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It has for a long time been suspected but only re-
cently fully recognized [1–4] that finite (projective)
geometries may provide us with important clues for
solving the problem of the maximum cardinality of
MUBs, M(d), for Hilbert spaces whose dimension d
is not a power of a prime. It is well-known [5,6] that
M(d) cannot be greater than d+1 and that this limit
is reached if d is a power of a prime. Yet, a still unan-
swered question is if there are non-prime-power values
of d for which this bound is attained. On the other
hand, the minimum number of MUBs, µ(d), was found
to be µ(d)=3 for all dimensions d ≥ 2 [7]. Motivated
by these facts, Saniga et al [1] have conjectured that
the question of the existence of the maximum, or com-
plete, sets of MUBs in a d-dimensional Hilbert space
if d differs from a prime power is intricately connected
with the problem of whether there exist projective
planes whose order d is not a prime power. This con-
tribution is a short elaboration of this conjecture.

We consider a particular geometrical object of a
projective plane, viz. a k-arc – a set of k points, no
three of which are collinear [see, e.g., 8,9]. From the
definition it immediately follows that k=3 is the min-
imum cardinality of such an object. If one requires,
in addition, that there is at least one tangent (a line
meeting it in a single point only) at each of its points,
then the maximum cardinality of a k-arc is found to
be d+1, where d is the order of the projective plane
[8,9]; these (d+1)-arcs are called ovals. Observing
that such k-arcs in a projective plane of order d and
MUBs of a d-dimensional Hilbert space have the same
cardinality bounds one is, then, tempted to view in-
dividual MUBs (of a d-dimensional Hilbert space) as
points of some abstract projective plane (of order d)
so that their basic combinatorial properties are quali-
tatively encoded in the geometry of k-arcs, with com-
plete sets of MUBs having their counterparts in ovals
[10]. The existence of three principally distinct kinds
of ovals for d even and greater than eight, viz. con-
ics, pointed-conics and irregular ovals [11–13], implies

the existence of three qualitatively different groups of
the complete sets of MUBs for the Hilbert spaces of
corresponding dimensions. So, if this analogy holds, a
new MUBs’ physics is to be expected to emerge at the
four- and higher-order-qubit states/configurations.
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[7] Klappenecker A and Rötteler M 2003 Construc-
tions of mutually unbiased bases Preprint quant-
ph/0309120

[8] Hirschfeld J W P 1998 Projective Geometries
Over Finite Fields (Oxford: Oxford University
Press)

[9] Beutelspacher A and Rosenbaum U 1998 Pro-
jective Geometry: From Foundations to Applica-
tions (Cambridge: Cambridge University Press)

[10] Saniga M and Planat M 2004 Sets of Mutu-
ally Unbiased Bases as Arcs in Finite Projective
Planes?, Preprint quant-ph/0409184
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