Ovals in finite projective planes and complete sets of mutually unbiased bases (MUBs)

Metod Saniga, ${ }^{1}$ Michel Planat ${ }^{2}$
${ }^{1}$ Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranská Lomnica, Slovak Republic
${ }^{2}$ Département LPMO, Institut FEMTO-ST, 32 avenue de l'Observatoire, F-25044 Besançon Cedex, France
Corresponding author: Metod Saniga (msaniga@astro.sk)

It has for a long time been suspected but only recently fully recognized $[1-4]$ that finite (projective) geometries may provide us with important clues for solving the problem of the maximum cardinality of MUBs, $\mathcal{M}(d)$, for Hilbert spaces whose dimension d is not a power of a prime. It is well-known [5,6] that $\mathcal{M}(d)$ cannot be greater than $d+1$ and that this limit is reached if d is a power of a prime. Yet, a still unanswered question is if there are non-prime-power values of d for which this bound is attained. On the other hand, the minimum number of MUBs, $\mu(d)$, was found to be $\mu(d)=3$ for all dimensions $d \geq 2$ [7]. Motivated by these facts, Saniga et al [1] have conjectured that the question of the existence of the maximum, or complete, sets of MUBs in a d-dimensional Hilbert space if d differs from a prime power is intricately connected with the problem of whether there exist projective planes whose order d is not a prime power. This contribution is a short elaboration of this conjecture.

We consider a particular geometrical object of a projective plane, viz. a k-arc - a set of k points, no three of which are collinear [see, e.g., 8,9]. From the definition it immediately follows that $k=3$ is the minimum cardinality of such an object. If one requires, in addition, that there is at least one tangent (a line meeting it in a single point only) at each of its points, then the maximum cardinality of a k-arc is found to be $d+1$, where d is the order of the projective plane $[8,9]$; these $(d+1)$-arcs are called ovals. Observing that such k-arcs in a projective plane of order d and MUBs of a d-dimensional Hilbert space have the same cardinality bounds one is, then, tempted to view individual MUBs (of a d-dimensional Hilbert space) as points of some abstract projective plane (of order d) so that their basic combinatorial properties are qualitatively encoded in the geometry of k-arcs, with complete sets of MUBs having their counterparts in ovals [10]. The existence of three principally distinct kinds of ovals for d even and greater than eight, viz. conics, pointed-conics and irregular ovals [11-13], implies
the existence of three qualitatively different groups of the complete sets of MUBs for the Hilbert spaces of corresponding dimensions. So, if this analogy holds, a new MUBs' physics is to be expected to emerge at the four- and higher-order-qubit states/configurations.

References

[1] Saniga M, Planat M and Rosu H 2004 J. Opt. B: Quantum Semiclass. Opt. 6 L19-L20 (Preprint math-ph/0403057)
[2] Wootters W K 2004 Quantum measurements and finite geometry Preprint quant-ph/0406032
[3] Bengtsson I 2004 MUBs, polytopes, and finite geometries Preprint quant-ph/0406174
[4] Planat M, Rosu H and Saniga M 2004 Finite algebraic geometrical structures underlying mutually unbiased quantum measurements Phys. Rev. A submitted (Preprint quant-ph/0409081)
[5] Wootters W K and Fields B D 1989 Ann. Phys. 191 363-81
[6] Ivanović I D 1981 J. Phys. A: Math. Gen. 14 3241-45
[7] Klappenecker A and Rötteler M 2003 Constructions of mutually unbiased bases Preprint quantph/0309120
[8] Hirschfeld J W P 1998 Projective Geometries Over Finite Fields (Oxford: Oxford University Press)
[9] Beutelspacher A and Rosenbaum U 1998 Projective Geometry: From Foundations to Applications (Cambridge: Cambridge University Press)
[10] Saniga M and Planat M 2004 Sets of Mutually Unbiased Bases as Arcs in Finite Projective Planes?, Preprint quant-ph/0409184
[11] Kárteszi F 1976 Introduction to Finite Geometries (Amsterdam: North-Holland Publishing Company)
[12] Segre B 1961 Lectures on Modern Geometry (Rome: Cremonese)
[13] Penttila T 2003 J. Geom. 76 233-55

