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1. Introduction

Projector-valued (also called von Neumann) measurements on
a d-dimensional quantum system are contextual if there is no way
of assigning definite outcomes to yes–no tests that might be per-
formed on a set of n mutually compatible projection operators.
Compatible measurements may have been realized in the past or
may be realized in the future; that is, quantum contextuality is
counterfactual by flouting the causality constraint [1]. Contextual-
ity also encompasses non-locality which requires not only compat-
ible, but also space-like separated tests.

A landmark statement for contextuality is the Bell–Kochen–
Specker (BKS) theorem [2,3], which may be formulated as follows.
In a Hilbert space of dimension d � 3, it is always possible to find a
finite set of rays/vectors that cannot each be assigned the value 1
(for true) or 0 (for false) such that, first, no two orthogonal rays
are both assigned the value 1 and, second, in any complete ba-
sis not all the rays are assigned the value 0 [4]; these constraints
are sometimes referred to as a non-coloring property of a BKS set.
The BKS theorem is closely related to Bell’s theorem which is the
statement that local realistic theories are in conflict with quantum
mechanics. It was found that both theorems, viz. the BKS theo-
rem about contextuality and Bell’s theorem about non-locality, can
be given a simultaneous proof provided that the selected uncol-
orable set of rays is complete (in the sense made explicit in [4]).
For multiple qubits, the completeness argument means that each
ray (usually represented by a column vector) is paired with a
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partner ray (obtained by inverting the column and flipping the
signs).

Many proofs of the BKS theorem rely on magic geometrical
configurations involving only operators and parity rules [5]. Along
this line of action, the well-known Mermin square (for two qubits,
d = 4) and Mermin pentagram (for three qubits, d = 8) were
among the first to serve as an operator proof of the BKS the-
orem and Bell’s theorem as well. This stems from the fact that
the 24 = 6 × 4 rays originating from the 6 commuting sets in
the Mermin square, as well as the 40 = 5 × 8 operators originat-
ing from the 5 commuting sets of the Mermin pentagram, contain
both a ray and its partner, having thus the required completeness.
In the same vein of research, a four-qubit magic rectangle found
by Harvey and Chryssanthacopoulos [9,10] may be used for both
an operator and a state proof of the BKS theorem, as well as for
a proof of Bell’s theorem. Moreover, the found magic rectangle is
similar to the pentagram [6, (15)], with four operator bases of size
five and one of size four; there are 80 real states shared by these
bases and one can find a non-parity BKS proof with only 21 se-
lected maximal bases.

In this Letter, we extend a recent series of small proofs of the
BKS theorem [6], which were based on real rays/vectors associated
with specific sets of two-, three- and four-qubit operators within
the corresponding generalized Pauli group, to a five-qubit system.
The magic configuration that motivated our study is a particular
one from a sequence proposed by Aravind for odd Hilbert space di-
mensions [7]; see also [8]. Among the novelties we find (a) a non-
parity proof of the BKS theorem with 160 rays on 21 maximal
bases, (b) a noise-like distribution of the ‘Hilbert–Schmidt’ dis-
tances between the bases and (c) a remarkable finite geometry
underlaid by a hyperbolic quadric Q +(9,2) of the symplectic polar
space W (9,2).

0375-9601/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
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2. Five-qubit proofs of the BKS theorem

2.1. The magic five-qubit configuration and associated state BKS proofs

The magic configuration we start with is a modification of that
proposed by Aravind [7] and DiVincenzo and Peres [8], namely:

{
A1, A2, A3, A4, A5; Z 5}, {

Z1, Z2, Z3, Z4, Z5; Z 5},
{A1, A3, Z2, Z4, X5; X1}, {A2, A4, Z3, Z5, X2; X1},
{A5, Z1, X2; X5}. (1)

Here, Z1 ≡ Z ⊗ I ⊗ I ⊗ I ⊗ I , Z2 ≡ I ⊗ Z ⊗ I ⊗ I ⊗ I , . . . , Z5 ≡
I ⊗ I ⊗ I ⊗ I ⊗ Z , Z 5 ≡ Z ⊗ Z ⊗ Z ⊗ Z ⊗ Z , similarly for X , A1 ≡
X ⊗ Z ⊗ X ⊗ I ⊗ I , A2 ≡ I ⊗ X ⊗ Z ⊗ X ⊗ I , . . . , A5 ≡ Z ⊗ X ⊗ I ⊗ I ⊗ X ,
and

I =
(

1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −1
1 0

)
and

Z =
(

1 0
0 −1

)
.

The operators preceding the semicolon in each set of pairwise
commuting operators of (1) multiply to the last one except for
the first set where the first five operators multiply to −Z 5. There
are altogether 14 operators and each of them occurs in exactly
two commuting sets. Since each operator has the eigenvalues ±1,
there is no way of assigning multiplicative properties to all the
eigenvalues while keeping the same multiplicative properties for
the operators; hence, these five sets furnish an operator/observable
proof of the BKS theorem.

There are 4 × 32 + 8 = 136 eigenstates associated with the five
operator bases in (1). The states/rays in question form 85 maximal
bases that exhibit a bicoloring and, hence, do not lead to a state
proof of the BKS theorem based on rays.1

For such a proof, we have to pass to a slightly different set
(which, however, is no longer “magic”). In particular, in each of
the first four sets of (1) we drop the observable following the semi-
colon and in the last set we replace the last observable by a couple
of new ones, namely Z4 and A3:

{A1, A2, A3, A4, A5} ≡ A, {Z1, Z2, Z3, Z4, Z5} ≡ B,

{A1, A3, Z2, Z4, X5} ≡ A′, {A2, A4, Z3, Z5, X2} ≡ B ′,
{A5, Z1, X2, Z4, A3} ≡ C . (2)

The 5 × 32 = 160 eigenstates/rays form 661 maximal bases that do
not have a bicoloring. The simplest BKS proof we found contains,
however, only 21 maximal bases. We looked at the graph whose
vertices are theses 21 bases and edges join two bases whenever
they overlap (in one or several rays) and found that its automor-
phism group is isomorphic to aut = Z5

2 � Z6. The 160 rays shared
by the five commuting sets in (2) explicitly read:

1: [10000000000000000000000000000000],
2: [01000000000000000000000000000000],
. . . ,

32: [00000000000000000000000000000001],

1 The non-coloring proofs we are considering in this Letter are based on rays
[4]. But one may also use projectors instead of rays to ensure a proof of the BKS
theorem. For instance, in a three-qubit system, Mermin’s square does not yield BKS
proofs with its associated states, but it does with these states considered as rank-2
projectors [11, Section 4.2]. That the operator BKS proof (1) does not lead to BKS
proofs with rays may come as a surprise. But BKS proofs based on projectors instead
of rays can in this particular case be obtained.

33: [100101̄1001101̄00101̄1010011001̄01̄1̄0],
34: [1001̄01̄1̄001̄10100101̄1̄01001̄1̄001̄011̄0],
35: [01101̄001100101̄101001̄01̄1̄001̄101001],
36: [01101001̄1001011̄01001̄011001̄101̄001̄],
37: [1001̄0110011̄0100101̄1̄01̄0011001011̄0],
38: [01101̄0011̄001̄011̄01̄001011001̄101001],
39: [011̄01̄001̄1001̄01̄1̄0100101̄1001̄1̄01001̄],
40: [1001̄011001̄101̄001̄01̄1̄01̄0011̄001̄01̄10],
41: [1001̄01̄1̄001̄10100101101̄001100101̄10],
42: [100101̄1001101̄001011̄01̄001̄1̄0010110],
43: [1001̄0110011̄0100101101001̄1̄001̄01̄10],
44: [01101̄001100101̄101̄0010110011̄01̄001̄],
45: [1001011̄001101001̄011̄010011̄00101̄1̄0],
46: [011̄010011̄00101̄1̄01̄001̄01̄1001̄1̄01̄001],
47: [100101̄1001̄1̄01001̄01̄1010011̄0010110],
48: [1001̄01̄1̄0011̄01̄001̄01101̄0011̄001̄011̄0],
. . . , their 16 partners,

65: [00110011000000000011001100000000],
66: [11001100000000001100110000000000],
67: [0000000011̄0011̄000000000011̄0011̄00],
68: [0011̄0011̄00000000001̄1001̄100000000],
69: [000000000011001̄1̄000000000011001̄1̄],
70: [0011001̄1̄000000000011001̄1̄00000000],
71: [0000000011001̄1̄00000000001̄1̄001100],
72: [11001̄1̄00000000001̄1̄00110000000000],
73: [000000000011̄0011̄00000000001̄1001̄1],
74: [0000000011001100000000001̄1̄001̄1̄00],
75: [11001100000000001̄1̄001̄1̄0000000000],
76: [0000000011̄001̄100000000001̄10011̄00],
77: [0000000011̄001̄1000000000011̄001̄100],
78: [11̄0011̄000000000011̄0011̄0000000000],
79: [11̄001̄1000000000011̄001̄10000000000],
80: [000000000011̄001̄100000000001̄10011̄],
. . . , their 16 partners,

97: [10100000101000001010000010100000],
98: [00001010000010100000101000001010],
99: [101000001̄01̄000001̄01̄0000010100000],
100: [0000101̄000001̄01000001̄0100000101̄0],
101: [0000101̄00000101̄000001̄01000001̄010],
102: [101̄00000101̄00000101̄00000101̄00000],
103: [00000101000001̄01̄00000101000001̄01̄],
104: [000010100000101000001̄01̄000001̄01̄0],
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105: [00000101̄000001̄01000001̄0100000101̄],
106: [0000010100000101000001̄01̄000001̄01̄],
107: [101̄00000101̄000001̄01000001̄0100000],
108: [0000101̄00000101̄00000101̄00000101̄0],
109: [0000101000001̄01̄000001̄01̄000001010],
110: [00000101̄000001̄0100000101̄000001̄01],
111: [0101̄000001̄0100000101̄000001̄010000],
112: [0101000001̄01̄00000101000001̄01̄0000],
. . . , their 16 partners,

129: [00000000000000001100110011001100],
130: [11001100110011000000000000000000],
131: [0000000000000000110011001̄1̄001̄1̄00],
132: [11̄001̄1001̄10011̄000000000000000000],
133: [110011001̄1̄001̄1̄000000000000000000],
134: [00000000000000000011̄0011̄001̄1001̄1],
135: [00000000000000000011̄001̄10011̄001̄1],
136: [0011001̄1̄0011001̄1̄0000000000000000],
137: [000000000000000011̄0011̄0011̄0011̄00],
138: [000000000000000011001̄1̄001̄1̄001100],
139: [00000000000000000011001̄1̄0011001̄1̄],
140: [00000000000000000011001̄1̄001̄1̄0011],
141: [000000000000000011̄001̄10011̄001̄100],
142: [0011̄001̄1001̄10011̄0000000000000000],
143: [00000000000000000011̄0011̄0011̄0011̄],
144: [000000000000000011̄0011̄001̄1001̄100],
. . . , their 16 partners.

For the sake of completeness, we also give a list of the 21 maximal
vector bases:

1: {65,66,67,71,72,74,75,78,80,81,82,84,85,86,89,90,

91,92,93,95,132,134,136,139,140,141,143,151,153,

155,158,160},
2: {67,69,70,71,72,76,77,78,79,80,84,85,86,87,88,89,

92,93,95,96,129,130,131,133,134,143,145,146,147,

149,153,160},
3: {36,37,40,43,45,46,49,50,51,54,55,57,58,60,63,64,

80,92,93,95,137,138,144,145,146,147,149,150,152,

154,156,159},
4: {2,4,5,7,10,12,13,15,18,20,21,23,26,28,29,31,

97,99,102,103,105,106,107,110,113,115,118,119,

121,122,123,126},
5: {33,34,38,44,47,53,56,62,66,67,68,71,73,74,75,80,

81,82,83,85,89,90,93,94,132,136,139,140,141,151,

155,158},

6: {66,68,69,70,71,72,73,74,75,80,81,83,85,86,87,88,

92,93,94,95,132,137,141,144,145,146,147,149,150,

151,158,159},
7: {65,66,67,69,70,77,78,79,81,82,83,85,86,93,94,95,

99,100,101,104,105,106,107,109,115,116,117,120,

121,122,123,125},
8: {36,37,43,45,50,54,57,63,67,78,84,89,129,133,134,

135,138,139,142,145,146,147,148,149,151,152,153,

154,155,156,157,158},
9: {34,38,41,47,52,53,59,61,68,69,70,73,76,77,79,83,

87,88,94,96,129,130,131,133,135,137,138,142,145,

149,150,154},
10: {2,3,5,8,9,12,14,15,17,20,22,23,26,27,29,32,

33,34,37,40,41,42,43,45,47,48,51,52,54,55,60,62},
11: {36,43,45,51,55,57,58,64,65,67,68,70,71,72,75,76,

78,79,80,81,82,84,85,86,88,89,90,91,92,93,94,95},
12: {66,74,75,80,81,92,93,95,132,134,136,137,138,139,

140,141,143,144,145,146,147,149,150,151,152,153,

154,155,156,158,159,160},
13: {19,20,23,24,27,28,31,32,66,67,74,75,76,77,78,79,

81,84,89,96,136,138,142,145,147,152,153,154,155,

156,157,160},
14: {1,2,3,4,9,10,11,12,17,18,19,20,25,26,27,28,

98,100,101,103,104,105,106,08,109,110,113,115,

118,123,127,128},
15: {1,2,5,6,17,18,21,22,65,67,69,70,71,74,76,77,

81,82,84,86,87,88,90,91,134,135,142,143,148,

153,157,160},
16: {99,100,103,105,109,110,111,112,115,116,119,121,

125,126,127,128,129,130,135,136,137,139,141,143,

145,146,151,152,153,154,157,159},
17: {11,12,15,16,17,18,21,22,25,26,27,28,29,30,31,32,

65,68,70,83,87,90,92,93,130,132,133,150,151,

154,156,159},
18: {33,35,36,37,38,39,41,46,49,51,52,53,54,55,57,62,

98,100,103,106,107,108,109,110,114,116,119,122,

123,124,125,126},
19: {67,69,70,71,72,78,80,84,85,86,87,88,89,92,93,95,

129,130,131,132,133,134,141,143,145,146,147,149,

151,153,158,160},
20: {33,35,36,37,39,40,42,43,44,45,46,48,49,50,51,54,

55,56,57,58,60,62,63,64,144,146,147,148,152,156,

157,159},
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21: {1,3,6,8,9,11,14,16,17,19,22,24,25,27,30,32,

98,100,101,104,108,109,111,112,114,116,117,120,

124,125,127,128}.
Rays 1 to 32 pertain to the second (computational) basis in (2), the
subsequent rays correspond to the remaining four bases. Each of
the five aggregates of rays contains a partner aggregate (not made
explicit), which means that our BKS state proof is also Bell’s proof.
To arrive at the 160–21 proof, we randomly selected a small set S
of bases among the 661 ones such that (a) there is at least one
subset of S containing 5 bases partitioning the 5 × 32 = 160 rays
(this criterion was simply adopted to reach the desired result with
only 325 checks), (b) the set S itself satisfies the BKS ‘non-coloring’
constraints given in the introduction. Applying this methodology in
a recursive way, we arrived at the 21 maximal bases which contain
a single subset {1,4,9,20,21} partitioning the rays.

2.2. Five-qubit contextuality and a distribution of distances between
maximal bases

Apart from the use of standard graph theoretical tools for char-
acterizing the ray/base symmetries, we can also analyze our sets
in terms of the ‘Hilbert–Schmidt’ distance Dab between two or-
thonormal bases a and b, defined as ([12, Eq. (2)], [13])

D2
ab = 1 − 1

d − 1

d∑
i, j=1

(∣∣〈ai|b j〉
∣∣2 − 1

d

)2

.

This distance vanishes when the bases are the same and is maxi-
mal (and equal to unity) when the two bases a and b are mutu-
ally unbiased, |〈ai |b j〉|2 = 1/d, and only then. It has already been
found [6] that the bases yielding a BKS proof prefer a particular
set/pattern of distances, which we suspect to be a universal fea-
ture of such a proof. For the present proof(s), we again observe a
good wealth of distances between the maximal bases that exhibit
a remarkable noise-like pattern, as illustrated in Fig. 1.

In itself, the noisy-like distribution of distances is not specific to
contextuality. It only reflects the complexity of the graphs under-
lying the proofs in question. Only a couple of distances between
maximal bases are involved in the two-qubit 18–9 (parity) proof
and these distances are reflected in a 3 × 3 square diagram [6, (6)].
Similarly, only three distances between maximal bases are involved
in the three-qubit 36–11 (parity) proof and they are reflected in a
“decorated” pentagram [6, (13)]. More complex graphs underlie the
found state proofs for the four-qubit system [6, Table 5] and for the
present five-qubit one.

It is certainly a challenging problem to explore a possible rela-
tionship between this noisy-like behavior of the distances (and the
related graphs) and the concept of value indefiniteness proposed
in [14].

2.3. Five-qubit contextuality and finite geometry

In this section we shall provide the reader with a finite-
geometrical insight into the structure of the five sets (2). To this
end in view, it is instructive to represent mutual relations between
these sets in a diagrammatical form as depicted in Fig. 2(left). One
first notes that the observables I I I Z I and I I X Z X belong to three
different sets, whilst the observable I I I I X sits in just one set; all
the remaining elements are in exactly two sets. We shall, however,
be more interested in geometry of each set as a whole. In this re-
spect it is fairly obvious that we have two pairs of sets, A–B and
A′–B ′ , and that set C stands on a different footing with respect to
each of the two pairs.

Fig. 1. Top: A histogram of distances between the maximal bases for the 160–21
proof of the BKS theorem. There are two main peaks located at d1 = (29/31)1/2 ∼
0.9672 and d2 = (43/62)1/2 ∼ 0.8328, but the distances are spread over 54 distinct
values exhibiting a noise-like distribution; this is quite remarkable given the fact
that the graph described in Section 2.1 possesses a rather high degree of symme-
try, Z5

2 � Z6. Bottom: A histogram of distances between the maximal bases for the
160–661 proof. Here the distances acquire as many as 77 distinct values, whose
distribution looks again like a noise. Comparing with the top figure, one observes
that a bunch of peaks in the middle range of distances is redundant for the present
BKS proof because the characteristic peaks at d1 and d2 are already very well dis-
cernible.

To find a finite-geometrical underpinning of this relation, we
shall invoke some of the theory of factor-group-generated finite
polar spaces expounded thoroughly in [15], where the interested
reader is referred to look for all the necessary background infor-
mation and more details (see also [16–18]). All our observables
represent elements from the real five-qubit Pauli group, whose ge-
ometry is that of the symplectic polar space W (9,2). This space,
roughly speaking, is a collection of all totally isotropic subspaces
of the ambient nine-dimensional binary projective space, PG(9,2),
equipped with a non-degenerate alternating bilinear form. The el-
ements of the group are in a bijective correspondence with the
points of W (9,2) in such a way that two commuting elements
correspond to two points joined by a totally isotropic line; a maxi-
mum set of mutually commuting elements of the group having its
counterpart in a maximal totally isotropic subspace (also called a
generator), which is PG(4,2).

Next, a PG(4,2) has 31 points (see, for example, [19]). If we
multiply the elements and their products within each set of (2), we
also get 31 distinct values, which means that each of our five sets
spans a PG(4,2) in W (9,2). Table 1 lists explicitly the set of 31 ob-
servables/points for each of these PG(4,2)s; here, [A] is a short-
hand for the PG(4,2) spanned by A, etc. Furthermore, as all ele-
ments in each of the five PG(4,2)s are symmetric, these spaces at
the same time correspond to generators on the hyperbolic quadric
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Fig. 2. Left: An illustration of the relations between the five sets of five-qubit observables of (2). Two big concentric circles at the top represent sets A and B , those at the
bottom sets A′ and B ′; set C is represented by the line-segment. The three “exceptional/distinguished” observables are indicated by small double-circles. Right: The same
for the five sets of (1); note that this latter configuration is more symmetric that the former one. In this section, we use a full-fledged labeling of the observables and a
shorthand notation for the tensor product, e.g. X Z X I I ≡ X ⊗ Z ⊗ X ⊗ I ⊗ I .

Table 1
The points/observables of the five PG(4,2)s. Here, for example, ‘123’ stands for the
product of observables ‘1’, ‘2’ and ‘3’.

Point [A] [B] [A′] [B ′] [C]
1 X Z X I I I Z I I I I Z I I I I I Z I I I X I I I
2 I X Z X I I I Z I I I I I Z I I I I I Z I I I Z I
3 I I X Z X I I I Z I X Z X I I X I I X Z Z I I I I
4 X I I X Z I I I I Z I I X Z X I X Z X I Z X I I X
5 Z X I I X Z I I I I I I I I X I X I I I I I X Z X

12 XY Y X I I Z Z I I I Z I Z I I I Z I Z I X I Z I
13 X Z I Z X I Z I Z I X I X I I X I Z X Z Z X I I I
14 I Z X X Z I Z I I Z I Z X Z X I X I X I Z I I I X
15 Y Y X I X Z Z I I I I Z I I X I X Z I I I X X Z X
23 I XY Y X I I Z Z I X Z X Z I X I I X I Z I I Z I
24 X X Z I Z I I Z I Z I I X I X I X Z X Z Z X I Z X
25 Z I Z X X Z I Z I I I I I Z X I X I I Z I I X I X
34 X I XY Y I I I Z Z X Z I Z X X X Z I Z I X I I X
35 Z X X Z I Z I I Z I X Z X I X X X I X Z Z I X Z X
45 Y X I XY Z I I I Z I I X Z I I I Z X I Z X X Z I

123 XY Z Y X I Z Z Z I X I X Z I X I Z X I Z X I Z I
124 IY Y I Z I Z Z I Z I Z X I X I X I X Z Z I I Z X
125 Y Z Y X X Z Z Z I I I Z I Z X I X Z I Z I X X I X
134 I Z IY Y I Z I Z Z X I I Z X X X I I Z I I I I X
135 Y Y I Z I Z Z I Z I X I X I X X X Z X Z Z X X Z X
145 Z Y X XY Z Z I I Z I Z X Z I I I I X I Z I X Z I
234 X XY Z Y I I Z Z Z X Z I I X X X Z I I I X I Z X
235 Z IY Y I Z I Z Z I X Z X Z X X X I X I Z I X I X
245 Y I Z IY Z I Z I Z I I X I I I I Z X Z Z X X I I
345 Y X XY Z Z I I Z Z X Z I Z I X I Z I Z I X X Z I

1234 IY Z Z Y I Z Z Z Z X I I I X X X I I I I I I Z X
1235 Y Z Z Y I Z Z Z Z I X I X Z X X X Z X I Z X X I X
1245 Z Z Y IY Z Z Z I Z I Z X I I I I I X Z Z I X I I
1345 Z Y IY Z Z Z I Z Z X I I Z I X I I I Z I I X Z I
2345 Y IY Z Z Z I Z Z Z X Z I I I X I Z I I I X X I I

12345 Z Z Z Z Z Z Z Z Z Z X I I I I X I I I I I I X I I

Q +(9,2) that is the locus of symmetric elements of the group [15,
§8]. As it is well known [20, §22.4], such a quadric features two
systems of generators, with two different generators pertaining to
the same system if they share a projective space of dimension 2
(plane) or 0 (point), and to different systems if this dimension is
3 (solid), 1 (line) or −1 (an empty set). Employing Table 1, one
finds that our five PG(4,2)s have the following intersection prop-
erties:

[A] ∩ [B] = {Z Z Z Z Z},
[A] ∩ [

A′] = {X Z I Z X, X Z X I I, I I X Z X},
[A] ∩ [

B ′] = {X X Z I Z , X I I X Z , I X Z X I},
[A] ∩ [C] = {Z X X Z I, Z X I I X, I I X Z X},
[B] ∩ [

A′] = {I Z I Z I, I Z I I I, I I I Z I},
[B] ∩ [

B ′] = {I I Z I Z , I I Z I I, I I I I Z},
[B] ∩ [C] = {Z I I Z I, I I I Z I, Z I I I I},[

A′] ∩ [
B ′] = {X I I I I},[

A′] ∩ [C] = {I I X I X, I I I Z X, I I X Z I, I I X I I, I I I Z I, I I X Z X, I I I I X},[
B ′] ∩ [C] = {I X I I I}.

Here, each three-element set represents a line and the seven-
element one represents a plane. Rephrased in the language of di-
mensions, the relations between the five spanned PG(4,2)s read
as shown in Table 2. We see that A-space and B-space are in the
same system, as are A′- and B ′-spaces, the two systems being dif-
ferent; this accounts for the pairing property mentioned above (see
Fig. 2). We further see that although C-space lies in the same sys-
tem as A′- and B ′-ones, it has different intersection with each of
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Table 2
The dimensions of projective spaces of pairwise intersections of the five PG(4,2)s.

[A] [B] [A′] [B ′] [C]
[A] – 0 1 1 1
[B] 0 – 1 1 1
[A′] 1 1 – 0 2
[B ′] 1 1 0 – 0
[C] 1 1 2 0 –

the latter; this explains why set C has a different footing as well.
One also observes that the three distinguished observables (see
Fig. 2) are all accommodated by the unique Fano plane [A′] ∩ [C].

3. Conclusion

We proposed particular 160–21 and 160–661 five-qubit state
proofs of the BKS theorem, each of which also furnishes a proof of
Bell’s theorem, and studied their essential features. The ‘Hilbert–
Schmidt’ distances between the corresponding maximal bases
show a noise-like distribution; this is quite remarkable espe-
cially in the second case, where the graph whose vertices are the
21 bases and edges join two bases whenever they overlap exhibits
a relatively high degree of symmetry, Z5

2 �Z6. We also came across
a rather counter-intuitive feature that our starting “magic” config-
uration of observables (Eq. (1)) does not yield a state proof, and
we had to pass to a slightly different one (Eq. (2)) to do the job.
The geometric nature of the latter configuration was clarified in
terms of symplectic geometry W (9,2) and its refinement, the hy-
perbolic quadric Q +(9,2) that is the locus of symmetric elements
of the real five-qubit Pauli group. We expect this approach to state
proofs of the BKS theorem, which combines group-theoretical tools
with finite-geometrical reasoning, to be very promising especially
for N-qubits with growing values of N , where we surmise the

noise-like behavior to be more pronounced and the corresponding
finite-geometric underpinning more complex/intricate.
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