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(planat@lpmo.edu)

METOD SANIGA
Astronomical Institute, Slovak Academy of Sciences
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Abstract: Algebraic geometrical concepts are playing an increasing role in quantum
applications such as coding, cryptography, tomography and computing. We point out

here the prominent role played by Galois fields viewed as cyclotomic extensions of the
integers modulo a prime characteristic p. They can be used to generate efficient cyclic
encoding, for transmitting secrete quantum keys, for quantum state recovery and for er-

ror correction in quantum computing. Finite projective planes and their generalization
are the geometric counterpart to cyclotomic concepts, their coordinatization involves

Galois fields, and they have been used repetitively for enciphering and coding. Finally,
the characters over Galois fields are fundamental for generating complete sets of mutu-

ally unbiased bases, a generic concept of quantum information processing and quantum
entanglement. Gauss sums over Galois fields ensure minimum uncertainty under such
protocols. Some Galois rings which are cyclotomic extensions of the integers modulo 4

are also becoming fashionable for their role in time encoding and mutual unbiasedness.
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1 Introduction

Many objects of our today life would not have been designed without the

revolution of knowledge undertaken one century ago: quantum mechanics.

But many philosophers, as well as scientists, are still not satisfied with its

abstract interpretation of the physical world. The operational formalism of

quantum mechanics can answer almost every question about the observable

quantities, but we would like to know more about the quantum machine.

We had time and space in the old continuous machinery of the nineteenth
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century physics; where do they reside now? According to the Heisenberg

indeterminacy principle, there are gaps in our time description of quantum

processes that we cannot fill: accuracy in the isolation of time events means

a lack of knowledge of their energy. The same for position in space of a

particle which is complementary to the momentum. Some scholars are

convinced that we, as humans, are partly responsible for tiny impacts such

a particle may suffer during an experiment. The loose of realism would be

inherent to the realm of quantum mechanics.

Let us point out that more knowledge about quantum processes may

be obtained thanks to quantum information theory — the recent mar-

riage of quantum mechanics and information theory. In the last decade

new concepts with quantum bits (qubits), such as qu-cryptography, qu-

teleportation, qu-cloning, qu-computing and qu-money have been imple-

mented [1]. They have grown upon a big stone erected in 1935: the EPR

paradox about the entanglement of quantum states. Qubit entanglement

(and its generalization to qudits, i.e. many-level quantum states) is the

main resource of the newly emerged quantum information technology.

The goal of this paper is to revisit some of the objects of quantum

information theory using finite algebraic geometrical concepts such as finite

fields (also known as Galois fields), and to give them a geometrical setting.

In doing so, a kind of discrete space-time emerges, time being connected to

algebraic ideals and space to finite geometries. The notion of a character

maps elements of the Galois fields to the quantum states of interest.

2 Time and Its Relation to Ideals

2.1 Ideals and the residue class ring

Let us start our quest of the nature of time in the algebraic world. Our

objects are elements of a finite set which is a ring, R, i.e. the set endowed

with two operations “+” and “·”. The ring is a group with respect to

addition; the product of two elements is in R and it is both associative

and distributive with respect to addition. One needs the concept of an

ideal I in R, denoted I / R, which is a subset of R such that ∀a ∈ I,
∀r ∈ R one has both ar ∈ I and ra ∈ I. In other words, with the

concept of an ideal one pins each element of R into the subset I; and

with the concept of a principal ideal I = (a), a single element a generates

the whole ideal. For a commutative ring R with an identity the definition

is: (a) = aR = {ar, r ∈ R}. A familiar example is the ring of integers

R = Z = {· · · ,−2,−1, 0,+1,+2, · · ·}. The principal ideal generated by the

number a = 3 in Z is (a) = {· · · ,−6,−3, 0, 3, 6, · · ·}.
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The next important object is the concept of a residue class of a modulo

I, which consists of all elements [a] = {a + c, ∀c ∈ I} and is useful to

partition the ring into disjoint classes (or cosets). The set of classes has the

property to be a ring, called the residue class ring and denoted R/I. For

the integers Z modulo the ideal (3), one gets the three classes [0] = 0+(3),

[1] = 1 + (3) and [2] = 2 + (3), and the residue class ring is Z/(3) = F3,

where F3 is the unique field with 3 elements. It is known that for a prime

number p, Z/(p) = Zp = Fp, where Zp is the set of integers modulo p and

Fp the field with p elements. But, for example, Z/(4) is not a field since

2.2 = 4 = 0 and thus 2 divides 0.

2.2 Polynomial rings, Galois fields and their representations

Let us now consider a ring R[x] of polynomials with coefficients in R

R[x] = {a0 + a1x+ · · ·+ anx
n}, ai ∈ R. (1)

One says that g ∈ R[x] is irreducible if it cannot be factored in R; e.g.

x2−2 ∈ Q[x] is irreducible in the field Q of rational numbers, but x2−2 =

(x+
√
2)(x−

√
2) over the real numbers <. There is an important theorem

that for any polynomial g ∈ R[x], the residue class ring R[x]/(g) is a field if

and only if (iff) g is irreducible overR [2]. For example forR = F2 = {0, 1},
the field with two elements, and since g = x2 + x+1 is irreducible over F2,

then F4 = F2[x]/(g) is the Galois field with 4 elements [0] = (g), [1], [x] and

[x+1]. For example [x]+[x+1] = x+(g)+x+1+(g) = 2x+1+(g)+(g) =

1 + (g) = [1]. Similarly [x][x] = (x + (g))(x + (g)) = x2 + (g)(2x + 1) =

x2 +(g) = x2− (x2 +x+1)+(g) = −(x+1)+(g) = (x+1)+(g) = [x+1].

It can be shown that a Galois field with q elements exists iff q = pm, a

power of a prime number p. Actually, there are several representations of

Galois fields. The first one is as a polynomial as in (1). The second one

consists of identifying the Galois field Fq, with q = pm, to the vector space

Fm
p build from the coefficients of the polynomial. The third one uses the

property that F ∗
q = Fq − {0} is a multiplicative cyclic group. One needs

the concept of a primitive polynomial. A (monic) primitive polynomial, of

degree m, in the ring Fq[x] is irreducible over Fq and has a root α ∈ Fqm

that generates the multiplicative group of Fqm . A polynomial g ∈ Fq[x] of
degree m is primitive iff g(0) 6= 0 and divides xr − 1, with r = qm − 1.

For example, F8 can be build from R = F2 and g = x3 + x+1 which is

primitive over F2. One gets F8 = F2[x]/(g) = {0, 1, α, α2, α3 = 1+ α, α4 =

α+ α2, α5 = 1 + α+ α2, α6 = 1 + α2}, see Table 1.
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Table 1. Representations of the elements of the Galois field GF (8).

as powers of α as polynomials as 3-tuples in Z3
2

0 0 (0, 0, 0)
1 1 (0, 0, 1)
α α (0, 1, 0)
α2 α2 (1, 0, 0)
α3 1 + α (0, 1, 1)
α4 α+ α2 (1, 1, 0)
α5 1+α+α2 (1, 1, 1)
α6 1 + α2 (1, 0, 1)

2.3 Cyclic codes as ideals

In one of our recent papers arithmetical functions were considered relevant

models of time evolution [3]. For instance, the function a(n) defined as

1 if n = pm, p a prime number, and 0 otherwise, was found to play an

important role in the study of phase fluctuations in an oscillator. Three

generic functions are met in elementary analytical number theory. One is

the Mangoldt function, closely related to the above defined a(n) function.

The second is the Euler (totient) function φ(n), which counts the number

of irreducible fractions l/n, gcd(l, n) = 1. If one knows the decomposition

n =
∏

i p
mi

i as a product of prime powers, then φ(n) = n
∏

i (1− 1/pi).

The third one, the Möbius function, codes the distribution of primes as

µ(1) = 0, µ(n) = 0 if n contains a square and (−1)k if n is the product of

k distinct prime numbers. The last two functions still appear in the theory

of cyclic codes, as it will be illustrated below.

In Sect. 2.2 we defined Galois fields as the residue class ring over a

ground field Fp of characteristic p, generated by a polynomial g(x) irre-

ducible over Fp. One can generalize this view by considering Fq, q = pn,

as the ground field and by defining an ideal (g) from a polynomial g which

is irreducible over the polynomial field Fq[x] ≡ Fn
q . This definition encom-

passes all linear cyclic codes. A linear code is any vector subspace of F n
q ,

and it is cyclic if one goes from one line to the other of the generating

matrix by a shift of its elements.

All cyclic codes are constructed by all the divisors g in Fq[x] of the

polynomial xn − 1. The divisors are g = Qd, the so-called dth cyclotomic

polynomials, their degree is φ(d) and they are defined as

Qd =
∏

d|n
(xd − 1)µ(n/d). (2)
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The Mangoldt function [3] is a way of encoding the primes.a In the new con-

text of cyclic codes, the cyclotomic polynomial also encodes the irregularity

of primes. There exists a “zeta” function and a “Riemann hypothesis” for

Fq; the latter was proved by Weil in 1948 [4].

Let us describe a linear [n, k] code from its generator matrix. We use

the polynomial

g = g0+g1x+· · ·+gmxm ∈ Fq[x] = Fn
q , g|(xn−1), deg(g) = m < n. (3)

The generator matrix is as follows



g0 g1 · · · gm 0 · · · 0
0 g0 · · · gm−1 gm · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · g0 g1 · · · gm


 =




g
xg
· · ·

xk−1g


 . (4)

As an example, we mention the binary Hamming code of length n = 7,

which is obtained from g = x3 + x+ 1 of coefficients over F2 and contains

4 elements which are the lines of the following generating matrix



1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1


 . (5)

The index n plays the role of time and the code is thus a 2-valued time

encoded by the cyclotomic polynomial (2).

3 Quantum States and Their Relation to Additive Characters

3.1 The additive characters

A character κ(g) over an abelian group G is a (continuous) map from G

to the field of complex numbers C that is of modulus 1, i.e. such that

|κ(g)| = 1, g ∈ G. Since there are two operations “+” and “·” in the

field Fq, one can define two kinds of characters. Multiplicative characters

ψk(n) = exp( 2iπnk
q ), k = 0, . . . , q − 1, are well known since they constitute

the basis for the ordinary discrete Fourier transform. But additive charac-

ters introduced below are the ones which are useful to relate to quantum

aThe Mangoldt function, Λ(n), plays a prominent role in the (still unsolved) Riemann
hypothesis. Λ(n) equals ln(p) if n = pm and 0 otherwise. Its average value oscillates
around 1 and the error term explicitly relies on the pole at s = 1 of the Riemann zeta
function ζ(s) =

∑
<(s)>1

n−s, <(s) > 1, on the trivial zeros at s = −2l, l > 0, of the

extended zeta function ξ(s) = π−s/2Γ(s/2)ζ(s), Γ(s) being the Gamma function, and
on the Riemann zeros presumably all located on the critical axis <(s) = 1/2.
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information. One first defines a map from the extended field Fq, q=p
m, to

the ground field Fp which is called the trace function

tr(x) = x+ xp + · · ·+ xp
m−1 ∈ Fp, ∀ x ∈ Fq. (6)

In addition to its property of mapping an element of Fq into Fp, the trace

function has the following properties: tr(x+ y) = tr(x) + tr(y), x, y ∈ Fq;
tr(ax) = a tr(x), x ∈ Fq, a ∈ Fp; tr(a) = ma, a ∈ Fp; and tr(xq) =

tr(x), x ∈ Fq. Using (6), an additive character over Fq is defined as

κ(x) = ωtr(x)p , ωp = exp

(
2iπ

p

)
, x ∈ Fq. (7)

It satisfies the following relation: κ(x+ y) = κ(x)κ(y), x, y ∈ Fq.

3.2 Quantum states: qubits and qudits

Well before the development of quantum information theory physicists de-

veloped an efficient formalism for working out quantum states. This for-

malism was born (with Dirac) in the context of the second quantization

of a harmonic oscillator. The language of kets |u〉 and bras 〈u|, for u an

element of a Hilbert space H, a vector space over the complex numbers C
equipped with a complex-valued inner product H ×H → C, is still in use

today.

Physically, a qubit is an element of a Hilbert space of dimension 2, H2;

it can represent a spin 1/2, a two-level atomic system, a two-polarisation

state, etc. The most general form of a qubit |ψ〉 is

|ψ〉 = a|0〉+ b|1〉, |a|2 + |b|2 = 1 a, b ∈ C. (8)

In the computational frame of a qubit base B0 = (|0〉, |1〉), we have |0〉 =
(1, 0) and |1〉 = (0, 1). The geometry of the qubit is the Bloch sphere [5],

with the qubit |0〉 at the north pole and the qubit |1〉 at the south one. In

what follows we will be interested in qudits, quantum states in a generic,

q-dimensional Hilbert space Hq defined as |ψ〉 =∑q−1
k=0 ak|k〉,

∑
k |ak|2 = 1,

ak ∈ C, although recently the particular cases of q=2, 4 and 8 received a

lot of attention due to their intimate link to Hopf fibrations (see, e.g. [6]).

Another important concept for quantum measurements has recently

emerged, the one of a complete set of mutually unbiased bases (MUBs).

Besides the concept of an additive character of the Galois field Fq, MUBs

reveal a connection between Fq and the structure of Hilbert space Hq. Or-

thogonal bases of a Hilbert space Hq of finite dimension q are mutually
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unbiased if inner products between all possible pairs of vectors of distinct

bases equal 1/
√
q. They are also said to be maximally non-commutative in

the sense that a measurement over one basis leaves one completely uncer-

tain as to the outcome of a measurement performed over a basis unbiased to

the first. For q=2, the eigenvectors of ordinary Pauli spin matrices provide

the best-known example.

With a complete set of q + 1 mutually unbiased measurements one can

ascertain the density matrix of an ensemble of unknown quantum q-states,

so that a natural question emerges as which mathematics may provide the

construction. It is known that in dimension q = pm the complete sets

of mutually unbiased bases (MUBs) result from Fourier analysis over the

Galois field Fq (p odd) [7] or a Galois ring R4m(p even) [8].

Constructions of MUBs in odd characteristicb are related to the charac-

ter sums with polynomial arguments f(x), called Weil sums,

∑

x∈Fq

κ(f(x)). (9)

In particular (see theorem 5.38 in [2]), for a polynomial f(x) ∈ Fq[x] of

degree d ≥ 1, with gcd(d, q) = 1, one gets |∑x∈Fq
κ(f(x))| ≤ (d − 1)q1/2.

The complete sets of MUBs are obtained as [8, 9]

|θab 〉 =
1√
q

∑

n∈Fq

ψk(n)κ(an
2 + bn)|n〉, a, b ∈ Fq, (10)

with ψk(n) and κ(x) defined in Sect. 3.1. Eq. (10) defines a set of q bases

(with index a) of q vectors (with index b). Using Weil sums (9) it is easily

shown that for q odd the bases are orthogonal and mutually unbiased to

each other and to the computational base {|0〉, |1〉, · · · , |q − 1〉} as well.

3.3 Mutually unbiased bases as quantum phase states

Dirac was the first to attempt a definition of a phase operator by means

of an operator amplitude and phase decomposition. In this description the

number operator N and the phase operator Θ are canonically conjugate

such that [N,Θ] = i, where [ ] are the commutator brackets, and this equa-

tion leads to a number–phase uncertainty relation δNδφ ≥ 1/2. Quantum

phase states reaching the bound are coherent, or squeezed states. But there

is a big problem in defining such a Hermitian quantum phase operator [10]

using the familiar Fock states of the quantized electromagnetic field.

bFourier analysis and MUBs in even characteristic are studied in Sect. 6.
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One way to circumvent the problem is the use of a discrete Hilbert space

Hq. It was shown [11] that states (10) obtained from a trivial character

κ0 = 1 are eigenstates of the Hermitian phase operator

Θ =
∑

k∈Zq

θk|θk〉〈θk|, (11)

with eigenvalues θk = θ0 + 2πk
q , θ0 being an arbitrary initial phase. More

generally, the MUB states are eigenstates of a “Galois” quantum phase

operator [9]

ΘGal =
∑

b∈Fq

θb|θab 〉〈θab |, a, b ∈ Fq, (12)

with eigenvalues θb =
2πb
q . The operator can be made more explicit when

combined with Eq. (10),

ΘGal =
2π

q2

∑

m,n∈Fq

ψk(n−m)ωtr[a(n
2−m2)]

p S(n,m)|n〉〈m|, (13)

with S(n,m) =
∑

b∈Fq
bω

tr[b(n−m)]
p . The diagonal matrix elements feature

the sums S(n, n) = q(q − 1)/2, while for the non-diagonal ones one gets

S(m,n) = q

1−ωtr(m−n)
p

.

4 Phase Fluctuations: From Ramanujan to Gauss Sums

In the previous work [12], the near classical regime of a phase-locked os-

cillator has been studied and its phase fluctuations have been related to

the irregularity of the distribution of prime numbers. A quantum model

of phase-locking was derived based on operator (11) with an additional

assumption that only elements |θ′k〉 with k coprime to q were taken into

account. As a result, the quantum phase-locking operator

Θlock =
∑

k

θ′k|θ′k〉〈θ′k| (14)

can be evaluated explicitly as

Θlock =
1

q

∑

n,l

cq(n− l)|n〉〈l|, (15)

where n, l range from 0 to φ(q), φ(q) being the Euler totient function. The

coefficients in the last equation are the so-called Ramanujan sums,

cq(n) =
∑

gcd(p,q)=1

exp

(
2iπ

p

q
n

)
=
µ(q1)φ(q)

φ(q1)
, q1 = q/gcd(q, n), (16)
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where µ(q) stands for the above-introduced Möbius function.

For the evaluation of phase variability of states we considered a pure

phase state of the form [12]

|f〉 =
∑

n∈Zq

un|n〉, un =
1√
q
exp(inβ), (17)

where β is a real parameter, and we computed the phase expectation value

〈Θlock〉 =
∑

k θ
′
k|〈θ′k|f〉|2 which reads

〈Θlock〉 =
π

q2

∑

n,l

cq(l − n) exp(iβ(n− l)). (18)

For β = 1 it was found that 〈Θlock〉 has more pronounced peaks at those

values of q which are precisely powers of a prime number, and it can be

approximated by the normalized Mangoldt function πΛ(q)/ ln q. For β = 0

the expectation value of 〈Θlock〉 is much lower. The parameter β can be

used to minimize the phase uncertainty well below the classical value [12].

Related phase fluctuations, reflecting properties of the distribution of prime

numbers, were obtained in the frame of a quantum statistical mechanics of

shift and clock operators. This algebra was also found relevant as a model

of time perception [13].

Finally, the phase fluctuations arising from the quantum phase states

in MUBs are found to be related to Gaussian sums of the form

G(ψ, κ) =
∑

x∈F∗
q

ψ(x)κ(x). (19)

Using the notation ψ0 for a trivial multiplicative character, ψ = 1, and

κ0 for a trivial additive character, κ = 1, Gaussian sums (19) satisfy

G(ψ0, κ0) = q − 1; G(ψ0, κ) = −1; G(ψ, κ0) = 0 and |G(ψ, κ)| = q1/2

for nontrivial characters κ and ψ. We need, however, a more general ex-

pression

G(ψ, κ) =
∑

x∈Fq

ψ(f(x))κ(g(x)), (20)

where f, g ∈ Fq[x], which is found to be of the order of magnitude
√
q

([2], p. 249). As a matter of fact, the two factors in the expression for the

probability distribution 〈ΘGal〉 =
∑

b∈Fq
θb|〈θb|f〉|2 have absolute values

bounded by the absolute value of generalized Gauss sums (20), so that

|〈θb|f〉|2 ≤ 1
q as it can be expected for an arbitrary phase factor. To be
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more rigorous, the phase expectation value can be expressed as

〈ΘGal〉 =
2π

q3

∑

m,n∈Fq

ψk(m− n) exp[i(n−m)β]ωtr[a(m
2−n2)]

p S(m,n), (21)

where S(m,n) was defined in Sect. 3.3. All the q diagonal terms m = n in

〈ΘGal〉 contribute an order of magnitude 2π
q3 qS(n, n) ' π. The contribution

of off-diagonal terms and possible cancellation of phase oscillations in the

phase expectation value and in phase variance are discussed in [9].

5 Mutual Unbiasedness and Maximal Entanglement

As we have shown, there is a founding link between irreducible polynomials

over a ground field Fp and complete sets of mutually unbiased bases arising

from the Fourier transform over a lifted field Fq, q = pm. On the other

hand, the physical concept of entanglement over a Hilbert space Hq evokes

irreducibility. Roughly speaking, entangled states in Hq cannot be factored

into tensorial products of states in Hilbert spaces of lower dimension. We

will now show that there is an intrinsic relation between MUBs and maximal

entanglement.

We are all familiar with the Bell states

(|B0,0〉, |B0,1〉) = 1√
2
(|00〉+ |11〉, |00〉 − |11〉),

(|B1,0〉, |B1,1〉) = 1√
2
(|01〉+ |10〉, |01〉 − |10〉),

where a compact notation |00〉 = |0〉 ¯ |0〉, |01〉 = |0〉 ¯ |1〉, etc. is em-

ployed for the tensorial products. These states are both orthonormal and

maximally entangled, such that trace2|Bh,k〉〈Bh,k| = 1
2I2, where trace2 is

the partial trace over the second qubit [5]. One can define more generalized

Bell states using the multiplicative Fourier transform [11] applied to the

tensorial products of two qudits [9], viz.

|Bh,k〉 =
1√
q

q−1∑

n=0

ωknq |n, n+ h〉. (22)

These states are both orthonormal, 〈Bh,k|Bh′,k′〉 = δhh′δkk′ , and maximally

entangled, trace2|Bh,k〉〈Bh,k| = 1
q Iq.

For odd characteristic, we can also define a more general class of maxi-

mally entangled states, using the Fourier transform over Fq and Eq. (10),

as follows

|Bah,b〉 =
1√
q

q−1∑

n=0

ωtr[(an+b)n]
p |n, n+ h〉. (23)
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A list of the generalized Bell states of qutrits for the base a = 0 can be found

in [14] , the work that relies on a coherent state formulation of entanglement.

In general, for q a power of a prime, starting from (23) one obtains q2 bases

of q maximally entangled states. Each set of the q bases (with h fixed) has

the property of mutual unbiasedness.

6 Mutually Unbiased Bases in Even Characteristic

6.1 Construction of the Galois rings of characteristic four

The Weil sums (9), which have been proved useful in construction of MUBs

in odd characteristic, are not useful for p = 2 since in this case the degree d

of the polynomial f(x) is such that gcd(d, q) = 2 — the characteristic of the

relevant Galois fields. An elegant method for constructing complete sets of

MUBs of m-qubits was found in [8]. It makes use of algebraic objects in the

context of quaternary codes [22], the so-called Galois rings R4m . In contrast

to the Galois fields where the ground alphabet has p elements in the field

Fp = Zp, the ring R4m takes its ground alphabet in Z4. To construct this

ring one uses the ideal class (h), where h is a (monic) basic irreducible

polynomial of degree m such that its restriction to h̄(x) = h(x) mod 2 is

irreducible over Z2. The Galois ring R4m is the residue class ring Z4[x]/(h)

and has cardinality 4m.

We also need the concept of a primitive polynomial. To this end, we

recall that a (monic) primitive polynomial, of degree m, in the ring Fq[x] is

irreducible over Fq and has a root α ∈ Fqm that generates the multiplicative

group of Fqm . A polynomial f ∈ Fq[x] of degree m is primitive iff f(0) 6= 0

and divides xr−1, where r = qm−1. Similarly for Galois rings R4m , if h̄[x]

is a primitive polynomial of degree m in Z2[x], then there is a unique basic

primitive polynomial h(x) of degree m in Z4[x] (it divides xr − 1, with

r = 2m − 1). It can be found as follows [9]. Let h̄(x) = e(x) − d(x),

where e(x) contains only even powers and d(x) only odd powers; then

h(x2) = ±(e2(x)− d2(x)). For m = 2, 3 and 4 one takes h̄(x) = x2 + x+1,

h̄(x) = x3 + x + 1 and h̄(x) = x4 + x + 1 and gets h(x) = x2 + x + 1,

x3 + 2x2 + x− 1 and x4 + 2x2 − x+ 1, respectively.

Any non zero element of Fpm can be expressed in terms of a single

primitive element. This is no longer true in R4m , which contains zero

divisors. But in the latter case there exists a nonzero element ξ of order

2m−1 which is a root of the basic primitive polynomial h(x). Any element

y ∈ R4m can be uniquely determined in the form y = a+2b, where a and b

belong to the so-called Teichmüller set Tm = (0, 1, ξ, · · · , ξ2m−2). Moreover,

one finds that a = y2m

. We can also define the generalized trace to the
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base ring Z4 as the map

t̃r(y) =

m−1∑

k=0

σk(y), (24)

where σ(y) is the so-called Frobenius automorphism, obeying the rule

σ(a+ 2b) = a2 + 2b2. (25)

In R4m the additive characters acquire the form

κ̃(x) = ω
t̃r(x)
4 = it̃r(x). (26)

6.2 Exponential sums over R4m

The Weil sums (9) are replaced by the following exponential sums [8]

Γ(y) =
∑

u∈Tm

κ̃(yu), y ∈ R4m , (27)

which satisfy

|Γ(y)| =





0 if y ∈ 2Tm, y 6= 0,
2m if y = 0,√
2m otherwise.

(28)

Gauss sums for Galois rings were constructed in [23] and are of the form

Gy(ψ̃, κ̃) =
∑

x∈R4m

ψ̃(x)κ̃(yx), y ∈ R4m , (29)

where the multiplicative character ψ̄(x) can be made explicit. Using the

notation ψ̃0 for a trivial multiplicative character and κ̃0 for a trivial additive

character, we get G(ψ̃0, κ̃0) = 4m, G(ψ̃, κ̃0) = 0 and |G(ψ̃, κ̃)| ≤ 2m.

6.3 Mutually unbiased bases of m-qubits

It was mentioned in the previous section that each element y of the ring

R4m can be decomposed as y = a + 2b, with a and b belonging to the

Teichmüller set Tm. Employing this fact in the character function κ̃, one

obtains

|θab 〉 =
1√
2m

∑

n∈Tm

ψ̃k(n)κ̃[(a+ 2b)n]|n〉, a, b ∈ Tm. (30)

This defines a set of 2m bases (with index a) of 2m vectors (with index

b). Using Eq. (27), it is easy to show that the bases are orthogonal and
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mutually unbiased to each other and to the computational base. (For the

explicit derivation of the bases, see [9].)

Quantum phase states of m-qubits (30) derive from a “Galois ring”

quantum phase operator as in Eq. (12), and calculations similar to those

in Sect. 3.3 can be performed, since the trace operator defined by Eq. (24)

obeys the rules similar to those of the field trace operator, Eq. (6). In

analogy to the case of qudits in dimension pm, p an odd prime, the phase

properties for sets of m-qubits rely substantially on Eq. (29). As before,

the calculations are tedious, but they can successfully be accomplished in

specific cases.

7 Quantum Geometry From Projective Planes

We have related complete sets of MUBs in dimension pm, p odd, to additive

characters over a Galois field. Complete sets of MUBs offer an intriguing

geometrical interpretation, being related to discrete phase spaces [15], finite

projective planes [16, 17], convex polytopes [18], and complex projective 2-

designs [19]. The last-mentioned paper also points out an interesting link

to symmetric informationally complete positive operator measures (SIC-

POVMs) [20] and to Latin squares [21]. We focus here on the relation of

MUBs to finite geometries and projective planes.

7.1 Mutually unbiased bases and projective planes

A remarkable link between mutually unbiased measurements and finite

projective geometry has recently been noticed [16]. Let us find the min-

imum number of different measurements we need to determine uniquely

the state of an ensemble of identical q-state particles. The density matrix

of such an ensemble, being Hermitean and of unit trace, is specified by

(2q2/2)−1 = q2−1 real parameters. When one performs a non-degenerate

orthogonal measurement on each of many copies of such a system one even-

tually obtains q − 1 real numbers (the probabilities of all but one of the

q possible outcomes). The minimum number of different measurements

needed to determine the state uniquely is thus (q2 − 1)/(q − 1) = q + 1

[7, 15].

It is striking that the identical expression can be found within the con-

text of finite projective geometry. A finite projective plane is an incidence

structure consisting of points and lines such that any two points lie on just

one line, any two lines pass through just one point, and there exist four

points, no three of them on a line [24]. From these properties it readily

follows that for any finite projective plane there exists an integer q with the
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Figure 1. The Fano plane; small circles (denoted as P1,. . . ,P7) represent its points, while

line-segments (L1,. . . ,L5 and L7) and a circle (L6) stand for its lines.

properties that any line contains exactly q+1 points, any point is the meet

of exactly q+1 lines, and the number of points is the same as the number of

lines, namely q2 + q+1. This integer q is called the order of the projective

plane. The most striking issue here is that the order of known finite projec-

tive planes is a power of prime. The question of which other integers occur

as orders of finite projective planes remains one of the most challenging

problems of contemporary mathematics. The only “no-go” theorem known

so far in this respect is the Bruck-Ryser theorem [24] saying that there is

no projective plane of order q if q− 1 or q− 2 is divisible by 4 and q is not

the sum of two squares. Out of the first few non-prime-power numbers, this

theorem rules out finite projective planes of order 6, 14, 21, 22, 30 and 33.

Moreover, using massive computer calculations, it was proved that there

is no projective plane of order ten. It is surmised that the order of any

projective plane is a power of a prime.

It is conjectured [16] that the question of the existence of a set of q + 1

mutually unbiased bases in a q-dimensional Hilbert space if q differs from

a power of a prime number is identical with the problem of whether there

exist projective planes whose order q is not a power of a prime number.

The smallest projective plane, also called the Fano plane (see Fig. 1), is

obviously the q = 2 one; it contains 7 points and 7 lines, any line contains

3 points and each point is on 3 lines. It may be viewed as a 3-dimensional

vector space over the field GF (2), each point being a triple (g1, g2, g3),

excluding the (0,0,0) one, where gi ∈ GF (2) = {0, 1} [24]. The points of

this plane can also be represented in terms of the non-zero elements of the

Galois field G = GF (23), see the last column of Table 1.
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7.2 Cyclic codes and projective spaces

As shown in Sect. 2.3, a linear code C is a subspace of F n
q , q = pm. And

a cyclic code is an ideal (g) in the polynomial field Fq[x] ≡ Fn
q attached

to a polynomial g irreducible over Fq. One defines the Hamming distance

[2] between x and y in F n
q as the number of coordinates in which x and

y differ. The minimum distance of a code is an important concept which

characterizes its efficiency for error correcting; it is defined as

d = dmin(C) = min
u,v∈C

u6=v
d(u, v). (31)

A linear code corrects up to [ d−1
2 ] and detect up to d− 1 errors. It can be

shown that for a linear [n, k] code, the following bound holds

d ≤ n− k + 1 = dmax. (32)

A minimum distance code (or a maximum distance separable, MDS code)

is such that d = dmax and it is usually referred to as a [n, k, d] code (or

[n, n−r, r+1] code). The binary Hamming [7, 4] code introduced in Sect. 2.3

thus corrects up to 1 and detect up to 3 errors. It is the MDS [7, 4, 4] code.

There exists an intimate link between this code and the Fano plane,

which can be inferred as follows. Let us take its seven codewords 1 to 7 by

cyclic extending of matrix (5), viz.




1 1 0 1 0 0 0
0 1 1 0 1 0 0
0 0 1 1 0 1 0
0 0 0 1 1 0 1
1 0 0 0 1 1 0
0 1 0 0 0 1 1
1 0 1 0 0 0 1




. (33)

The above matrix is nothing but the incidence matrix of the Fano plane,

obtained as follows: if Pj is the jth point and Li represents the ith line of

the Fano plane, the elements of the matrix are

aij =

{
1 if Pj ∈ Li,
0 otherwise.

(34)

The link between good codes and projective geometry has recently re-

ceived considerable attention [24]. Let us define a vector space V of di-

mension δ + 1 ≥ 3 over Fq. Then a projective geometry P (V ) can be
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defined as follows. The points of P (V ) are its 1-dimensional subspaces,

the lines its 2-dimensional subspaces and the incidence structure in P (V )

is the set-theoretical containment. The geometry P (V ) is the projective

space coordinatized by the Galois field Fq. This δ-dimensional projective

space P (V ) over Fq is usually denoted as PG(δ, q).

Next, a set of points in P = PG(δ, q) is called an arc if any δ + 1 of its

points form a basis of P . An arc having n points is called an n-arc. In a

projective plane PG(2, q) an n-arc is a set of n points no three of which

are collinear. If each point of an n-arc is exactly on one tangent, the arc is

called an oval. The maximum value of n for an n-arc is

m(2, q) =

{
q + 1 when q is odd,
q + 2 when q is even.

(35)

The meaning of Eq. (35) is as follows. If q is odd, then arcs with a maximum

number of points are ovals. If q is even then, each oval can be uniquely

extended to a (q + 2)-arc, which is called a hyperoval. The possible corre-

spondence between ovals and complete set of MUBs is discussed in [17].

There is a one to one correspondence between the generator matrix of

[n, n− r] MDS codes and n-arcs in PG(r−1, q) ([25], p. 73). The construc-

tion of good codes with a prescribed minimum distance can be rephrased

as follows. One is given the minimum distance d and r. Determine the

greatest length of the code, maxd−1(r, q).

The simplest case is d = 3 for which max2(r, q) is the maximum possible

number of points in PG(r − 1, q) such that two of them are independent:

this is, obviously, the total number of points in PG(r − 1, q), and thus

max2(r, q) = qr−1 + · · ·+ q + 1. (36)

In particular, we have max2(r, 2) = 2r − 1, which corresponds to the Ham-

ming [n, n− r] code. The case d = 4 is less trivial. Only partial results are

known:

max3(r, 2) = 2r−1, (37)

max3(3, q) =

{
q + 1 when q is odd,
q + 2 when q is even,

(38)

and

max3(4, q) = q2 + 1. (39)

Putting r = 3 in Eq. (37) one gets the case of the [7, 4, 4] code considered

above. The geometry of Eq. (38) answers to ovals (q odd) and hyperovals

(q even) of PG(2, q), that of Eq. (39) to ovoidsc of PG(3, q).

cAn ovoid is a nonempty set O of points of PG(d, q) such that no three points of O are
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8 Conclusion

Let us briefly summarize basic ideas developed in the paper. At the alge-

braic level, there exists a polynomial field F n
q defined over a “base” field

Fq, with q = pm and p a prime. The cyclic encoding (in “time” n) comes

from (cyclotomic) laws of partitioning F n
q . At the geometrical level, a pro-

jective space can always be partioned into subsets (called spreads). For

example, PG(3, q) is partioned into subsets of q2+1 mutually skew (i.e.

pairwise disjoint) lines. These may well form ovoids, which “give rise”

to MDS−codes. Similarly, there is a partitioning of a projective plane

PG(2, q) into sets of q+1 lines. These may well be (the tangents of) ovals,

which are conjectured to reproduce properties of the sets of mutually unbi-

ased bases. Here, we play with a two-dimensional “quantum space-time.”

The vectorial projective space, PG(δ, q), is thus a promising playground for

tackling both the measurement and coding problems in quantum mechan-

ics. Yet, there exist more general kinds of finite (projective) geometries, e.g.

(non-)Desarguesian projective planes defined over quasi-/near-fields, the

latter obeying less stringent rules than fields [26]. These are, we believe,

candidates for addressing another intriguing quantum effects like partial

entanglement and decoherence.
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