Qudits and Geometry over Rings

Berlin, March 3rd, 2008

joint work with Metod Saniga Astronomical Institute Slovak Academy of Sciences Tatranská Lomnica, Slovakia

Supported by Aktion Slowakei-Österreich, project 58s2

Technische Universität Wien

VIENNA UNIVERSITY OF TECHNOLOGY

DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN

HANS HAVLICEK

FORSCHUNGSGRUPPE DIFFERENTIALGEOMETRIE UND GEOMETRISCHE STRUKTUREN INSTITUT FÜR DISKRETE MATHEMATIK UND GEOMETRIE TECHNISCHE UNIVERSITÄT WIEN havlicek@geometrie.tuwien.ac.at

The Generalised Pauli Group

We consider the *d*-dimensional complex Hilbert space \mathbb{C}^d , d > 1. A qudit is a unit vector of this space (d = 2: qubit, d = 3: qutrit).

Let ω be a fixed primitive d-th root of unity, e.g., $\omega = \exp(2\pi i/d)$.

The unitary shift and clock operators on \mathbb{C}^d are defined via their matrices w.r.t. the standard basis:

$$X = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & \omega & 0 & \dots & 0 \\ 0 & 0 & \omega^2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \omega^{d-1} \end{pmatrix}$$

The generalised Pauli group G is the multiplicative group generated by X and Z.

(For d = 2 another group is known in physics under the name Pauli group.)

The Generalised Pauli Group

The basic relation in G reads

$$\omega XZ = ZX. \tag{1}$$

Each element of G can be written in the unique normal form

 $\omega^a X^b Z^c$ for some integers $a, b, c \in \mathbb{Z}_d := \{0, 1, \dots, d-1\}.$

From (1) it is readily seen that

$$(\omega^{a}X^{b}Z^{c})(\omega^{a'}X^{b'}Z^{c'}) = \omega^{b'c+a+a'}X^{b+b'}Z^{c+c'},$$

where addition and multiplication of exponents can be understood modulo d.

G is a non-commutative group of order $d^3.\,$ The commutator of two operators W and W' is

$$[W, W'] := WW'W^{-1}W'^{-1}$$

which in our case acquires the form

$$[\omega^a X^b Z^c, \omega^{a'} X^{b'} Z^{c'}] = \omega^{cb'-c'b} I.$$

There are two important normal subgroups of G: its centre Z(G) and its commutator subgroup G', the two being identical

$$Z(G) = G' = \{\omega^a I : a \in \mathbb{Z}_d\}.$$

We characterise and enumerate the generalised Pauli operators commuting with a given one in terms of the projective line over the ring of integers modulo d.

Bridging the Gap

The bijective mappings

$$\psi: \mathbb{Z}_d \to G': a \mapsto \omega^a I,$$

$$\varphi: \mathbb{Z}_d^2 \to G/G': (b,c) \mapsto G'X^bZ^c.$$

bridge the gap between the generalised Pauli group and the free \mathbb{Z}_d -module \mathbb{Z}_d^2 .

Furthermore, they yield the symplectic bilinear form

$$[\cdot, \cdot] : \mathbb{Z}_d^2 \times \mathbb{Z}_d^2 \to \mathbb{Z}_d : ((b, c), (b', c')) \mapsto cb' - c'b$$
(2)

which just describes the commutator of two operators $\omega^a X^b Z^c$ and $\omega^{a'} X^{b'} Z^{c'}$ in terms of our \mathbb{Z}_d -module. These operators commute if, and only if, the form value in (2) vanishes or, said differently, if (b, c) and (b', c') are orthogonal.

Any vector $(b,c) \in \mathbb{Z}_d^2$ generates the cyclic submodule

 $\mathbb{Z}_d(b,c) = \{(ub,uc) : u \in \mathbb{Z}_d\}.$

Such a cyclic submodule is called a point, if (b, c) is unimodular, i.e., there exist elements $x, y \in \mathbb{Z}_d$ with bx + cy = 1. The point set

$$\mathbb{P}(\mathbb{Z}_d) := \{\mathbb{Z}_d(c,d) : (c,d) \text{ is unimodular}\}\$$

is the projective line over the ring \mathbb{Z}_d .

According to this definition a point is a set of vectors!

The symplectic form $[\cdot, \cdot]$ remains invariant, to within invertible elements of \mathbb{Z}_d , under the natural action of the general linear group $\operatorname{GL}_2(\mathbb{Z}_d)$ on \mathbb{Z}_d^2 . Hence the orthogonality relation \perp w.r.t. $[\cdot, \cdot]$ is a $\operatorname{GL}_2(\mathbb{Z}_d)$ -invariant notion.

Moreover, the projective line $\mathbb{P}(\mathbb{Z}_d)$ equals the orbit of $\mathbb{Z}_d(1,0)$ this action of $\mathrm{GL}_2(\mathbb{Z}_d)$.

Theorem 1. Let $(b, c) \in \mathbb{Z}_d^2$ be any vector and let $\mathbb{Z}_d(b', c')$ be any point of the projective line $\mathbb{P}(\mathbb{Z}_d)$ which contains the vector (b, c). Then the following assertions hold:

- 1. The point $\mathbb{Z}_d(b', c')$ is a subset of the perp-set $(b, c)^{\perp}$.
- 2. Under the additional assumption that $\mathbb{Z}_d(b,c)$ is also a point, we have

$$(b,c)^{\perp} = \mathbb{Z}_d(b,c) = \mathbb{Z}_d(b',c').$$

Case 1: *d* is Square-Free

We adopt the assumption that

$$d = p_1 p_2 \cdots p_r,$$

where p_1, p_2, \ldots, p_r are $r \ge 1$ distinct prime numbers. The ring \mathbb{Z}_d can be identified with the direct product

$$\mathbb{Z}_{p_1} \times \mathbb{Z}_{p_2} \times \cdots \times \mathbb{Z}_{p_r}$$

of r finite fields. Any element $y \in \mathbb{Z}_d$ can be written uniquely in the form

$$y = \left(y^{(1)}, y^{(2)}, \dots, y^{(r)}\right)$$
 with $y^{(k)} \in \mathbb{Z}_{p_k}$.

We refer to the elements $y^{(k)}$ as the components of y.

Case 1: d is Square-Free

Theorem 2. Let $(b,c) \in \mathbb{Z}_d^2$. We denote by K the set of those indices $k \in \{1, 2, ..., r\}$ such that $(b^{(k)}, c^{(k)}) = (0, 0)$. Then the following assertions hold:

1. The vector (b, c) is contained in precisely

$$\prod_{k \in K} (p_k + 1)$$

points of the projective line $\mathbb{P}(\mathbb{Z}_d)$.

- 2. The set-theoretic union of these points equals $(b, c)^{\perp}$.
- 3. The perpendicular set of the vector (b, c) satisfies

$$|(b,c)^{\perp}| = d \prod_{k \in K} p_k.$$

An Example

The projective line over $\mathbb{Z}_6 \cong \mathbb{Z}_2 \times \mathbb{Z}_3$

Let $d = p^{\varepsilon}$, where p is a prime and $\varepsilon \ge 1$ is an integer. The ring \mathbb{Z}_d is local, and its ideals form the chain

$$\mathbb{Z}_d = \mathbb{Z}_d \cdot p^0 \supset \mathbb{Z}_d \cdot p^1 \supset \cdots \supset \mathbb{Z}_d \cdot p^{\varepsilon} = \{0\}.$$

Let (b, c) be a vector of the \mathbb{Z}_d -module \mathbb{Z}_d^2 . The degree of (b, c) is defined to be

 $\delta \in \{0, 1, \dots, \varepsilon\}$

if the ideal of \mathbb{Z}_d generated by $\{b, c\}$ equals $\mathbb{Z}_d \cdot p^{\delta}$.

Case 2: *d* is a Prime Power

Theorem 2. Let (b,c) be a vector of \mathbb{Z}_d^2 with degree δ . Then the following hold:

1. The number of points of the projective line $\mathbb{P}(\mathbb{Z}_d)$ which contain the vector (b,c) equals

$$p^{\varepsilon} + p^{\varepsilon - 1}$$
 if $\delta = \varepsilon$, and p^{δ} if $\delta < \varepsilon$.

2. We denote by $U(b,c) \subset \mathbb{Z}_d^2$ the set-theoretic union of all points containing the vector (b,c). Then U(b,c) is a generating set for the submodule $(b,c)^{\perp} \subset \mathbb{Z}_d^2$. Furthermore, the equality

$$U(b,c) = (b,c)^{\perp}$$

holds if, and only if, one of the following conditions is satisfied:

- (b,c) = (0,0).
- (b,c) is an admissible pair.
- 3. The perpendicular set of the vector (b, c) satisfies

$$|(b,c)^{\perp}| = p^{\varepsilon + \delta}.$$

Let

$$d = p_1^{\varepsilon_1} p_2^{\varepsilon_2} \cdots p_r^{\varepsilon_r},$$

where p_1, p_2, \ldots, p_r are $r \ge 1$ distinct prime numbers, and the exponents $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_r$ are integers ≥ 1 .

It is well known that the ring $(\mathbb{Z}_d, +, \cdot)$ is isomorphic to the direct product

$$\mathbb{Z}_{d_1} \times \mathbb{Z}_{d_2} \times \cdots \times \mathbb{Z}_{d_r}$$
 where $d_k := p_k^{\varepsilon_k}$ for all $k \in \{1, 2, \dots, r\}.$ (3)

This observation allows to apply the results from Case 2 to the components of a vector (b, c), but our explicit formulas turn out to be very technical. In particular, one has to define an *r*-tuple $(\delta_1, \delta_2, \ldots, \delta_r)$ as the degree of (b, c).

Two Examples

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Back to Pauli Operators

Theorem 3. Let d be arbitrary. The number of operators in the generalised Pauli group G which commute with the operator $\omega^a X^b Z^c \in G$ is equal to

$$d \cdot |(b,c)^{\perp}| = d^2 \cdot \prod_{k=1}^r p_k^{\delta_k},\tag{4}$$

where $(\delta_1, \delta_2, \ldots, \delta_r)$ is the degree of (b, c).

Final Remarks

We are grateful to Petr Pracna (Prague) for his help in creating the pictures.

References

- [1] H. Havlicek and M. Saniga: Projective ring line of a specific qudit, J. Phys. A 40 (2007), F943–F952.
- [2] H. Havlicek and M. Saniga: Projective ring line of an arbitrary single qudit, *J. Phys. A* **41** (2008), 015302 (12pp).
- [3] K. Thas: Pauli operators of N-qubit Hilbert spaces and the Saniga-Planat conjecture, *Chaos, Solitons and Fractals*, in print.

Further references can be found in the cited papers.

[3] contains an important generalisation to multiple qubits.