Qudits and Geometry over Rings

Berlin, March 3rd, 2008
joint work with
Metod Saniga
Astronomical Institute
Slovak Academy of Sciences
Tatranská Lomnica, Slovakia
Supported by Aktion Slowakei-Österreich, project 58s2

Technische
Universität
Wien
Vienna
University of
Technology

Hans Havlicek
Forschungsgruppe
Differentialgeometrie und
Geometrische Strukturen
Institut für Diskrete Mathematik und Geometrie
Technische Universität Wien
havlicek@geometrie.tuwien.ac.at

The Generalised Pauli Group

We consider the d-dimensional complex Hilbert space $\mathbb{C}^{d}, d>1$. A qudit is a unit vector of this space ($d=2$: qubit, $d=3$: qutrit).

Let ω be a fixed primitive d-th root of unity, e. g., $\omega=\exp (2 \pi i / d)$.
The unitary shift and clock operators on \mathbb{C}^{d} are defined via their matrices w.r.t. the standard basis:

$$
X=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right) \text { and } Z=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \omega & 0 & \ldots & 0 \\
0 & 0 & \omega^{2} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & \omega^{d-1}
\end{array}\right)
$$

The generalised Pauli group G is the multiplicative group generated by X and Z.
(For $d=2$ another group is known in physics under the name Pauli group.)

The Generalised Pauli Group

The basic relation in G reads

$$
\begin{equation*}
\omega X Z=Z X \tag{1}
\end{equation*}
$$

Each element of G can be written in the unique normal form

$$
\omega^{a} X^{b} Z^{c} \text { for some integers } a, b, c \in \mathbb{Z}_{d}:=\{0,1, \ldots, d-1\}
$$

From (1) it is readily seen that

$$
\left(\omega^{a} X^{b} Z^{c}\right)\left(\omega^{a^{\prime}} X^{b^{\prime}} Z^{c^{\prime}}\right)=\omega^{b^{\prime} c+a+a^{\prime}} X^{b+b^{\prime}} Z^{c+c^{\prime}}
$$

where addition and multiplication of exponents can be understood modulo d.

Non-Commutativity

G is a non-commutative group of order d^{3}. The commutator of two operators W and W^{\prime} is

$$
\left[W, W^{\prime}\right]:=W W^{\prime} W^{-1} W^{\prime-1}
$$

which in our case acquires the form

$$
\left[\omega^{a} X^{b} Z^{c}, \omega^{a^{\prime}} X^{b^{\prime}} Z^{c^{\prime}}\right]=\omega^{c b^{\prime}-c^{\prime} b} I
$$

There are two important normal subgroups of G : its centre $Z(G)$ and its commutator subgroup G^{\prime}, the two being identical

$$
Z(G)=G^{\prime}=\left\{\omega^{a} I: a \in \mathbb{Z}_{d}\right\}
$$

Main Result

We characterise and enumerate the generalised Pauli operators commuting with a given one in terms of the projective line over the ring of integers modulo d.

Bridging the Gap

The bijective mappings

$$
\begin{gathered}
\psi: \mathbb{Z}_{d} \rightarrow G^{\prime}: a \mapsto \omega^{a} I \\
\varphi: \mathbb{Z}_{d}^{2} \rightarrow G / G^{\prime}:(b, c) \mapsto G^{\prime} X^{b} Z^{c} .
\end{gathered}
$$

bridge the gap between the generalised Pauli group and the free \mathbb{Z}_{d}-module \mathbb{Z}_{d}^{2}.

Furthermore, they yield the symplectic bilinear form

$$
\begin{equation*}
[\cdot, \cdot]: \mathbb{Z}_{d}^{2} \times \mathbb{Z}_{d}^{2} \rightarrow \mathbb{Z}_{d}:\left((b, c),\left(b^{\prime}, c^{\prime}\right)\right) \mapsto c b^{\prime}-c^{\prime} b \tag{2}
\end{equation*}
$$

which just describes the commutator of two operators $\omega^{a} X^{b} Z^{c}$ and $\omega^{a^{\prime}} X^{b^{\prime}} Z^{c^{\prime}}$ in terms of our $\mathbb{Z}_{d^{\prime}}$-module. These operators commute if, and only if, the form value in (2) vanishes or, said differently, if (b, c) and $\left(b^{\prime}, c^{\prime}\right)$ are orthogonal.

The Projective Line

Any vector $(b, c) \in \mathbb{Z}_{d}^{2}$ generates the cyclic submodule

$$
\mathbb{Z}_{d}(b, c)=\left\{(u b, u c): u \in \mathbb{Z}_{d}\right\} .
$$

Such a cyclic submodule is called a point, if (b, c) is unimodular, i.e., there exist elements $x, y \in \mathbb{Z}_{d}$ with $b x+c y=1$. The point set

$$
\mathbb{P}\left(\mathbb{Z}_{d}\right):=\left\{\mathbb{Z}_{d}(c, d):(c, d) \text { is unimodular }\right\}
$$

is the projective line over the ring \mathbb{Z}_{d}.

According to this definition a point is a set of vectors!

Orthogonality

The symplectic form $[\cdot, \cdot]$ remains invariant, to within invertible elements of \mathbb{Z}_{d}, under the natural action of the general linear group $\mathrm{GL}_{2}\left(\mathbb{Z}_{d}\right)$ on \mathbb{Z}_{d}^{2}. Hence the orthogonality relation \perp w.r.t. $[\cdot, \cdot]$ is a $\mathrm{GL}_{2}\left(\mathbb{Z}_{d}\right)$-invariant notion.

Moreover, the projective line $\mathbb{P}\left(\mathbb{Z}_{d}\right)$ equals the orbit of $\mathbb{Z}_{d}(1,0)$ this action of $\mathrm{GL}_{2}\left(\mathbb{Z}_{d}\right)$.

Theorem 1. Let $(b, c) \in \mathbb{Z}_{d}^{2}$ be any vector and let $\mathbb{Z}_{d}\left(b^{\prime}, c^{\prime}\right)$ be any point of the projective line $\mathbb{P}\left(\mathbb{Z}_{d}\right)$ which contains the vector (b, c). Then the following assertions hold:

1. The point $\mathbb{Z}_{d}\left(b^{\prime}, c^{\prime}\right)$ is a subset of the perp-set $(b, c)^{\perp}$.
2. Under the additional assumption that $\mathbb{Z}_{d}(b, c)$ is also a point, we have

$$
(b, c)^{\perp}=\mathbb{Z}_{d}(b, c)=\mathbb{Z}_{d}\left(b^{\prime}, c^{\prime}\right)
$$

Case 1: d is Square-Free

We adopt the assumption that

$$
d=p_{1} p_{2} \cdots p_{r}
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are $r \geq 1$ distinct prime numbers. The ring \mathbb{Z}_{d} can be identified with the direct product

$$
\mathbb{Z}_{p_{1}} \times \mathbb{Z}_{p_{2}} \times \cdots \times \mathbb{Z}_{p_{r}}
$$

of r finite fields. Any element $y \in \mathbb{Z}_{d}$ can be written uniquely in the form

$$
y=\left(y^{(1)}, y^{(2)}, \ldots, y^{(r)}\right) \text { with } y^{(k)} \in \mathbb{Z}_{p_{k}}
$$

We refer to the elements $y^{(k)}$ as the components of y.

Case 1: d is Square-Free

Theorem 2. Let $(b, c) \in \mathbb{Z}_{d}^{2}$. We denote by K the set of those indices $k \in\{1,2, \ldots, r\}$ such that $\left(b^{(k)}, c^{(k)}\right)=(0,0)$. Then the following assertions hold:

1. The vector (b, c) is contained in precisely

$$
\prod_{k \in K}\left(p_{k}+1\right)
$$

points of the projective line $\mathbb{P}\left(\mathbb{Z}_{d}\right)$.
2. The set-theoretic union of these points equals $(b, c)^{\perp}$.
3. The perpendicular set of the vector (b, c) satisfies

$$
\left|(b, c)^{\perp}\right|=d \prod_{k \in K} p_{k}
$$

An Example

The projective line over $\mathbb{Z}_{6} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{3}$

Case 2: d is a Prime Power

Let $d=p^{\varepsilon}$, where p is a prime and $\varepsilon \geq 1$ is an integer. The ring \mathbb{Z}_{d} is local, and its ideals form the chain

$$
\mathbb{Z}_{d}=\mathbb{Z}_{d} \cdot p^{0} \supset \mathbb{Z}_{d} \cdot p^{1} \supset \cdots \supset \mathbb{Z}_{d} \cdot p^{\varepsilon}=\{0\} .
$$

Let (b, c) be a vector of the \mathbb{Z}_{d}-module \mathbb{Z}_{d}^{2}. The degree of (b, c) is defined to be

$$
\delta \in\{0,1, \ldots, \varepsilon\}
$$

if the ideal of \mathbb{Z}_{d} generated by $\{b, c\}$ equals $\mathbb{Z}_{d} \cdot p^{\delta}$.

Case 2: d is a Prime Power

Theorem 2. Let (b, c) be a vector of \mathbb{Z}_{d}^{2} with degree δ. Then the following hold:

1. The number of points of the projective line $\mathbb{P}\left(\mathbb{Z}_{d}\right)$ which contain the vector (b, c) equals

$$
p^{\varepsilon}+p^{\varepsilon-1} \quad \text { if } \delta=\varepsilon, \quad \text { and } \quad p^{\delta} \quad \text { if } \delta<\varepsilon
$$

2. We denote by $U(b, c) \subset \mathbb{Z}_{d}^{2}$ the set-theoretic union of all points containing the vector (b, c). Then $U(b, c)$ is a generating set for the submodule $(b, c)^{\perp} \subset \mathbb{Z}_{d}^{2}$. Furthermore, the equality

$$
U(b, c)=(b, c)^{\perp}
$$

holds if, and only if, one of the following conditions is satisfied:

- $(b, c)=(0,0)$.
- (b, c) is an admissible pair.

3. The perpendicular set of the vector (b, c) satisfies

$$
\left|(b, c)^{\perp}\right|=p^{\varepsilon+\delta} .
$$

Case 3: d is Arbitrary

Let

$$
d=p_{1}^{\varepsilon_{1}} p_{2}^{\varepsilon_{2}} \cdots p_{r}^{\varepsilon_{r}},
$$

where $p_{1}, p_{2}, \ldots, p_{r}$ are $r \geq 1$ distinct prime numbers, and the exponents $\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{r}$ are integers ≥ 1.

It is well known that the ring $\left(\mathbb{Z}_{d},+, \cdot\right)$ is isomorphic to the direct product

$$
\begin{equation*}
\mathbb{Z}_{d_{1}} \times \mathbb{Z}_{d_{2}} \times \cdots \times \mathbb{Z}_{d_{r}} \text { where } d_{k}:=p_{k}^{\varepsilon_{k}} \text { for all } k \in\{1,2, \ldots, r\} \tag{3}
\end{equation*}
$$

This observation allows to apply the results from Case 2 to the components of a vector (b, c), but our explicit formulas turn out to be very technical. In particular, one has to define an r-tuple $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$ as the degree of (b, c).

Two Examples

 - 0000000000000010000000000000000 oo oo oo o o o o o o o o o o o (0,0) 0 o o o o o o o o o o o o o o o - OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO 00000000000000000100000000000000000

The projective line over $\mathbb{Z}_{18} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9}$

The projective line over $\mathbb{Z}_{12} \cong \mathbb{Z}_{3} \times \mathbb{Z}_{4}$

Back to Pauli Operators

Theorem 3. Let d be arbitrary. The number of operators in the generalised Pauli group G which commute with the operator $\omega^{a} X^{b} Z^{c} \in G$ is equal to

$$
\begin{equation*}
d \cdot\left|(b, c)^{\perp}\right|=d^{2} \cdot \prod_{k=1}^{r} p_{k}^{\delta_{k}}, \tag{4}
\end{equation*}
$$

where $\left(\delta_{1}, \delta_{2}, \ldots, \delta_{r}\right)$ is the degree of (b, c).

Final Remarks

We are grateful to Petr Pracna (Prague) for his help in creating the pictures.

References

[1] H. Havlicek and M. Saniga: Projective ring line of a specific qudit, J. Phys. A 40 (2007), F943-F952.
[2] H. Havlicek and M. Saniga: Projective ring line of an arbitrary single qudit, J. Phys. A 41 (2008), 015302 (12pp).
[3] K. Thas: Pauli operators of N-qubit Hilbert spaces and the Saniga-Planat conjecture, Chaos, Solitons and Fractals, in print.

Further references can be found in the cited papers.
[3] contains an important generalisation to multiple qubits.

