PROJECTIVE LINES OVER FINITE RINGS

(ICS Praha, September 26, 2006)

METOD SANIGA

Astronomical Institute of the Slovak Academy of Sciences SK-05960 Tatranská Lomnica, Slovak Republic (msaniga@astro.sk)

AN OVERVIEW OF THE TALK

1. Introduction

2. Rudiments of Ring Theory

- Definition of a(n Associative) Ring
- Units, Zero-Divisors, Characteristic, Fields
- Ideals, Jacobson radical, Quotient Rings
- Mappings: Ring Homo- and Isomorphism
- Examples of (Finite) Commutative Rings:

Abstract and Concrete/Illustrative

3. Projective Line over a Ring

- $G L(2, R)$ and Pair Admissibility
- Projective Line over a Ring $R, P R(1)$
- Neighbour/Distant Relations
- The Fine Structure of $P R(1)$: Points of Type I and II
- Illustrative Examples of Finite Projective Ring Lines
- Classification of Projective Ring Lines up to Order 63

4. Conclusion/References

1. Introduction

- Finite projective ring geometries, lines in particular, represent a wellstudied, important and venerable branch of algebraic geometry.
- Although these geometries are endowed with a number of fascinating and rather counter-intuitive properties having no analogues in their classical (field) counterparts, it may well come as a surprise that they have so far successfully evaded the attention of physicists and scholars of other natural sciences.
- The purpose of the talk is to reveal the beauty of the structure of projective ring lines and show the first classification of these objects for finite commutative rings with unity up to order sixty-three.

2. Rudiments of Ring Theory

Definition of a(n Associative) Ring
A ring is a set R (or, more specifically, $(R,+, *)$) with two binary operations, usually called addition $(+)$ and multiplication $(*)$, such that R is
\Rightarrow an abelian group under addition and
\Rightarrow a semigroup under multiplication,
with multiplication being both left and right distributive over addition. (It is customary to denote multiplication in a ring simply by juxtaposition, using $a b$ in place of $a * b$.)

A ring in which the multiplication is commutative is a commutative ring.

A ring R with a multiplicative identity 1 such that $1 r=r 1=r$ for all $r \in R$ is a ring with unity.

A ring containing a finite number of elements is a finite ring; the number of its elements is called its order.

In what follows the word ring will always mean a commutative ring with unity.

Units, Zero-Divisors, Characteristic, Fields

An element r of the ring R is a unit (or an invertible element) if there exists an element r^{-1} such that $r r^{-1}=r^{-1} r=1$. This element, uniquely determined by r, is called the multiplicative inverse of r. The set of units forms a group under multiplication.

A (non-zero) element r of R is said to be a (non-trivial) zero-divisor if there exists $s \neq 0$ such that $s r=r s=0 ; 0$ itself is regarded as trivial zero-divisor.

An element of a finite ring is either a unit or a zero-divisor. A unit cannot be a zero-divisor.

A ring in which every non-zero element is a unit is a field; finite (or Galois) fields, often denoted by $\operatorname{GF}(q)$, have q elements and exist only for $q=p^{n}$, where p is a prime number and n a positive integer.

The smallest positive integer s such that $s 1=0$, where $s 1$ stands for $1+1+1+\ldots+1$ (s times), is called the characteristic of R; if $s 1$ is never zero, R is said to be of characteristic zero.

Ideals, Jacobson radical, Quotient Rings
An ideal \mathcal{I} of R is a subgroup of $(R,+)$ such that $a \mathcal{I}=\mathcal{I} a \subseteq \mathcal{I}$ for all $a \in R$. Obviously, $\{0\}$ and R are trivial ideals; in what follows the word ideal will always mean proper ideal, i.e. an ideal different from either of the two. A unit of R does not belong to any ideal of R; hence, an ideal features solely zero-divisors.

An ideal of the ring R which is not contained in any other ideal but R itself is called a maximal ideal.

If an ideal is of the form $R a$ for some element a of R it is called a principal ideal, usually denoted by $\langle a\rangle$.

A very important ideal of a ring is that represented by the intersection of all maximal ideals; this ideal is called the Jacobson radical.

A ring with a unique maximal ideal is a local ring.
Let R be a ring and \mathcal{I} one of its ideals. Then $\bar{R} \equiv R / \mathcal{I}=\{a+\mathcal{I} \mid a \in R\}$ together with addition $(a+\mathcal{I})+(b+\mathcal{I})=a+b+\mathcal{I}$ and multiplication $(a+\mathcal{I})(b+\mathcal{I})=a b+\mathcal{I}$ is a ring, called the quotient, or factor, ring of R with respect to \mathcal{I}; if \mathcal{I} is maximal, then \bar{R} is a field.

Mappings: Ring Homo- and Isomorphism
A mapping $\pi: \quad R \mapsto S$ between two rings $(R,+, *)$ and (S, \oplus, \otimes) is a ring homomorphism if it meets the following constraints:

$$
\begin{aligned}
& \pi(a+b)=\pi(a) \oplus \pi(b), \\
& \pi(a * b)=\pi(a) \otimes \pi(b) \text { and } \\
& \pi(1)=1 \text { for any two elements } a \text { and } b \text { of } R .
\end{aligned}
$$

From this definition it follows that $\pi(0)=0, \pi(-a)=-\pi(a)$, a unit of R is sent into a unit of S and the set of elements $\{a \in R \mid \pi(a)=0\}$, called the kernel of π, is an ideal of R.

A canonical, or natural, map $\bar{\pi}: R \rightarrow \bar{R} \equiv R / \mathcal{I}$ defined by $\bar{\pi}(r)=r+\mathcal{I}$ is clearly a ring homomorphism with kernel \mathcal{I}.

A bijective (i.e., one-to-one and onto) ring homomorphism is called a ring isomorphism; two rings R and S are called isomorphic, denoted by $R \cong S$, if there exists a ring isomorphism between them.

Examples of (Finite) Commutative Rings:
Abstract
A polynomial ring, $R[x]$, viz. the set of all polynomials in one variable x and with coefficients in a ring R.

The ring R_{\otimes} that is a (finite) direct product of rings, $R_{\otimes} \equiv R_{1} \otimes R_{2} \otimes \ldots \otimes$ R_{n}, where both addition and multiplication are carried out componentwise and where the individual rings need not be the same.

Examples of (Finite) Commutative Rings:
Concrete/Illustrative
$G F(2)$: Order 2, Characteristic 2, a field

\oplus	0	1
0	0	1
1	1	0

Note that $1+1=0$ implies $+1=-1$, which is valid for any ring of characteristic two.

$$
G F\left(4=2^{2}\right) \cong G F(2)[x] /\left\langle x^{2}+x+1\right\rangle: \text { Order } 4, \text { Characteristic } 2, \text { a field }
$$

\oplus	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\otimes	0	1	x	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
x	0	x	$x+1$	1
$x+1$	0	$x+1$	1	x

$G F(2)[x] /\left\langle x^{2}\right\rangle$: Order 4, Characteristic 2, not a field

\oplus	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\otimes	0	1	\underline{x}	$x+1$
0	0	0	0	0
1	0	1	x	$x+1$
\underline{x}	0	x	$\underline{0}$	x
$x+1$	0	$x+1$	x	1

A unique maximal (and also principal) ideal: $\mathcal{I}_{\langle x\rangle}=\{0, x\} \Rightarrow$ it's a local ring. Both $G F\left(4=2^{2}\right)$ and $G F(2)[x] /\left\langle x^{2}\right\rangle$ have the same addition table.
Z_{4} : Order 4, Characteristic 4, not a field

\oplus	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

\otimes	0	1	$\underline{2}$	3
0	0	0	0	0
1	0	1	2	3
$\underline{2}$	0	2	$\underline{0}$	2
3	0	3	2	1

A unique maximal (and also principal) ideal: $\mathcal{I}_{\langle x\rangle}=\{0,2\} \Rightarrow$ it's a local ring. Both Z_{4} and $G F(2)[x] /\left\langle x^{2}\right\rangle$ have the same multiplication table.
$G F(2)[x] /\langle x(x+1)\rangle \cong G F(2) \otimes G F(2):$
Order 4, Characteristic 2, not a field

\oplus	0	1	x	$x+1$
0	0	1	x	$x+1$
1	1	0	$x+1$	x
x	x	$x+1$	0	1
$x+1$	$x+1$	x	1	0

\otimes	0	1	\underline{x}	$\underline{x+1}$
0	0	0	0	0
1	0	1	x	$x+1$
\underline{x}	0	x	x	$\underline{0}$
$\underline{x+1}$	0	$x+1$	$\underline{0}$	$x+1$

Two maximal (and principal as well) ideals: $\mathcal{I}_{\langle x\rangle}=\{0, x\}$ and $\mathcal{I}_{\langle x+1\rangle}=$ $\{0, x+1\} \Rightarrow$ it is not a local ring. Each element except 1 is a zero-divisor. Has the same addition table as both $G F(4)$ and $G F(2)[x] /\left\langle x^{2}\right\rangle$.
$R_{\diamond} \equiv Z_{4} \otimes Z_{4}:$ Order 16, Characteristic 4, not a field

\oplus	a	b	c	d	e	f	g	h	i	j	k	l	m	n	p	q
a	a	b	c	d	e	f	g	h	i	j	k	l	m	n	p	q
b	b	c	d	a	h	k	n	i	j	e	l	m	f	p	q	g
c	c	d	a	b	i	l	p	j	e	h	m	f	k	q	g	n
d	d	a	b	c	j	m	q	e	h	i	f	k	l	g	n	p
e	e	h	i	j	f	g	a	k	l	m	n	p	q	b	c	d
f	f	k	l	m	g	a	e	n	p	q	b	c	d	h	i	j
g	g	n	p	q	a	e	f	b	c	d	h	i	j	k	l	m
h	h	i	j	e	k	n	b	l	m	f	p	q	g	c	d	a
i	i	j	e	h	l	p	c	m	f	k	q	g	n	d	a	b
j	j	e	h	i	m	q	d	f	k	l	g	n	p	a	b	c
k	k	l	m	f	n	b	h	p	q	g	c	d	a	i	j	e
l	l	m	f	k	p	c	i	q	g	n	d	a	b	j	e	h
m	m	f	k	l	q	d	j	g	n	p	a	b	c	e	h	i
n	n	p	q	g	b	h	k	c	d	a	i	j	e	l	m	f
p	p	q	g	n	c	i	l	d	a	b	j	e	h	m	f	k
q	q	g	n	p	d	j	m	a	b	c	e	h	i	f	k	l
\otimes	a	b	c	d	e	f	g	h	i	j	k	l	m	n	p	q
a																
b	a	b	c	d	a	a	a	b	c	d	b	c	d	b	c	d
c	a	c	a	c	a	a	a	c	a	c	c	a	c	c	a	c
d	a	d	c	b	a	a	a	d	c	b	d	c	b	d	c	b
e	a	a	a	a	e	f	g	e	e	e	f	f	f	g	g	g
f	a	a	a	a	f	a	f	f	f	f	a	a	a	f	f	f
g	a	a	a	a	g	f	e	g	g	g	f	f	f	e	e	e
h	a	b	c	d	e	f	g	h	i	j	k	l	m	n	p	q
i	a	c	a	c	e	f	g	i	e	i	l	f	l	p	g	p
j	a	d	c	b	e	f	g	j	i	h	m	l	k	q	p	n
k	a	b	c	d	f	a	f	k	l	m	b	c	d	k	l	m
l	a	c	a	c	f	a	f	l	f	l	c	a	c	l	f	l
m	a	d	c	b	f	a	f	m	l	k	d	c	b	m	l	k
n	a	b	c	d	g	f	e	n	p	q	k	l	m	h	i	j
p	a	c	a	c	g	f	e	p	g	p	l	f	l	i	e	i
q	a	d	c	b	g	f	e	q	p	n	m	l	k	j	i	h

From these tables it follows that a and h are, respectively, the addition and multiplication identities (' 0 ' and ' 1 ') of the ring,

$$
\begin{equation*}
R_{\diamond}^{*}=\{h \equiv 1, j, n, q\} \tag{1}
\end{equation*}
$$

is the set of units and

$$
\begin{equation*}
R_{\diamond} \backslash R_{\diamond}^{*}=\{a \equiv 0, b, c, d, e, f, g, i, k, l, m, p\} \tag{2}
\end{equation*}
$$

that of zero-divisors. The latter comprises two maximal ideals,

$$
\begin{align*}
& \mathcal{I}_{1}=\{a, c, f, l, b, d, k, m\} \tag{3}\\
& \mathcal{I}_{2}=\{a, c, f, l, e, g, i, p\} \tag{4}
\end{align*}
$$

yielding a non-trivial Jacobson radical

$$
\begin{equation*}
\mathcal{J}=\mathcal{I}_{1} \cap \mathcal{I}_{2}=\{a, c, f, l\} \tag{5}
\end{equation*}
$$

3. Projective Line over a Ring

GL $(2, R)$ and Pair Admissibility
Given
\Rightarrow a ring R with unity and
$\Rightarrow G L(2, R)$, the general linear group of invertible two-by-two matrices with entries in R,
a pair $(\alpha, \beta) \in R^{2}$ is called admissible over R if there exist $\gamma, \delta \in R$ such that

$$
\left(\begin{array}{ll}
\alpha & \beta \tag{6}\\
\gamma & \delta
\end{array}\right) \in G L(2, R) .
$$

or, equivalently,

$$
\operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \tag{7}\\
\gamma & \delta
\end{array}\right) \in R^{*} .
$$

Projective Line over a Ring $R, P R(1)$ The projective line over $R, P R(1)$: the set of classes of ordered pairs $(\varrho \alpha, \varrho \beta)$, where
$\Rightarrow \varrho$ is a unit and
$\Rightarrow(\alpha, \beta)$ is admissible.

Neighbour/Distant Relations

Such a line carries two non-trivial, mutually complementary relations of neighbour and distant.
In particular, its two distinct points $X:=(\varrho \alpha, \varrho \beta)$ and $Y:=(\varrho \gamma, \varrho \delta)$ are called neighbour (or, parallel) if

$$
\left(\begin{array}{cc}
\alpha & \beta \tag{8}\\
\gamma & \delta
\end{array}\right) \notin G L(2, R) \Leftrightarrow \operatorname{det}\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in R \backslash R^{*}
$$

and distant otherwise, i.e., if

$$
\left(\begin{array}{ll}
\alpha & \beta \tag{9}\\
\gamma & \delta
\end{array}\right) \in G L(2, R) \Leftrightarrow \operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in R^{*}
$$

The neighbour relation is
\Rightarrow reflexive (every point is obviously neighbour to itself) and
\Rightarrow symmetric (i. e., if X is neighbour to Y then Y is neighbour to X too), but, in general,
\Rightarrow not transitive (i. e., X being neighbour to Y and Y being neighbour to Z does not necessarily mean that X is neighbour to Z).

Given a point of $P R(1)$, the set of all neighbour points to it will be called its neighbourhood.

Obviously, if $R L$ is a field then 'neighbour' simply reduces to 'identical' (and, hence, 'distant' to 'different'); for Eq. (8) reduces to

$$
\operatorname{det}\left(\begin{array}{ll}
\alpha & \beta \tag{10}\\
\gamma & \delta
\end{array}\right)=\alpha \delta-\beta \gamma=0
$$

which indeed implies

$$
\begin{equation*}
\gamma=\varrho \alpha \text { and } \delta=\varrho \beta \tag{11}
\end{equation*}
$$

The Fine Structure of $\operatorname{PR}(1)$: Points of Type I and II
$P R(1)$ comprises, in general, two distinct groups of points.
Points of Type I: the points represented by coordinates where at least one entry is a unit.
It is easy to verify that for any finite commutative ring this number is always equal to the sum of the total number of elements of the ring and the number of its zero-divisors; for, indeed,
\Rightarrow if α is a unit then we can always select ϱ in such a way
that $(\varrho \alpha, \varrho \beta) \Rightarrow\left(1, \beta^{\prime}\right)$, where $\beta^{\prime} \in R$ and
\Rightarrow if β only is a unit then $(\varrho \alpha, \varrho \beta) \Rightarrow\left(\alpha^{\prime}, 1\right)$, where $\alpha^{\prime} \in R \backslash R^{*}$.
Points of Type II: the points represented by coordinates where both entries are zero-divisors.
These points exist only if the ring has two or more maximal ideals and their number depends on the properties and interconnection between these ideals. For ($\varrho \alpha, \varrho \beta$), with α, β being both zero-divisors of R, to represent a point of $P R(1)$, Eq. (7) requires

$$
\operatorname{det}\left(\begin{array}{cc}
\alpha & \beta \tag{12}\\
\gamma & \delta
\end{array}\right)=\alpha \delta-\beta \gamma \in R^{*} .
$$

This constraint cannot be met if R contains just a single maximal ideal \mathcal{I}, because $\alpha \in \mathcal{I}$ implies $\alpha \delta \in \mathcal{I}, \beta \in \mathcal{I}$ implies $\beta \gamma \in \mathcal{I}$, which implies that the whole expression $\alpha \delta-\beta \gamma \in \mathcal{I}$ and, so, is not a unit.

Illustrative Examples of Finite Projective Ring Lines
$R=G F(q)$:
the line contains q (total \# of elements) +1 (\# of zero-divisors) points, any two of them being distant.
$R=Z_{4}:$
the line contains $4+2=6$ points, forming three pairs of neighbours, namely (page 9):
$(1,0)$ and $(1,2)$
$(0,1)$ and $(2,1)$
$(1,1)$ and $(1,3)$
$R=G F(2)[x] /\langle x(x+1)\rangle \cong G F(2) \otimes G F(2):$
the line is endowed with nine points (page 9), out of which there are seven of the first kind,

$$
\begin{aligned}
& (1,0),(1, x),(1, x+1),(1,1), \\
& (0,1),(x, 1),(x+1,1),
\end{aligned}
$$

and two of the second kind,

$$
(x, x+1),(x+1, x) .
$$

The neighbourhoods of three distinguished pairwise distant points $\widetilde{U}:(1,0)$, $\widetilde{V}:(0,1)$ and $\widetilde{W}:(1,1)$ here read

$$
\begin{align*}
& \widetilde{U}: \widetilde{U}_{1}:(1, x), \widetilde{U}_{2}:(1, x+1), \widetilde{U}_{3}:(x, x+1), \widetilde{U}_{4}:(x+1, x), \tag{13}\\
& \widetilde{V}: \widetilde{V}_{1}:(x, 1), \widetilde{V}_{2}:(x+1,1), \widetilde{V}_{3}:(x, x+1), \widetilde{V}_{4}:(x+1, x), \tag{14}
\end{align*}
$$

and

$$
\begin{equation*}
\widetilde{W}: \widetilde{W}_{1}:(1, x), \widetilde{W}_{2}:(1, x+1), \widetilde{W}_{3}:(x, 1), \widetilde{W}_{4}:(x+1,1) . \tag{15}
\end{equation*}
$$

From these expressions, and the fact that $G L(2, R)$ acts transitively on triples of mutually distant points, we find that
\Rightarrow the neighbourhood of any point of this line comprises four distinct points,
\Rightarrow the neighbourhoods of any two distant points have two points in common (which again implies non-transitivity of the neighbour relation) and
\Rightarrow the neighbourhoods of any three mutually distant points are disjoint as illustrated in the figure; note that in this case there exist no "Jacobson" points, i.e. the points belonging solely to a single neighbourhood, due to the trivial character of the Jacobson radical, $\widetilde{\mathcal{J}_{\boldsymbol{\star}}}=\{0\}$.

$$
\theta
$$

$R=Z_{4} \otimes Z_{4}$: the line contains altogether thirty-six points; twenty-eight of Type I

$$
\begin{align*}
& (1,0),(1, b),(1, c),(1, d),(1, e),(1, f),(1, g),(1, i),(1, k),(1, l),(1, m),(1, p), \\
& (0,1),(b, 1),(c, 1),(d, 1),(e, 1),(f, 1),(g, 1),(i, 1),(k, 1),(l, 1),(m, 1),(p, 1), \\
& (1,1),(1, j),(1, n),(1, q) ; \tag{16}
\end{align*}
$$

and eight of Type II

$$
\begin{equation*}
(e, b),(e, k),(i, b),(i, k),(b, e),(k, e),(b, i),(k, i) ; \tag{17}
\end{equation*}
$$

The three distinguished, pairwise distant points of the line, viz. $U:=$ $(1,0), \quad V:=(0,1), \quad W:=(1,1)$, have the following neighbourhoods

$$
\begin{align*}
U: \quad & (1, b),(1, c),(1, d),(1, e), \underline{(1, f)},(1, g),(1, i),(1, k), \underline{(1, l)},(1, m),(1, p), \\
& (e, b),(e, k),(i, b),(i, k),(b, e),(k, e),(b, i),(k, i) \tag{18}\\
V: \quad & (b, 1),(c, 1),(d, 1),(e, 1), \underline{(f, 1),(g, 1),(i, 1),(k, 1),(l, 1),(m, 1),(p, 1),} \\
& (e, b),(e, k),(i, b),(i, k),(b, e),(k, e),(b, i),(k, i) \tag{19}\\
W: \quad & (1, b),(1, d),(1, e),(1, g),(1, i),(1, k),(1, m),(1, p), \\
& (b, 1),(d, 1),(e, 1),(g, 1),(i, 1),(k, 1),(m, 1),(p, 1), \\
& \underline{(1, j),(1, n),(1, q) .} \tag{20}
\end{align*}
$$

One thus sees that
\Rightarrow each neighbourhood features nineteen points and has three 'Jacobson' points (underlined),
\Rightarrow the neighbourhoods pairwise overlap in eight points,
\Rightarrow have no common element if considered altogether and
\Rightarrow there exists no point of the line that would be simultaneously distant to all the three distinguished points.

Employing again the fact that $G L(2, R)$ acts transitively on triples of mutually distant points, these properties can be extended to any triple of mutually distant points.

A nice 'conic' representation of the line exhibiting all these properties is given in the following figure, where every bullet represents two distinct points of the line, while each of the three small circles represents three 'Jacobson' points.

$R=G F(2) \otimes G F(2) \otimes G F(2):$
The line possesses twenty-seven points, twelve of Type II; the neighbourhood of any point of the line features eighteen distinct points, the neighbourhoods of any two distant points share twelve points and the neighbourhoods of any three mutually distant points have six points in common - as depicted in the figure.

As in the case of the lines defined over $\mathrm{GF}(2) \otimes \mathrm{GF}(2)$ and $Z_{4} \otimes Z_{4}$, the neighbour relation is not transitive; however, a novel feature, not encountered in the previous cases, is here a non-zero overlapping between the neighbourhoods of three pairwise distant points, which can be attributed to the existence of three maximal ideals of the ring.

(Every small bullet represents two distinct points of the line, while the big bullet at the bottom stands for as many as six different points.)

Omitting three distinguished points, the remaining twenty-four points of the line split into two sets of twelve exhibiting intriguing structures in terms of the neighbour/distant relation - as illustrated in the figure.

Classification of Projective Ring Lines up to Order 63

Line Type	Cardinalities of Points							Representative Rings
	Tot	TpI	1N	$\cap 2 \mathrm{~N}$	$\cap 3 \mathrm{~N}$	Jcb	MD	
63/15	80	78	16	2	0	2	8	$G F(7) \otimes G F(9)$
63/27	96	90	32	6	0	14	4	$G F(7) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
63/39	128	102	64	26	6	4	4	$G F(7) \otimes G F(3) \otimes G F(3)$
62/32	96	94	33	2	0	29	3	$G F(2) \otimes G F(31)$
61/1	62	62	0	0	0	0	62	$G F(61)$
60/36	120	96	59	24	6	5	4	$G F(3) \otimes G F(5) \otimes G F(4)$
60/44	144	104	83	40	12	15	3	$G F(3) \otimes G F(5) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
60/52	216	112	155	104	60	7	3	$G F(3) \otimes G F(5) \otimes G F(2) \otimes G F(2)$
59/1	60	60	0	0	0	0	60	$G F(59)$
58/30	90	88	31	2	0	27	3	$G F(2) \otimes G F(29)$
57/21	80	78	22	2	0	16	4	$G F(3) \otimes G F(19)$
56/14	72	70	15	2	0	1	8	$G F(7) \otimes G F(8)$
56/32	96	88	39	8	0	23	3	$G F(7) \otimes Z_{8}, G F(7) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$
56/38	120	94	63	26	6	17	3	$G F(7) \otimes G F(2) \otimes G F(4)$
56/44	144	100	87	44	12	11	3	$G F(7) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
56/50	216	106	159	110	66	5	3	$G F(7) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
55/15	72	70	16	2	0	6	6	$G F(5) \otimes G F(11)$
54/28	84	82	29	2	0	25	3	$G F(2) \otimes G F(27)$
54/36	108	90	53	18	0	17	3	$G F(2) \otimes Z_{27}, G F(2) \otimes G F(3)[x] /\left\langle x^{3}\right\rangle,$.
54/38	120	92	65	28	6	15	3	$G F(2) \otimes G F(3) \otimes G F(9)$
54/42	144	96	89	48	18	11	3	$G F(2) \otimes G F(3) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
54/46	192	100	137	92	54	7	3	$G F(2) \otimes G F(3) \otimes G F(3) \otimes G F(3)$
53/1	54	54	0	0	0	0	54	$G F(53)$
52/16	70	68	17	2	0	9	5	$G F(13) \otimes G F(4)$
52/28	84	80	31	4	0	23	3	$G F(13) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
52/40	126	92	73	34	6	11	3	$G F(13) \otimes G F(2) \otimes G F(2)$
51/19	72	70	20	2	0	14	4	$G F(3) \otimes G F(17)$
50/26	78	76	27	2	0	23	3	$G F(2) \otimes G F(25)$
50/30	90	80	39	10	0	19	3	$G F(2) \otimes\left[Z_{25}\right.$ or $\left.G F(5)[x] /\left\langle x^{2}\right\rangle\right]$
50/34	108	84	57	24	6	15	3	$G F(2) \otimes G F(5) \otimes G F(5)$
49/1	50	50	0	0	0	0	50	$G F(49)$
49/7	56	56	6	0	0	6	8	$Z_{49}, G F(7)[x] /\left\langle x^{2}\right\rangle$
49/13	64	62	14	2	0	0	8	$G F(7) \otimes G F(7)$
48/18	68	66	19	2	0	13	4	$G F(3) \otimes G F(16)$
48/24	80	72	31	8	0	7	4	$G F(3) \otimes\left[G F(4)[x] /\left\langle x^{2}\right\rangle\right.$ or $\left.Z_{4}[x] /\left\langle x^{2}+x+1\right\rangle\right]$
48/30	100	78	51	22	6	3	4	$G F(3) \otimes G F(4) \otimes G F(4)$
48/32	96	80	47	16	0	15	3	$G F(3) \otimes Z_{16}, G F(3) \otimes Z_{4}[x] /\left\langle x^{2}\right\rangle, \ldots$
48/34	108	82	59	26	6	13	3	$G F(3) \otimes G F(2) \otimes G F(8)$
48/36 ${ }^{\star}$	120	84	71	36	12	11	3	$G F(3) \otimes G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
48/40	144	88	95	56	24	7	3	$G F(3) \otimes Z_{4} \otimes Z_{4}, G F(3) \otimes G F(2) \otimes Z_{8}, \ldots$
48/42	180	90	131	90	54	5	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(4)$
48/44	216	92	167	124	84	3	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
48/46	324	94	275	230	186	1	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
47/1	48	48	0	0	0	0	48	$G F(47)$
46/24	72	70	25	2	0	21	3	$G F(2) \otimes G F(23)$
45/13	60	58	14	2	0	4	6	$G F(5) \otimes G F(9)$
45/21	72	66	26	6	0	8	4	$G F(5) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
45/29	96	74	50	22	6	2	4	$G F(5) \otimes G F(3) \otimes G F(3)$
44/14	60	58	15	2	0	7	5	$G F(11) \otimes G F(4)$
44/24	72	68	27	4	0	19	3	$G F(11) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
44/34	108	78	63	30	6	9	3	$G F(11) \otimes G F(2) \otimes G F(2)$

Line Type	Cardinalities of Points							Representative Rings
	Tot	TpI	1N	$\cap 2 \mathrm{~N}$	$\cap 3 \mathrm{~N}$	Jcb	MD	
43/1	44	44	0	0	0	0	44	$G F(43)$
42/30	96	72	57	24	6	11	3	$G F(2) \otimes G F(3) \otimes G F(7)$
41/1	42	42	0	0	0	0	42	$G F(41)$
40/12	54	52	13	2	0	3	6	$G F(5) \otimes G F(8)$
40/24	72	64	31	8	0	15	3	$G F(5) \otimes Z_{8}, G F(5) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$
40/28	90	68	49	22	6	11	3	$G F(5) \otimes G F(2) \otimes G F(4)$
40/32	108	72	67	36	12	7	3	$G F(5) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
40/36	162	76	121	86	54	3	3	$G F(5) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
39/15	56	54	16	2	0	10	4	$G F(3) \otimes G F(13)$
38/20	60	58	21	2	0	17	3	$G F(2) \otimes G F(19)$
37/1	38	38	0	0	0	0	38	$G F(37)$
36/12	50	48	13	2	0	5	5	$G F(4) \otimes G F(9)$
36/18	60	54	23	6	0	5	4	$G F(4) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
36/24a	80	60	43	20	6	1	4	$G F(4) \otimes G F(3) \otimes G F(3)$
36/20	60	56	23	4	0	15	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes G F(9)$
$36 / 24 \mathrm{~b}$	72	60	35	12	0	11	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
36/28a	90	64	53	26	6	7	3	$G F(2) \otimes G F(2) \otimes G F(9)$
36/28b	96	64	59	32	12	7	3	$\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right] \otimes G F(3) \otimes G F(3)$
36/30	108	66	71	42	18	5	3	$G F(2) \otimes G F(2) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
36/32	144	68	107	76	48	3	3	$G F(2) \otimes G F(2) \otimes G F(3) \otimes G F(3)$
35/11	48	46	12	2	0	2	6	$G F(5) \otimes G F(7)$
34/18	54	52	19	2	0	15	3	$G F(2) \otimes G F(17)$
33/13	48	46	14	2	0	8	4	$G F(3) \otimes G F(11)$
32/1	33	33	0	0	0	0	33	$G F(32)$
32/11	45	43	12	2	0	0	5	$G F(4) \otimes G F(8)$
32/16	48	48	15	0	0	15	3	$Z_{32}, G F(2)[x] /\left\langle x^{5}\right\rangle, \ldots$
32/17	51	49	18	2	0	14	3	$G F(2) \otimes G F(16)$
32/18	54	50	21	4	0	13	3	$G F(8) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
32/20	60	52	27	8	0	11	3	$G F(4) \otimes Z_{8}, G F(2) \otimes G F(4)[x] /\left\langle x^{2}\right\rangle .$.
32/23	75	55	42	20	6	8	3	$G F(2) \otimes G F(4) \otimes G F(4)$
32/24	72	56	39	16	0	7	3	$G F(2) \otimes Z_{16}, Z_{4} \otimes Z_{8}, \ldots$
32/25	81	57	48	24	6	6	3	$G F(2) \otimes G F(2) \otimes G F(8)$
32/26 ${ }^{\text {® }}$	90	58	57	32	12	5	3	$G F(2) \otimes G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
32/28	108	60	75	48	24	3	3	$G F(2) \otimes G F(2) \otimes Z_{8}, G F(2) \otimes Z_{4} \otimes Z_{4}, \ldots$
32/29	135	61	102	74	48	2	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(4)$
32/30	162	62	129	100	72	1	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
32/31	243	63	210	180	150	0	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$
31/1	32	32	0	0	0	0	32	$G F(31)$
30/22	72	52	41	20	6	7	3	$G F(2) \otimes G F(3) \otimes G F(5)$
29/1	30	30	0	0	0	0	30	$G F(29)$
28/10	40	38	11	2	0	3	5	$G F(7) \otimes G F(4)$
28/16	48	44	19	4	0	11	3	$G F(7) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$
28/22	72	50	43	22	6	5	3	$G F(7) \otimes G F(2) \otimes G F(2)$
27/1	28	28	0	0	0	0	28	$G F(27)$
27/9	36	36	8	0	0	8	4	$Z_{27}, G F(3)[x] /\left\langle x^{3}\right\rangle$,
27/11	40	38	12	2	0	6	4	$G F(3) \otimes G F(9)$
27/15	48	42	20	6	0	2	4	$G F(3) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$
27/19	64	46	36	18	6	0	4	$G F(3) \otimes G F(3) \otimes G F(3)$
26/14	42	40	15	2	0	11	3	$G F(2) \otimes G F(13)$
25/1	26	26	0	0	0	0	26	$G F(25)$
25/5	30	30	4	0	0	4	6	$Z_{25}, G F(5)[x] /\left\langle x^{2}\right\rangle$
25/9	36	34	10	2	0	0	6	$G F(5) \otimes G F(5)$

Line Type	Cardinalities of Points							Representative Rings		
	Tot	TpI	1N	$\cap 2 \mathrm{~N}$	$\cap 3 \mathrm{~N}$	Jcb	MD			
24/10	36	34	11	2	0	5	4	$G F(3) \otimes G F(8)$		
24/16	48	40	23	8	0	7	3	$G F(3) \otimes Z_{8}, G F(3) \otimes G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$		
24/18	60	42	35	18	6	5	3	$G F(3) \otimes G F(2) \otimes G F(4)$		
24/20	72	44	47	28	12	3	3	$G F(3) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
24/22	108	46	83	62	42	1	3	$G F(3) \otimes G F(2) \otimes G F(2) \otimes G F(2)$		
\|		$23 / 1$	24	24	0	0	0	0	24	$G F(23)$
\|		$22 / 12$	36	34	13	2	0	9	3	$G F(2) \otimes G F(11)$
\|		$21 / 9$	32	30	10	2	0	4	4	$G F(3) \otimes G F(7)$
20/8	30	28	9	2	0	1	5	$G F(5) \otimes G F(4)$		
20/12	36	32	15	4	0	7	3	$G F(5) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
20/16	54	36	33	18	6	3	3	$G F(5) \otimes G F(2) \otimes G F(2)$		
19/1	20	20	0	0	0	0	20	$G F(19)$		
18/10	30	28	11	2	0	7	3	$G F(2) \otimes G F(9)$		
18/12	36	30	17	6	0	5	3	$G F(2) \otimes\left[Z_{9}\right.$ or $\left.G F(3)[x] /\left\langle x^{2}\right\rangle\right]$		
18/14	48	32	29	16	6	3	3	$G F(2) \otimes G F(3) \otimes G F(3)$		
17/1	18	18	0	0	0	0	18	$G F(17)$		
16/1	17	17	0	0	0	0	17	$G F(16)$		
16/4	20	20	3	0	0	3	5	$Z_{4}[x] /\left\langle x^{2}+x+1\right\rangle, G F(4)[x] /\left\langle x^{2}\right\rangle$		
16/7	25	23	8	2	0	0	5	$G F(4) \otimes G F(4)$		
16/8	24	24	7	0	0	7	3	$Z_{16}, Z_{4}[x] /\left\langle x^{2}\right\rangle, G F(2)[x] /\left\langle x^{4}\right\rangle$,		
16/9	27	25	10	2	0	6	3	$G F(2) \otimes G F(8)$		
16/10*	30	26	13	4	0	5	3	$G F(4) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
16/12	36	28	19	8	0	3	3	$Z_{4} \otimes Z_{4}, G F(2) \otimes Z_{8}, \ldots$		
16/13	45	29	28	16	6	2	3	$G F(2) \otimes G F(2) \otimes G F(4)$		
16/14	54	30	37	24	12	1	3	$G F(2) \otimes G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
16/15	81	31	64	50	36	0	3	$G F(2) \otimes G F(2) \otimes G F(2) \otimes G F(2)$		
15/7	24	22	8	2	0	2	4	$G F(3) \otimes G F(5)$		
14/8	24	22	9	2	0	5	3	$G F(2) \otimes G F(7)$		
13/1	14	14	0	0	0	0	14	$G F(13)$		
12/6	20	18	7	2	0	1	4	$G F(3) \otimes G F(4)$		
12/8	24	20	11	4	0	3	3	$G F(3) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
12/10	36	22	23	14	6	1	3	$G F(3) \otimes G F(2) \otimes G F(2)$		
11/1	12	12	0	0	0	0	12	$G F(11)$		
10/6	18	16	7	2	0	3	3	$G F(2) \otimes G F(5)$		
9/1	10	10	0	0	0	0	10	$G F(9)$		
9/3	12	12	2	0	0	2	4	$Z_{9}, G F(3)[x] /\left\langle x^{2}\right\rangle$		
9/5	16	14	6	2	0	0	4	$G F(3) \otimes G F(3)$		
8/1	9	9	0	0	0	0	9	$G F(8)$		
8/4	12	12	3	0	0	3	3	$Z_{8}, G F(2)[x] /\left\langle x^{3}\right\rangle, \ldots$		
8/5	15	13	6	2	0	2	3	$G F(2) \otimes G F(4)$		
8/6	18	14	9	4	0	1	3	$G F(2) \otimes\left[Z_{4}\right.$ or $\left.G F(2)[x] /\left\langle x^{2}\right\rangle\right]$		
8/7	27	15	18	12	6	0	3	$G F(2) \otimes G F(2) \otimes G F(2)$		
7/1	8	8	0	0	0	0	8	$G F(7)$		
6/4	12	10	5	2	0	1	3	$G F(2) \otimes G F(3)$		
5/1	6	6	0	0	0	0	6	$G F(5)$		
4/1	5	5	0	0	0	0	5	$G F(4)$		
4/2	6	6	1	0	0	1	3	$Z_{4}, G F(2)[x] /\left\langle x^{2}\right\rangle$		
$4 / 3$	9	7	4	2	0	0	3	$G F(2) \otimes G F(2)$		
3/1	4	4	0	0	0	0	4	$G F(3)$		
2/1	3	3	0	0	0	0	3	$G F(2)$		

4. Conclusion/References

Saniga, M., Planat, M., and Pracna, P.: 2006, A Classification of the Projective Lines over Small Rings II. Non-Commutative Case, to be submitted; (http://hal.ccsd.cnrs.fr/ccsd-00080736 and http://arXiv.org/abs/math.AG/0606500).

Planat, M., Saniga, M., and Kibler, M. R.: 2006, Quantum Entanglement and Projective Ring Geometry, SIGMA, accepted; (http://hal.ccsd.cnrs.fr/ccsd-00077093 and http://arXiv.org/abs/quant-ph/0605239).

Saniga, M., Planat, M., Kibler, M. R., and Pracna, P.: 2006, A Classification of the Projective Lines over Small Rings, submitted; (http://hal.ccsd.cnrs.fr/-ccsd-00068327 and http://arXiv.org/abs/math.AG/0605301).

Saniga, M., and Planat, M.: 2006, On the Fine Structure of the Projective Line over $\mathrm{GF}(2) \otimes \mathrm{GF}(2) \otimes \mathrm{GF}(2)$, submitted; (http://hal.ccsd.cnrs.fr/ccsd-00022719 and http://arXiv.org/abs/math.AG/0604307).

Saniga, M., Planat, M., and Minarovjech, M.: 2006, The Projective Line over the Finite Quotient Ring $\operatorname{GF}(2)[x] /\left\langle x^{3}-x\right\rangle$ and Quantum Entanglement II. The Mermin "Magic" Square/Pentagram, submitted; (http://hal.ccsd.cnrs.fr/ccsd-00021604 and http://arXiv.org/abs/quant-ph/0603206).

Saniga, M., and Planat, M.: 2006, The Projective Line over the Finite Quotient Ring GF(2) $[x] /\left\langle x^{3}-x\right\rangle$ and Quantum Entanglement I. Theoretical Background, submitted; (http://hal.ccsd.cnrs.fr/ccsd-00020182 and http://arXiv.org/abs/quant-ph/0603051).

Saniga, M., and Planat, M.: 2006, Finite Geometries in Quantum Theory: From Galois (Fields) to Hjelmslev (Rings), International Journal of Modern Physics B, 20(1113), 1885-1892.

Saniga, M., and Planat, M.: 2006, Projective Planes over "Galois" Double Numbers and a Geometrical Principle of Complementarity, Chaos, Solitons \& Fractals, in press; (http://hal.ccsd.cnrs.fr/ccsd-00016658 and http://arXiv.org/abs/math.NT/0601261).

Saniga, M., and Planat, M.: 2006, Hjelmslev Geometry of Mutually Unbiased Bases, Journal of Physics A: Mathematical and General, 39(2), 435-440; (http://hal.ccsd.cnrs.fr/ccsd-00005539 and http://arXiv.org/abs/math-ph/0506057).

