term (i.e. the one corresponding to the fixed/central
point in a perp set) describes the NS five-brane charge.
Notice that we have five lines going through this fixed
point of a perp set. These correspond to the T5 of the
corresponding compactification. The two remaining points
on each of these five lines correspond to 2� 5 ¼ 10
charges. They correspond to the five directions of KK
momentum and the five directions of fundamental string
winding. In this picture the 16 charges not belonging to the
perp set correspond to the 16 D-brane charges. Notice that
we can get 27 similar truncations based on the 27 possible
central points of the perp set. For a group theoretical
meaning of the corresponding decomposition of the cubic
invariant, see the paper by Borsten et al. [10].

IV. NONCOMMUTATIVE COORDINATES
FOR GQ(2, 4)

A. GQ(2, 4) and qubits

The careful reader might have noticed that there is one
important issue we have not clarified yet. What happened
to the signs of the terms in the cubic invariant? Can we
account for them via some sort of geometric construction?

In order to start motivating the problem of signs, we
observe that the terms that should contain negative signs
are the first three terms of Eq. (13), containing determi-
nants of 3� 3 matrices. Indeed, the labeling of Fig. 2 only
produces the terms of the cubic invariant I3 up to a sign.
One could immediately suggest that we should also include
a special distribution of signs to the points of GQ(2, 4).
This would take care of the negative signs in the first three
terms of Eq. (13).

However, it is easy to see that no such distribution of
signs exists. The reason for this is as follows. We have a
triple of grids inside our quadrangle corresponding to the
three different 2-qutrit states. Truncation to any of such
states (say to the one with amplitudes described by the
matrix c) yields the cubic invariant I3ðcÞ ¼ DetðcÞ. The
structure of this determinant is encapsulated in the struc-
ture of the corresponding grid. We can try to arrange the

nine amplitudes in a way that the three plus signs for the
determinant should occur along the rows and the three
minus signs along the columns. But this is impossible since
multiplying all of the nine signs ‘‘row-wise’’ yields a plus
sign, but ‘‘columnwise’’ yields a minus one.
Readers familiar with the Bell-Kochen-Specker type

theorems ruling out noncontextual hidden variable theories
may immediately suggest that if we have failed to associate
signs with the points of the grid, what about trying to use
noncommutative objects instead? More precisely, we can
try to associate objects that are generally noncommuting
but that are pairwise commuting along the lines. This is
exactly what is achieved by usingMermin squares [38–40].
Mermin squares are obtained by assigning pairwise com-
muting 2-qubit Pauli matrices to the lines of the grid in
such a way that the naive sign assignment does not work,
but we get the identity operators with the correct signs by
multiplying the operators row- and columnwise.
It is known [41] that 15 of the 2-qubit Pauli operators

belonging to the 2-qubit Pauli group [15] can be associated
to the points of the doily in such a way that we have
mutually commuting operators along all of its 15 lines.
Moreover, this assignment automatically yields Mermin
squares for the ten grids living inside the doily. Hence, a
natural question to be asked is whether it is possible to use
the same trick for GQ(2, 4)? A natural extension would be
to try to label the 27 points of GQ(2, 4) with a special set
from the operators of the 3-qubit Pauli group. In our recent
paper [12], we have already gained some insight into the
structure of the central quotient of this group and its
connection to the E7 symmetric black hole entropy in D ¼
4. Hence, we can even be more ambitious and search for 3-
qubit labels for GQ(2, 4) also describing an embedding of
our qubic invariant to the quartic one. In this way we would
also obtain a new insight into the connection between the
D ¼ 4 and D ¼ 5 cases in finite geometric terms.
In order to show that this program can indeed be carried

out, let us define the real 3-qubit Pauli operators by in-
troducing the notation [12] X 	 �1, Y ¼ i�2 and Z 	 �3;
here, �j, j ¼ 1, 2, 3 are the usual 2� 2 Pauli matrices.

Then we can define the real operators of the 3-qubit Pauli
group by forming the tensor products of the form ABC 	
A � B � C that are 8� 8 matrices. For example, we have

ZYX 	 Z � Y � X ¼ Y � X 0
0 �Y � X

� �

¼
0 X 0 0

�X 0 0 0
0 0 0 �X
0 0 X 0

0

B

B

B

@

1

C

C

C

A

: (28)

Notice that operators containing an even number of Ys are
symmetric and the ones containing an odd number of Y ’s
are antisymmetric. Disregarding the identity, III, (I is the
2� 2 identity matrix) we have 63 of such operators. We
have shown [12] that they can be mapped bijectively to the
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63 points of the split Cayley hexagon of order 2 in such a
way that its 63 lines are formed by three pairwise commut-
ing operators. These 63 triples of operators have the prop-
erty that their product equals III up to a sign.

It is easy to check that the 35 symmetric operators form a
geometric hyperplane of the hexagon. Its complement is
the famous Coxeter graph, whose vertices are labeled by
the 28 antisymmetric matrices. It was shown [12] that the
automorphism group of both of these subconfigurations is
PSLð2; 7Þ, having a generator of order 7. Because of this
we can group the 28 antisymmetric operators to four seven-
element sets. One of these sets is

ðg1; g2; g3; g4; g5; g6; g7Þ
¼ ðIIY; ZYX; YIX; YZZ; XYX; IYZ; YXZÞ (29)

satisfying the relation fga; gbg ¼ �2�ab, a; b ¼ 1; 2; . . . 7,
i.e. these operators form the generators of a seven-
dimensional Clifford algebra. Notice that these generators,
up to some sign conventions and a cyclic permutation, are
precisely the ones used by Cremmer and Julia in their
classical paper [42] on SOð8Þ supergravity. Namely, their
generators �a, a ¼ 4; 5; . . . ; 10 have the form

f�4; �5; �6; �7; �8; �9; �10g
¼ fZYX;�ZYZ; ZIY; XXY; XYI;�XZY;�YIIg: (30)

The remaining 21 antisymmetric operators are of the form
1
2 ½ga; gb�, a; b ¼ 1; 2; . . . ; 7, i.e. they generate an soð7Þ
algebra. One can then form the 8� 8 matrix ��IJ, I; J ¼
0; 1; . . . ; 7whose entries are our 28 antisymmetric matrices

� �0a ¼ g0a 	 ga; ��ab ¼ gab 	 1

2
½ga; gb�: (31)

In other words, ð�IJÞAB, A; B ¼ 0; 1; . . . ; 7 are generators
of the soð8Þ algebra in the spinor representation. Hence, we
managed to relate the 28 generators of soð8Þ to the comple-
ment of one of the geometric hyperplanes of the split
Cayley hexagon of order 2, namely, to the Coxeter graph.

Notice that Eqs. (29) and (31) give an explicit labeling
for the 28 points of the Coxeter graph in terms of 3-qubit
operators. We can make use of this structure by employing
these 3-qubit operators for expanding the N ¼ 8 central
charge ZAB as

Z AB ¼ �ðxIJ þ iyIJÞð�IJÞAB; (32)

where summation for I < J is implied and the real anti-
symmetric matrices xIJ and yIJ describe the 28 electric and
28 magnetic charges which are related to some numbers of
membranes wrapping around the extra dimensions where
these objects live in [43].

In order to establish a connection between the D ¼ 4
andD ¼ 5 cases, we assign to one of the 28 antisymmetric
3-qubit operators a special status. Later, we will show that
this choice amounts to a choice of the symplectic structure
� in the usual formalism of D ¼ 5 black hole solutions

[24]. Let us make the following choice:

� ¼ IIY ¼ g1 ¼ g01 ¼ ��01: (33)

(The usual choice for� is YII [24,42].) Then recalling the
duad construction of GQ(2, 4), a natural choice to try for
the labeling of the 27 points of our quadrangle is

f10; 20; 30; 40; 50; 60g $ fg02; g03; g04; g05; g06; g07g
¼ fg2; g3; g4; g5; g6; g7g; (34)

f1; 2; 3; 4; 5; 6g $ fg12; g13; g14; g15; g16; g17g; (35)

f12; 13; 14; 15; 16; 23; 24; 25; 26g
$ fg23; g24; g25; g26; g27; g34; g35; g36; g37g; (36)

f34; 35; 36; 45; 46; 56g $ fg45; g46; g47; g56; g57; g67g;
(37)

i.e., shifting all the indices of gIJ not containing 0 or 1 by
�1 we get the duad labels.
Now using the explicit form of the antisymmetric op-

erators gab, a, b � 0, 1 used to label the points of our
generalized quadrangle we notice that for all of the 45 lines
the product of the corresponding three 3-qubit operators
gives, up to a sign,�!Moreover, we also realize that the 15
triples of operators associated with the 15 lines of the doily
are pairwise commuting. However, the triples of operators
belonging to the 30 lines featuring the double sixes outside
the doily fail to be pairwise commuting. But we also notice
that for such lines the two operators belonging to the
double sixes are always commuting, but either of them
anticommutes with the remaining operator belonging to the
doily. It is also clear that � anticommutes with the opera-
tors of the double sixes, and commutes with the ones of the
doily. Hence, if we multiply all the operators belonging to
the doily by �, the resulting symmetric ones will preserve
the nice pairwise commuting property, and at the same
time the same property is also achieved for the resulting
antisymmetric operators featuring the lines of the double
sixes. And as an extra bonus: the product of all triples of
operators along the lines gives III, again up to a sign. In
this way we have obtained a sort of noncommutative label-
ing for the points of GQ(2, 4). The 15 points of the doily
are labeled by 15 symmetric operators, and the 12 double
sixes are labeled by antisymmetric ones. The incidence
relation on this set of 27 points producing the 45 lines is a
pairwise commuting property and a ‘‘sum rule’’ (i.e. multi-
plication producing III up to a sign).
Notice that for a; b; c ¼ 1; 2; . . . ; 7 the combinations

gabc 	 gagbgc as elements of the Clifford algebra
Cliff(7) are symmetric and the ones ga and gab ¼ gagb
are antisymmetric matrices with some signs automatically
incorporated. Hence, the simplest choice for a labeling
taking care of the signs is simply

f10; 20; 30; 40; 50; 60g ¼ fg2; g3; g4; g5; g6; g7g; (38)
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f1; 2; 3; 4; 5; 6g ¼ fg12; g13; g14; g15; g16; g17g; (39)

f12; 13; 14; 15; 16; 23; 24; 25; 26g
¼ fg123; g124; g125; g126; g127; g134; g135; g136; g137g;

(40)

f34; 35; 36; 45; 46; 56g ¼ fg145; g146; g147; g156; g157; g167g:
(41)

Using the explicit form of the 8� 8 matrices ga, a ¼
1; 2; . . . ; 7 of Eq. (29), we can get 3-qubit operators with
a natural choice of signs as noncommutative labels for the
points of GQ(2, 4). The summary of this chain of reasoning
is displayed in Fig. 3.

B. The Weyl action on GQ(2, 4)

Using our new labeling we can demonstrate the WðE6Þ
invariance of GQ(2, 4) This renders our arguments on the
relationship between the structure of GQ(2, 4) and I3 to a
proof.

Let us consider the correspondence

I � ð00Þ; X � ð01Þ; Y � ð11Þ; Z � ð10Þ:
(42)

Using this we can map an arbitrary element of the central
quotient of the 3-qubit Pauli group toZ6

2, i.e. to the space of

six-component vectors with elements taken from GF(2).
For example, XZI is taken to the six-component vector
(011 000). Clearly, if we are interested merely in the inci-
dence structure then we can label the points of GQ(2, 4)
with such six-component vectors. Knowing that WðE6Þ ffi
O�ð6; 2Þ, which is the set of 6� 6 matrices with entries

taken from GF(2) leaving invariant a special quadratic
form [44] defined on Z6

2, we can check the Weyl invariance
by checking the invariance under a suitable set of gener-
ators. From the atlas of finite groups [45] we use the
presentation

O�ð6; 2Þ ¼ Uð4; 2Þ 2Z2 ¼ hc; djc2 ¼ d9 ¼ ðcd2Þ8
¼ ½c; d2�2 ¼ ½c; d3cd3� ¼ 1i: (43)

We have found the following representation convenient
(this is the one that is preserving the symplectic structure
corresponding to the commutation properties in the Pauli
group [15], and mapping the 27 3-qubit label onto itself)

c ¼

1 0 0 0 0 0
1 1 1 1 0 0
1 0 0 1 0 0
1 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

;

d ¼

0 1 1 1 1 1
1 1 0 1 0 1
1 1 1 0 1 1
0 0 1 1 1 1
0 1 1 1 0 0
0 1 1 0 0 1

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

:

(44)

Using the above-given dictionary, we explicitly get for the
action of c

IXI $ XZI; ZYX $ YIX; IZI $ XXI; (45)

ZYZ $ YIZ; ZII $ YYI; ZYY $ YIY; (46)

and the remaining 15 operators are left invariant. For the
action of d we get three orbits

IXI � YXZ � YZX � YIX � XYZ � IYZ � YXX

� ZZI � YXY � IXI; (47)

IZI � ZYY � XII � YZY � XYX � XYY � YIY

� YIZ � IYY � IZI; (48)

IYX � ZXI � ZYZ � ZYX � YYI � YZZ � ZII

� XZI � XXI � IYX: (49)

One can check that these generators take lines to lines,
hence preserving GQ(2, 4).
Moreover, using this action of WðE6Þ on GQ(2, 4) we

can define a corresponding one on GQ(2, 4) taken together
with the noncommutative coordinates. For this we can take
the very same expressions as above but taking also into
account the signs of the operators, as shown in Fig. 3. Since
these signed quantities automatically take care of the
structure of signs of I3, this furnishes a proof for the
WðE6Þ invariance of I3. Notice also that the transformation
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FIG. 3 (color online). An illustration of the noncommutative
labeling of the points of GQ(2, 4). For better readability of the
figure, the sign of an operator is placed above the latter.
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rules for the noncommutative labels imply the correspond-
ing rule for the charges. Having in this way an explicit
action on the charges and the invariance of the black hole
entropy, it would be interesting to work out manifestations
of this discrete symmetry of order 51 840 in string theory.

C. A D ¼ 4 interpretation

Note that the decomposition

E7ð7Þ � E6ð6Þ � SOð1; 1Þ (50)

under which

56 ! 1 
 27 
 270 
 10 (51)

describes the relation between the D ¼ 4 and D ¼ 5 dual-
ity groups [46–48]. We intend to show that the noncom-
mutative labeling constructed for our quadrangle provides
a nice finite geometric interpretation of the physics based
on the decomposition of Eq. (50).

To this end, we use the N ¼ 8 central charge parame-
trized as in Eq. (32) and look at the structure of the cubic
invariant that can be written also in the alternative form
[43]

I3 ¼ 1

48
Trð�Z�Z�ZÞ; (52)

where for � we use the definition of Eq. (33). In order to
get the correct number of components, we impose the usual
constraints [24]

Tr ð�ZÞ ¼ 0; �Z ¼ �Z�T: (53)

Notice that the first of these constraints restricts the number
of antisymmetric matrices to be considered in the expan-
sion of Z from 28 to 27. The second constraint is the usual
reality condition which restricts the 27 complex expansion
coefficients to 27 real ones, producing the right count.
Recall also that the group theoretical meaning of these
constraints is the expansion of the N ¼ 8 central charge
in an USpð8Þ basis, which is appropriate since USpð8Þ is
the automorphism group of the N ¼ 8, D ¼ 5 supersym-
metry algebra.

It is easy to see that the reality constraint yields

yjk ¼ 0; x0j ¼ 0; x1j ¼ 0; j; k ¼ 2; 3; . . . 7;

(54)

hence �Z is of the form

�Z ¼ S þ iA 	 1

2
xjkg1jk þ iðy0jg1j � y1jgjÞ; (55)

where summation for j; k ¼ 2; 3; . . . ; 7 is understood. The
new notation for �Z shows that S is symmetric and A is
antisymmetric. Notice that the 3-qubit operators occurring
in the expansions of S and A are precisely the ones we
used in Eqs. (38)–(41) as our noncommutative ‘‘coordi-
nates’’ for GQ(2, 4).

Performing standard manipulations, we get

I3 ¼ 1

48
ðTrðSSSÞ � 3TrðSAAÞÞ: (56)

Notice that

�giþ1gjþ1gkþ1glþ1gmþ1gnþ1 ¼ �"ijklmn;

i; j; k; l; m; n ¼ 1; 2; . . . ; 6; "123456 ¼ þ1:
(57)

Hence, with the notation

Ajk 	 xjþ1kþ1; uj 	 y0jþ1;

vj 	 y1jþ1; j; k ¼ 1; 2; . . . ; 6;
(58)

the terms of Eq. (56) give rise to the form of Eq. (25). Also
notice that the parametrization

uT ¼ b10; �c10; a12; c12; b12; a10
� �

; (59)

vT ¼ �c21; �a21; �b01; �a01; c01; b21
� �

;

(60)

A ¼

0 c02 b22 �c00 a11 b02

�c02 0 a00 b11 c22 �a02
�b22 �a00 0 a20 b20 c11
c00 �b11 �a20 0 c20 a22
�a11 �c22 �b20 �c20 0 �b00

�b02 a02 �c11 �a22 b00 0

0

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

A

;

(61)

yields the qutrit version of I3 of Eq. (13).
The main message of these considerations is obvious:

different versions of I3, and, so, of the black hole entropy
formula, are obtained as different parametrizations of the
underlying finite geometric object—our generalized quad-
rangle GQ(2, 4).

D. Mermin squares and the hyperplanes of the hexagon

Our noncommutative coordinatization of GQ(2, 4) in
terms of the elements of Cliff(7), or equivalently by 3-
qubit operators, is very instructive. For example, one can
easily check that this labeling for the doily gives rise to
seven lines with a minus sign and eight lines with a plus
one. (That is, the product of the corresponding operators
yields either�III orþIII.) This is in accord with the sign
structure of the Pfaffian. It is easy to check that for each of
the ten grids living inside the doily these signs give rise to
three plus signs and three minus ones needed for producing
the determinant related to the ten possible truncations with
nine charges. These ten grids generate ten Mermin squares.
As repeatedly mentioned, inside GQ(2, 4) there are also

triads of grids which are partitioning its 27 points. These
are the ones related to the three qutrit states, indicated by
coloring the corresponding points in three different ways.
They are also producing Mermin squares. Note, the usual
definition of a Mermin square is a grid having the property
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that the products of operators along any of its rows and
columns except for one yield III. Here, we define Mermin
squares as objects for which no simple sign assignment can
produce the rule the operator products give. In this gener-
alized sense we have 3� 40 ¼ 120Mermin squares living
inside our GQ(2, 4).

Of course, our particular coordinates producing the three
special Mermin squares can be replaced by other possible
ones arising from 27 further labelings. In order to see this
notice that the‘‘noncommutative coordinates’’ of Fig. 3 are
the ones based on a special choice for the matrix � of
Eq. (33). Since we have 28 antisymmetric operators, we
have 27 further possible choices for �. Choosing any of
these matrices will produce a 27 ¼ 12þ 15 split for the
space of the remaining antisymmetric operators. For this
we simply have to consider the 12 operators anticommut-
ing and the 15 ones commuting with our fixed �. This can
be easily checked using the property that the antisymmetric
matrices are either of the form gab or ga, a ¼ 1; 2; . . . ; 7.
Now apply the simple rule: multiply the 15 operators
commuting with � by � and leave the remaining ones
untouched. One can then check that this procedure will
yield 27 further possible noncommutative labels for the
points of GQ(2, 4), hence another possible sets of Mermin
squares. Notice also that for the special choice � ¼ YYY
the reality condition of Eq. (53) is related to the 3-qubit
version of the so-called Wootters spin-flip operation [49]
used in quantum information.

We round off this section with an important observation.
The Coxeter set comprising the points of the generalized
hexagon of order 2 answering to the set of antisymmetric 3-
qubit operators is just the complement of one of the geo-
metric hyperplanes of the hexagon. The 28 possibilities for
fixing� gives rise to 28 subconfigurations consisting of 27
points. These 27 points are always consisting of 12 anti-
symmetric operators and 15 symmetric ones. By picturing
them inside the hexagon [12], one can realize that any such
subconfiguration consists of nine pairwise disjoint lines
(i.e., is a distance-3-spread). It turns out that these subcon-
figurations are also geometric hyperplanes living inside the
hexagon [50]. Hence, we have found a very interesting
geometric link between the structures ofD ¼ 4 andD ¼ 5
entropy formulas. The D ¼ 4 case is related to the split
Cayley hexagon of order 2 [12] and here we have demon-
strated that theD ¼ 5 one is underlined by the geometry of
the generalized quadrangle GQ(2, 4). The connection be-
tween these cases is based on a beautiful relationship
between the structure of GQ(2, 4) and one of the geometric
hyperplanes of the hexagon.

V. CONCLUSION

In this paper, we revealed an intimate connection be-
tween the structure of black hole entropy formulas in D ¼
4 and D ¼ 5 and the geometry of certain finite generalized
polygons. We provided a detailed correspondence between

the structure of the cubic invariant related to the black hole
entropy in D ¼ 5 and the geometry of the generalized
quadrangle GQ(2, 4) with automorphism group the Weyl
group WðE6Þ. In this picture, the 27 charges correspond to
the points and the 45 terms in the entropy formula to the
lines of GQ(2, 4). Different truncations with 15, 11 and
nine charges are represented by three distinguished sub-
configurations of GQ(2, 4), well known to finite geometers;
these are the doily [i.e. GQ(2, 2)] with 15, the perp set of a
point with 11, and the grid [i.e. GQ(2, 1)] with nine points,
respectively. Different truncations naturally employ ob-
jects like cubic Jordan algebras well known to string
theorists, or qubits and qutrits well known to quantum
information theorists. In our finite geometric treatment
these objects just provide different coordinates for the
underlying geometric object, GQ(2, 4). However, in order
to account also for the signs of the monomials in the qubic
invariant, the labels, or coordinates used for the points of
GQ(2, 4) must be noncommutative. We have shown that
the real operators of the 3-qubit Pauli group provide a
natural set of such coordinates. An alternative way of
looking at these coordinates is obtained by employing a
special 27 element set of Cliff(7). Hence it seems quite
natural to conjecture that the different possibilities of
describing the D ¼ 5 entropy formula using Jordan alge-
bras, qubits and/or qutrits merely correspond to employing
different coordinates for an underlying noncommutative
geometric structure based on GQ(2, 4).
Using these coordinates we established the Weyl invari-

ance of the cubic invariant and we also shed some light on
the interesting connection between the different possible
truncations with nine charges and the geometry of Mermin
squares—objects well known from studies concerning
Bell-Kochen-Specker like theorems. Since these nine-
charge configurations as qutrits can also be connected to
special brane configurations [8], it would also be nice to
relate their physical properties to these Mermin squares.
We emphasize that these results are also connected to

our previous ones obtained for the E7 symmetric entropy
formula in D ¼ 4 by observing that the structure of
GQ(2, 4) is linked to a particular geometric hyperplane
of the split Cayley hexagon of order 2 [12] featuring 27
points located on nine pairwise disjoint lines (a distance-3-
spread). This observation provides a direct finite geometric
link between the D ¼ 4 and D ¼ 5 cases. However, there
are other interesting hyperplanes of the hexagon. Their
physical meaning (if any) is not clear. In particular, we
have other three distinct types of hyperplanes with 27
points inside the hexagon [50]. They might shed some light
on the geometry of further truncations that are not arising
so naturally as the ones discussed in this paper.
Finally, it is worth mentioning that the above-employed

generalized quadrangles with lines of size three are also
closely related with particular root lattices [20]. Given an
irreducible root lattice �, one picks any two roots a, b
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whose inner product equals unity, ha; bi ¼ 1 (whence
ha; ai ¼ hb; bi ¼ 2). Then the set S ¼ fr 2 �jhr; ri ¼
2; hr; ai ¼ hr; bi ¼ 1g is a generalized quadrangle with
lines of size three if the latter are represented by the triples
fx; y; zg meeting the constraint xþ yþ z ¼ aþ b. Since
� is spanned by fa; bg [ S, the structure of S determines�.
And it turns out [20] that the root lattices that correspond to

GQ(2, 1), GQ(2, 2) and GQ(2, 4), are nothing but those of
E6, E7 and E8, respectively.

ACKNOWLEDGMENTS

This work was partially supported by the VEGA grant
agency Projects No. 2/0092/09 and No. 2/7012/27.

[1] M. J. Duff, Phys. Rev. D 76, 025017 (2007).
[2] R. Kallosh and A. Linde, Phys. Rev. D 73, 104033 (2006).
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