Finite Geometries and Quantum Information

Michel Planat ${ }^{\dagger}$ and Metod Saniga ${ }^{\ddagger}$

†Institut FEMTO-ST/LPMO, 32 Avenue de l'Observatoire, F-25044 Besançon, France (michel.planat@femto-st.fr)
\ddagger ASTRONOMICAL INSTITUTE of the SLOVAK Academy of SCIENCES, SK-05960 Tatranská Lomnica, Slovak Republic (msaniga@astro.sk)

GdR Information Quantique, Aspet (Pyrénées), June 5-8, 2007

- The commutation relations between the generalized Pauli operators of N-qudits (i. e., N p-level quantum systems), and the structure of their bases/maximal sets of commuting operators, follow a nice graph theoretical/geometrical pattern.
- One may identify VERTICES of a graph with the OPERATORS so that edges join commuting pairs of them to form the so-called PAULI GRAPH $\mathcal{P}_{p^{N}}$.
- One may identify POINTS of a geometry with the OPERATORS so that LINES correspond to the MAXIMAL COMMUTING SETS of them.
- As per two-qubits $(p=2, N=2)$ all basic properties and partitionings of the graph \mathcal{P}_{4} are embodied in the geometry of the symplectic generalized quadrangle of order two, $W(2)$.
The latter can be embedded into a projective space, $P G(3,2)$, or into projective line over the non-commutative ring $\mathcal{Z}_{2}^{2 \times 2}$.
- These concepts generalize to any dimension provided one accepts MULTILINES in the geometry.
They apply to mutually unbiased bases and to quantum entanglement.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle $W(2)$

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two matrix ring over \mathcal{Z}_{2}

2: The multiline geometry of qubit/qutrit system

Conclusion

Annex: The N-qudits and symplectic polar spaces

- Let us consider the fifteen tensor products $\sigma_{i} \otimes \sigma_{j}$, $i, j \in\{1,2,3,4\}$ and $(i, j) \neq(1,1)$, of Pauli matrices
$\sigma_{i}=\left(I_{2}, \sigma_{x}, \sigma_{y}, \sigma_{z}\right)$, where $I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$\sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\sigma_{y}=i \sigma_{x} \sigma_{z}$, label them as follows
$1=I_{2} \otimes \sigma_{x}, 2=I_{2} \otimes \sigma_{y}, 3=I_{2} \otimes \sigma_{z}, a=\sigma_{x} \otimes I_{2}$, $4=\sigma_{x} \otimes \sigma_{x} \ldots, b=\sigma_{y} \otimes I_{2}, \ldots, c=\sigma_{z} \otimes I_{2}, \ldots$, and find the product and the commutation properties of any two of them - as given in the Table below.

Annex: The N -qudits and symplectic polar spaces

Commutation relations/incidence table

	1	2	3	a	4	5	6	b	7	8	9	c	10	11	12
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0
2	0	0	0	1	0	1	0	1	0	1	0	1	0	1	0
3	0	0	0	1	0	0	1	1	0	0	1	1	0	0	1
a	1	1	1	0	1	1	1	0	0	0	0	0	0	0	0
4	1	0	0	1	0	0	0	0	0	1	1	0	0	1	1
5	0	1	0	1	0	0	0	0	1	0	1	0	1	0	1
6	0	0	1	1	0	0	0	0	1	1	0	0	1	1	0
b	1	1	1	0	0	0	0	0	1	1	1	0	0	0	0
7	1	0	0	0	0	1	1	1	0	0	0	0	0	1	1
8	0	1	0	0	1	0	1	1	0	0	0	0	1	0	1
9	0	0	1	0	1	1	0	1	0	0	0	0	1	1	0
c	1	1	1	0	0	0	0	0	0	0	0	0	1	1	1
10	1	0	0	0	0	1	1	0	0	1	1	1	0	0	0
11	0	1	0	0	1	0	1	0	1	0	1	1	0	0	0
12	0	0	1	0	1	1	0	0	1	1	0	1	0	0	0

The commutation relations between pairs of Pauli operators of two-qubits aka the incidence matrix of the Pauli graph \mathcal{P}_{4}. The symbol " 0 " / " 1 " stands for non-commuting/commuting.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two ma
2: The multiline geometry of qubit/qutrit system

Conclusion

Annex: The N-qudits and symplectic polar spaces

Maximal commuting sets

$$
\begin{gathered}
\{1, a, 4\},\{2, a, 5\},\{3, a, 6\},\{1, b, 7\},\{2, b, 8\},\{3, b, 9\}, \quad\{1, c, 10\},\{2, c, 11\},\{3, c, 12\}, \\
\{4,8,12\},\{5,7,12\},\{6,7,11\},\{4,9,11\},\{5,9,10\},\{6,8,10\}
\end{gathered}
$$

-W(2) as the unique underlying geometry of two-qubit systems. The Pauli operators correspond to the points and the base/maximally commuting subsets of them to the lines of the quadrangle. Six out of fifteen such bases are entangled (the corresponding lines being indicated by boldfacing).

Annex: The N-qudits and symplectic polar spaces

Glossary on graph theory: 1

- Adjacency, adjacency matrix, degree D of a vertex
- graph spectrum $\left\{\lambda_{1}^{r_{1}}, \lambda_{2}^{r_{2}}, \ldots, \lambda_{n}^{r_{n}}\right\},\left|\lambda_{1}\right| \leq \ldots\left|\lambda_{n}\right|$
- Regular graph: D is constant, $\left|\lambda_{n}\right|=D$ and $r_{n}=1$.
- A strongly regular graph $\operatorname{srg}(v, D, \lambda, \mu)$ is such that any two adjacent vertices are both adjacent to a constant number λ of vertices, and any two non adjacent vertices are also both adjacent to a constant number μ of vertices. They have THREE EIGENVALUES. ${ }^{1}$
${ }^{1}$ It is known that the adjacency matrix A of any such graph satisfies the following equations

$$
\begin{equation*}
A J=D J, \quad A^{2}+(\mu-\lambda) A+(\mu-D) I=\mu J, \tag{1}
\end{equation*}
$$

where J is the all-one matrix. Hence, A has D as an eigenvalue with multiplicity one and its other eigenvalues are r (>0) and $I(<0)$, related to each other as follows: $r+I=\lambda-\mu$ and $r I=\mu-D$. Strongly regular graphs exhibit two eigenvalues r and $/$ which are, except for (so-called) conference graphs, both integers, with the following multiplicities

$$
\begin{equation*}
f=\frac{-D(I+1)(D-I)}{(D+r l)(r-I)} \text { and } g=\frac{D(r+1)(D-r)}{(D+r l)(r-l)} \tag{2}
\end{equation*}
$$

- Graph coverings: A vertex and an edge are said to cover each other if they are incident. A set of vertices which cover all the edges of a graph G is called a VERTEX COVER of G, and the one with the smallest cardinality is called a MINIMUM VERTEX COVER. An INDEPENDENT SET (or coclique) / of a graph G is a subset of vertices such that no two vertices represent an edge of G. Given the minimum vertex cover of G and the induced subgraph G^{\prime}, a maximum independent set I is defined from all vertices not in G^{\prime}. The set G^{\prime} together with / partition the graph G.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two ma
2: The multiline geometry of qubit/qutrit system

Conclusion

Annex: The N-qudits and symplectic polar spaces

Basic partitionings: FP + CB

- Partitioning of \mathcal{P}_{4} into a pencil of lines in the Fano plane ($F P$) and a cube ($C B$). In $F P$ any two observables on a line map to the third one on the same line. In $C B$ two vertices joined by an edge map to points/vertices in $F P$. The map is explicitly given for an entangled closed path by labels on the corresponding edges.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two ma
2: The multiline geometry of qubit/qutrit system

Conclusion

Annex: The N -qudits and symplectic polar spaces
Basic partitionings: $\mathrm{BP}+\mathrm{MS}$

(BP)

(MS)

Partitioning of \mathcal{P}_{4} into an unentangled bipartite graph $(B P)$ and a fully entangled Mermin square (MS). In $B P$ two vertices on any edge map to a point in $M S$ (see the labels of the edges on a selected closed path). In MS any two vertices on a line map to the third one. Operators on all six lines carry a base of entangled states. The graph is polarized, i.e., the product of three observables in a row is $-I_{4}$, while in a column it is $+I_{4}$.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two ma
2: The multiline geometry of qubit/qutrit system
Annex: The N-qudits and symplectic polar spaces

Basic partitionings: I+PG

7

(PG)
(I)

The partitioning of \mathcal{P}_{4} into a maximum independent set (I) and the Petersen graph $(P G)$, aka its minimum vertex cover. The two vertices on an edge of $P G$ correspond/map to a vertex in I (as illustrated by the labels on the edges of a selected closed path).

G	\mathcal{P}_{4}	$P G$	$M S$	$B P$	$F P$	$C B$
v	15	10	9	6	7	8
e	45	15	18	9	9	12
$s p(G)$	$\left\{-3^{5}, 1^{9}, 6\right\}$	$\left\{-2^{4}, 1^{5}, 3\right\}$	$\left\{-2^{4}, 1^{4}, 4\right\}$	$\left\{-3,0^{4}, 3\right\}$	$\left\{-2,-1^{3}, 1^{2}, 3\right\}$	$\left\{-3,-1^{3}, 1^{3}, 3\right\}$
$g(G)$	3	5	3	3		
$\kappa(G)$	4	3	3	2	3	2

- The main invariants of the Pauli graph \mathcal{P}_{4} and its subgraphs, including its minimum vertex covering MVC isomorphic to the Petersen graph $P G$. For the remaining symbols, see the text.
- FINITE GEOMETRY: a space $\mathcal{S}=\{P, L\}$ of points P and lines L such that certain conditions, or axioms, are satisfied.
- A near linear space/linear space: a space such that any line has at least two points and two points are at most/exactly on one line.
- A projective plane: a linear space in which any two lines meet and there exists a set of four points no three of which lie on a line. The projective plane axioms are dual in the sense that they also hold by switching the role of points and lines. The smallest one: Fano plane with 7 points and 7 lines.
- A projective space: a linear space such that any two-dimensional subspace of it is projective plane. The smallest one is three dimensional and binary: $\operatorname{PG}(3,2)$.

Annex: The N-qudits and symplectic polar spaces

- A generalized quadrangle: a near linear space such that given a line L and a point P not on the line, there is exactly one line K through P that intersects L (in some point Q). A finite generalized quadrangle is said to be of order (s, t) if every line contains $s+1$ points and every point is in exactly $t+1$ lines 2.
- A geometric hyperplane H : a set of points such that every line of the geometry either contains exactly one point of H, or is completely contained in H.
- A polar space $S=\{P, L\}$: a near-linear space such that for every point P not on a line L, the number of points of L joined to P by a line equals either one (as for a generalized quadrangle) or to the total number of points of the line.

[^0]

- Embedding of the generalized quadrangle $W(2)$ (and thus of the Pauli graph \mathcal{P}_{4} into the projective space $P G(3,2)$. All the thirty-five lines of the space carry each a triple of operators $o_{k}, o_{I}, o_{m}, k \neq I \neq m$, obeying the rule $o_{k} \cdot o_{l}=\mu o_{m}$; the operators located on the fifteen totally isotropic lines belonging to $W(2)$ yield $\mu= \pm 1$, whereas those carried by the remaining twenty lines (not all of them shown) give $\mu \equiv \pm i$.

Annex: The N-qudits and symplectic polar spaces

Geometric hyperplanes of $W(2)$
A geometric hyperplane H : a set of points such that every line of the geometry either contains exactly one point of H, or is completely contained in H.

- A perp-set $\left(H_{c l}(X)\right)$, i. e., a set of points collinear with a given point X, the point itself inclusive (there are 15 such hyperplanes). It corresponds to the pencil of lines in the Fano plane.
- A grid $\left(H_{g r}\right)$ of nine points on six lines (there are 10 such hyperplanes). It is a Mermin square.
- An ovoid ($H_{o v}$), i. e., a set of (five) points that has exactly one point in common with every line (there are six such hyperplanes). An ovoid corresponds to a maximum independent set.

Because of self-duality of $W(2)$, each of the above introduced hyperplanes has its dual, line-set counterpart. The most interesting of them is the dual of an ovoid, usually called a spread, i. e., a set of (five) pairwise disjoint lines that partition the point set; each of six different spreads of $W(2)$ represents such a pentad of mutually disjoint maximally commuting subsets of operators whose associated bases are mutually unbiased.

Annex: The N -qudits and symplectic polar spaces
Projective line over a ring: 1

- Given an associative RING R with unity/identity and
- $G L(2, R)$, the general linear group of invertible two-by-two matrices with entries in R, a pair $(a, b) \in R^{2}$ is called admissible over R if there exist $c, d \in R$ such that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(2, R)$.
- The PROJECTIVE LINE OVER R, usually denoted as $P_{1}(R)$, is the set of equivalence classes of ordered pairs ($\varrho a, \varrho b$), where ϱ is a unit of R and (a, b) is admissible. Two points $X:=(\varrho a, \varrho b)$ and $Y:=(\varrho c, \varrho d)$ of the line are called distant or neighbor according as

$$
\left(\begin{array}{ll}
a & b \tag{3}\\
c & d
\end{array}\right) \in G L(2, R) \quad \text { or } \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \notin G L(2, R)
$$

respectively. $G L(2, R)$ has an important property of acting transitively on a set of three pairwise distant points; that is, given any two triples of mutually distant points there exists an element of $G L(2, R)$ transforming one triple into the other.

Projective line over the ring $\mathcal{Z}_{2}^{2 \times 2}$: 1

The ring $\mathcal{Z}_{2}^{2 \times 2}$ of full 2×2 matrices with \mathcal{Z}_{2}-valued coefficients is

$$
\mathcal{Z}_{2}^{2 \times 2} \equiv\left\{\left.\left(\begin{array}{cc}
\alpha & \beta \tag{4}\\
\gamma & \delta
\end{array}\right) \right\rvert\, \alpha, \beta, \gamma, \delta \in \mathcal{Z}_{2}\right\}
$$

- One labels the matrices of $\mathcal{Z}_{2}^{2 \times 2}$ in the following way

$$
\begin{align*}
1^{\prime} & \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), 2^{\prime} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), 3^{\prime} \equiv\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), 4^{\prime} \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right), \\
5^{\prime} & \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right), 6^{\prime} \equiv\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right), 7^{\prime} \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right), 8^{\prime} \equiv\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \\
9^{\prime} & \equiv\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 10^{\prime} \equiv\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), 11^{\prime} \equiv\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), 12^{\prime} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), \\
13^{\prime} & \equiv\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), 14^{\prime} \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), 15^{\prime} \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), 0^{\prime} \equiv\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \tag{5}
\end{align*}
$$

Projective line over the ring $\mathcal{Z}_{2}^{2 \times 2}: 2$
\checkmark and one sees that $\left\{1^{\prime}, 2^{\prime}, 9^{\prime}, 11^{\prime}, 12^{\prime}, 13^{\prime}\right\}$ are units (i.e., invertible matrices) and $\left\{0^{\prime}, 3^{\prime}, 4^{\prime}, 5^{\prime}, 6^{\prime}, 7^{\prime}, 8^{\prime}, 10^{\prime}, 14^{\prime}, 15^{\prime}\right\}$ are zero-divisors.

- The line over $\mathcal{Z}_{2}^{2 \times 2}$ is endowed with 35 points whose coordinates, up to left-proportionality by a unit, read as follows

$$
\begin{align*}
& \left(1^{\prime}, 1^{\prime}\right),\left(1^{\prime}, 2^{\prime}\right),\left(1^{\prime}, 9^{\prime}\right),\left(1^{\prime}, 11^{\prime}\right),\left(1^{\prime}, 12^{\prime}\right),\left(1^{\prime}, 13^{\prime}\right), \\
& \left(1^{\prime}, 0^{\prime}\right),\left(1^{\prime}, 3^{\prime}\right),\left(1^{\prime}, 4^{\prime}\right),\left(1^{\prime}, 5^{\prime}\right),\left(1^{\prime}, 6^{\prime}\right),\left(1^{\prime}, 7^{\prime}\right),\left(1^{\prime}, 8^{\prime}\right),\left(1^{\prime}, 10^{\prime}\right),\left(1^{\prime}, 14^{\prime}\right),\left(1^{\prime}, 15^{\prime}\right), \\
& \left(0^{\prime}, 1^{\prime}\right),\left(3^{\prime}, 1^{\prime}\right),\left(4^{\prime}, 1^{\prime}\right),\left(5^{\prime}, 1^{\prime}\right),\left(6^{\prime}, 1^{\prime}\right),\left(7^{\prime}, 1^{\prime}\right),\left(8^{\prime}, 1^{\prime}\right),\left(10^{\prime}, 1^{\prime}\right),\left(14^{\prime}, 1^{\prime}\right),\left(15^{\prime}, 1^{\prime}\right), \\
& \left(3^{\prime}, 4^{\prime}\right),\left(3^{\prime}, 10^{\prime}\right),\left(3^{\prime}, 14^{\prime}\right),\left(5^{\prime}, 4^{\prime}\right),\left(5^{\prime}, 10^{\prime}\right),\left(5^{\prime}, 14^{\prime}\right),\left(6^{\prime}, 4^{\prime}\right),\left(6^{\prime}, 10^{\prime}\right),\left(6^{\prime}, 14^{\prime}\right), \tag{6}
\end{align*}
$$

- Next, we pick up two mutually distant points of the line. Given the fact that $G L_{2}(R)$ act transitively on triples of pairwise distant points, the two points can, without any loss of generality, be taken to be the points $U_{0}:=(1,0)$ and $V_{0}:=(0,1)$. The points of $W(2)$ are then those points of the line which are either simultaneously distant or simultaneously neighbor to U_{0} and V_{0}.

Projective line over the ring $\mathcal{Z}_{2}^{2 \times 2}: 3$

- The shared distant points are, in this particular representation, (all the) six points whose both entries are units,

$$
\begin{align*}
& \left(1^{\prime}, 1^{\prime}\right),\left(1^{\prime}, 2^{\prime}\right),\left(1^{\prime}, 9^{\prime}\right) \\
& \left(1^{\prime}, 11^{\prime}\right),\left(1^{\prime}, 12^{\prime}\right),\left(1^{\prime}, 13^{\prime}\right) \tag{7}
\end{align*}
$$

- whereas the common neighbors comprise (all the) nine points with both coordinates being zero-divisors,

$$
\begin{array}{ll}
\left(3^{\prime}, 4^{\prime}\right), & \left(3^{\prime}, 10^{\prime}\right), \\
\left(5^{\prime}, 14^{\prime}\right), \\
\left(6^{\prime}, 4^{\prime}\right), & \left.\left(5^{\prime}, 10^{\prime}\right), 10^{\prime}\right), \tag{8}\\
\left(5^{\prime}, 14^{\prime}\right), \\
\left(6^{\prime}, 14^{\prime}\right),
\end{array}
$$

- The two sets thus readily providing a ring geometrical explanation for a $B P+M S$ factorization of the algebra of the two-qubit Pauli operators, after the concept of mutually neighbor is made synonymous with that of mutually commuting.

1. The two-qubit Pauli graph \mathcal{P}_{4} and the generalized quadrangle

2: Pauli graph \mathcal{P}_{4} and the projective line over the two-by-two ma
2: The multiline geometry of qubit/qutrit system
Conclusion
Annex: The N -qudits and symplectic polar spaces
Projective line over the ring $\mathcal{Z}_{2}^{2 \times 2}: 4$

(BP)
(MS)

A $B P+M S$ factorization of \mathcal{P}_{4} in terms of the points of the subconfiguration of the projective line over the full matrix ring $\mathcal{Z}_{2}^{2 \times 2}$; the points of the $B P$ have both coordinates units, whilst those of the $M S$ feature in both entries zero-divisors. The "polarization" of the Mermin square is in this particular ring geometrical setting expressed by the fact that each column/row is characterized by the fixed value of the the first/second coordinate.

Annex: The N -qudits and symplectic polar spaces
Projective line over the ring $\mathcal{Z}_{2}^{2 \times 2}: 5$

- To see all the three factorizations it suffices to notice that the ring $\mathcal{Z}_{2}^{2 \times 2}$ contains as subrings all the three distinct kinds of rings of order four and characteristic two, viz. the (Galois) field F_{4}, the local ring $\mathcal{Z}_{2}[x] /\left\langle x^{2}\right\rangle$, and the direct product ring $\mathcal{Z}_{2} \times \mathcal{Z}_{2}$, and check that the corresponding lines can be identified with the three kinds of geometric hyperplanes of $W(2)$.

\mathcal{P}_{4}	set of five mutually	set of six operators	nine operators of a
	non-commuting operators	commuting with a given one	Mermin's square
$W(2)$	ovoid	perp-set \backslash \{reference point $\}$	grid
PR(1)	$\mathbf{F}_{4} \cong \mathcal{Z}_{2}[x] /\left\langle x^{2}+x+1\right\rangle$	$\mathcal{Z}_{2}[x] /\left\langle x^{2}\right\rangle$	$\mathcal{Z}_{2} \times \mathcal{Z}_{2} \cong \mathcal{Z}_{2}[x] /\langle x(x+1)\rangle$

- Three kinds of the distinguished subsets of the two-qubit Pauli graph \mathcal{P}_{4}) viewed either as the geometric hyperplanes in the generalized quadrangle of order two $W(2)$ or asthe projective lines over the rings of order four and characteristic two residing in the projective line over $\mathcal{Z}_{2}^{2 \times 2}$.
- For the sextic $(d=6)$ systems, one has $6^{2}-1=35$ generalized Pauli operators

$$
\begin{equation*}
\Sigma_{6}^{(i, j)}=\sigma_{i} \otimes \sigma_{j}, \quad i \in\{1, \ldots, 4\}, \quad j \in\{1, \ldots, 9\}, \quad(i, j) \neq(1,1) \tag{9}
\end{equation*}
$$

which can be labelled as: $1=I_{2} \otimes \sigma_{1}, 2=I_{2} \otimes \sigma_{2}, \cdots, 8=I_{2} \otimes \sigma_{8}$ $, a=\sigma_{z} \otimes I_{2}, 9=\sigma_{z} \otimes \sigma_{1}, \ldots, b=\sigma_{x} \otimes I_{2}, 17=\sigma_{x} \otimes \sigma_{1}, \ldots$, $c=\sigma_{y} \otimes I_{2}, \ldots, 32=\sigma_{y} \otimes \sigma_{8}$. Joining two distinct mutually commuting operators by an edge, one obtains the corresponding Pauli graph \mathcal{P}_{6}. It is straightforward to derive twelve maximum commuting sets of operators,

$$
\begin{array}{rll}
L_{1}=\{1,5, a, 9,13\}, & L_{2}=\{2,6, a, 10,14\}, & L_{3}=\{3,7, a, 11,15\}, \\
M_{1}=\{1,5, b, 17,21\}, & M_{2}=\{2,6, b, 18,22\}, & M_{3}=\{3,7, b, 19,23\}, \\
N_{1}=\{1,5, c, 25,29\}, & M_{4}=\{2,12,16\}, \\
\left.N_{2}=\{4,8, b, 19,24\}, 30\right\}, & N_{3}=\{3,7, c, 27,31\}, & N_{4}=\{4,8, c, 28,32\},
\end{array}
$$

which are regarded as lines of the associated finite geometry.

$$
\mathrm{K}[4,3]
$$

$$
\mathrm{L}[\mathrm{~K}[4,3]]
$$

- Considering the lines as the vertices of the dual graph, \mathcal{W}_{6}, with an edge joining two vertices representing concurrent lines, we arrive at a grid-like graph. Mutually unbiased bases (a maximum of three of them) correspond to mutually disjoint lines and, hence, non-adjacent vertices of \mathcal{W}_{6} (also the projective line over the product ring $\mathcal{Z}_{2} \times \mathcal{Z}_{3} \cong Z_{6}$).

- The geometry of $\mathcal{S}_{1}=\left\{L_{1}, M_{1}, N_{1}\right\}$ resembles that of a generalized quadrangle. Although "multi-lines" (lines sharing more than one point) appears we still find that the connection number for each anti-flag is one. \mathcal{S}_{1} also is an analogue of a geometric hyperplane as a subset of points of our \mathcal{P}_{6} geometry such that whenever its two points lie on a line then the entire line lies in the subset.
- We showed that concepts of finite projective geometries are relevant to the understanding of commutation relations of generalized Pauli operators.
- A generalized quadrangle of order two controls the structure of the two-qubit system, and geometric hyperplanes of it explains its basic partitionings.
- In dimension six and higher (composite) ones multilines appears.
- Specic projective ring lines can be used to coordinatize the geometries.
M. Saniga, A.C. Baboin and M. Saniga. "Multiline gometry of qubit/qutrit and higher order Pauli operators," Preprint 0705.2538 [quant-ph].
(T. M. Planat and M. Saniga, "On the Pauli graphs of N-qudits," Preprint quant-ph/0701121.
F. Harary, Graph Theory, Addison-Wesley, Reading, 1972.
L. M. Batten, Combinatorics of Finite Geometries, Cambridge University Press, Cambridge, 1997 (second edition).
(i) B. Polster, A Geometrical Picture Book, Springer-Verlag, New York, 1998.
© S. E. Payne and J. A. Thas, Finite Generalized Quadrangles, Pitman, Boston-London-Melbourne, 1984.
(1. F. De Clercq, " α, β)-geometries from polar spaces," notes available on-line from http://cage.ugent.be/ \sim fdc/brescia_1.pdf.
- Symplectic generalized quadrangles $W(q), q$ any power of a prime, are the lowest rank SYMPLECTIC POLAR SPACES.
- A symplectic polar space $V(d, q)$ is a d-dim vector space over a finite field \mathbf{F}_{q}, carrying a non-degenerate bilinear alternating form. Such a polar space, denoted as $W_{d-1}(q)$, exists only if $d=2 N$, with N being its rank.
- A subspace of $V(d, q)$ is called totally isotropic if the form vanishes identically on it. $W_{2 N-1}(q)$ can then be regarded as the space of totally isotropic subspaces of $P G(2 N-1, q)$ with respect to a symplectic form, with its maximal totally isotropic subspaces, called also generators G, having dimension $N-1$.

Annex: The N-qudits and symplectic polar spaces

- We treat the case $q=2$, for which this polar space contains

$$
\begin{equation*}
\left|W_{2 N-1}(2)\right|=|P G(2 N-1,2)|=2^{2 N}-1=4^{N}-1 \tag{10}
\end{equation*}
$$

points and $(2+1)\left(2^{2}+1\right) \ldots\left(2^{N}+1\right)$ generators.

- A spread S of $W_{2 N-1}(q)$ is a set of generators partitioning its points. The cardinalities of a spread and a generator of $W_{2 N-1}(2)$ are $|S|=2^{N}+1$ and $|G|=2^{N}-1$, respectively. Two distinct points of $W_{2 N-1}(q)$ are called perpendicular if they are joined by a line; for $q=2$, there exist $\#_{\Delta}=2^{2 N-1}$ points that are not perpendicular to a given point.
- Now, we can identify the Pauli operators of N-qubits with the points of $W_{2 N-1}(2)$. If, further, we identify the operational concept "COMMUTING" with the geometrical one "PERPENDICULAR", we then readily see that the points lying on generators of $W_{2 N-1}(2)$ correspond to maximally commuting subsets (MCSs) of operators and a spread of $W_{2 N-1}(2)$ is nothing but a partition of the whole set of operators into MCSs. Finally, we get that there are $2^{2 N-1}$ operators that do not commute with a given operator.

Annex: The N-qudits and symplectic polar spaces

Partial geometries for symplectic polar spaces: 1

- A partial geometry generalizes a finite generalized quadrangle. It is near-linear space $\{P, L\}$ such that for any point P not on a line L, (i) the number of points of L joined to P by a line equals α, (ii) each line has $(s+1)$ points, (iii) each point is on $(t+1)$ lines; this partial geometry is usually denoted as $\mathrm{pg}(s, t, \alpha)$.
- The graph of $\mathrm{pg}(s, t, \alpha)$ is endowed with $v=(s+1) \frac{(s t+\alpha)}{\alpha}$ vertices, $\mathcal{L}=(t+1) \frac{(s t+\alpha)}{\alpha}$ lines and is strongly regular of the type

$$
\begin{equation*}
\operatorname{srg}\left((s+1) \frac{(s t+\alpha)}{\alpha}, s(t+1), s-1+t(\alpha-1), \alpha(t+1)\right) . \tag{11}
\end{equation*}
$$

- The other way round, if a strongly regular graph exhibits the spectrum of a partial geometry, such a graph is called a pseudo-geometric graph. Graphs associated with symplectic polar spaces $W_{2 N-1}(q)$ are pseudo-geometric, being

$$
\begin{equation*}
\operatorname{pg}\left(q \frac{q^{N-1}-1}{q-1}, q^{N-1}, \frac{q^{N-1}-1}{q-1}\right) \text {-graphs. } \tag{12}
\end{equation*}
$$

- Combining these facts, we conclude that that N-qubit Pauli graph is of the type given by Eq. 12 for $q=2$; its basics invariants for a few small values of N are listed in Table 5.

Annex: The N-qudits and symplectic polar spaces

Partial geometries for symplectic polar spaces: 2

- Combining these facts, we conclude that that N-qubit Pauli graph is of the type given by Eq. 12 for $q=2$; its basics invariants for a few small values of N are listed in the Table.

N	v	\mathcal{L}	D	r	l	λ	μ	s	t	α
2	15	15	6	1	-3	1	3	2	2	1
3	63	45	30	3	-5	13	15	6	4	3
4	255	153	126	7	-9	61	63	14	8	7

- Invariants of the Pauli graph $\mathcal{P}_{2^{N}}, N=2,3$ and 4, as inferred from the properties of the symplectic polar spaces of order two and rank N. In general, $v=4^{N}-1, D=v-1-2^{2 N-1}, s=2 \frac{2^{N-1}-1}{2-1}, t=2^{N-1}, \alpha=\frac{2^{N-1}-1}{2-1}$, $\mu=\alpha(t+1)=r l+D$ and $\lambda=s-1+t(\alpha-1))=\mu+r+l$. The integers v and e can also be found from s, t and α themselves.

[^0]: ${ }^{2}$ Properties: $\# P=(s+1)(s t+1), \# L=(t+1)(s t+1)$, the incidence graph is strongly regular and the eigenvalues of the adjacency matrix are $k=s(t+1), r=s-1, I=t-1$; moreover r has multiplicity $f=s t(s+1)(t+1) /(s+t)$.

